Abstract—This paper presents a top-down approach to the design of all-silicon CMOS-based fully integrated optical receivers. From the system-level requirements, we determine the optimum block-level specifications, based on which the individual building blocks are designed. Measurement results of the manufactured design show operation at data rates exceeding 2.5-Gbps/channel for the detector, the amplification and the clock and data recovery circuits. This proof of concept is the first step towards design optimized, completely integrated, multi-channel optical receivers for high-bandwidth short-distance chip-to-chip interconnects.

I. INTRODUCTION

While clock frequencies and throughput of digital circuits improve with each new technology generation, the lack in I/O bandwidth of microprocessors is an increasing limitation of the overall system performance of computers. Short-distance communication interfaces like computer buses and LAN systems must support higher data rates to keep the pace with the evolution of processor speed. To meet this target, future generation microprocessors will likely use chip-to-chip fiber-optic communication links as a bus extension to communicate with close-by processors and peripherals. The optical interfaces will connect to a large number of fiber ribbons or optical waveguides integrated in already commercially available electro-optical backplanes. In turn, this requires a large number of optical transmitters and receivers to be monolithically integrated with the processor cores (Figure 1).

Although implementations of such parallel fiber-optic short-distance communication systems have until now only been developed in the high-end server market [1], it is expected that they will enter the low-end markets provided that the cost/bit-rate ratio lowers sufficiently. Obviously, the use of standard manufacturing processes, monolithic integration and the availability of low-cost VCSEL sources in the 850nm optical window are key issues to achieve such cost reductions. As silicon-on-insulator (SOI) is becoming the mainstream substrate for integration of state-of-the-art microprocessors, this material composition appears to be the ideal candidate for building fully integrated optical receivers.

II. SILICON-BASED PHOTODETECTION

The design and fabrication of arrays of SOI-based resonant-cavity enhanced (RCE) photodetectors with high quantum efficiency, capable of operating at data rates up to 10-Gbps has been previously demonstrated by the authors [2]. The low absorption coefficient of silicon (Si) at 850nm

Figure 1. Conceptual block diagram of an integrated multi-channel photoreceiver array for data communication
is enhanced by the use of a Fabry-Perot resonator, delimited by the Si-air interface and the 90% reflectivity, two-period Si-SiO₂ distributed Bragg reflector. These wafers can be commercially manufactured using a standard SOI wafer fabrication process [3] (Figure 2).

Figure 2. Cross-section of the double-SOI silicon photodetector

Figure 3 provides the eye diagram of a 30µm diameter detector measured at 3.0-Gbps when coupled with the HXR2312 3.3-Gbps transimpedance amplifier (TIA) by Helix AG. The measured performance of this novel detector shows that innovative silicon photodetectors can fully compete with stand-alone compound semiconductor devices.

Figure 3. Double-SOI Si detector eye diagram when operating at 3.0Gbps

III. RECEIVER CHAIN SPECIFICATION

Unlike today’s multi-chip receiver solutions, where detector, amplifiers and clock recovery occupy separate substrates, the integrated realization of the complete receiver chain allows for an optimized design procedure, which includes the specifications of each building block (Figure 4).

The receiver chain building blocks are specified by the following parameters: the detector responsivity \(\rho_{PD} \), transimpedance amplifier (TIA) and limiting amplifier (LA) gain, bandwidth and integrated noise (respectively \(A_{TIA} \), \(A_{LA} \), \(BW_{TIA} \), \(BW_{LA} \), \(\tau_{TIA} \), \(\tau_{LA} \)), the limiting amplifier input capacitance \(C_{LA} \), the clock and data recovery (CDR) input sensitivity \(V_{minCDR} \), capacitance \(C_{CDR} \) and jitter tolerance \(JTOL \).

The presented design approach is based on the detailed analysis of the receiver's input sensitivity dependency on the various design parameters. In fact, the overall system bit error rate (BER) depends on the horizontal and vertical eye closure, which are both dependent on the system's device noise and the bandwidth limitations in the receiver and the channel. Equation 1 shows the optical input sensitivity \(OMA_{min} \) as a function of some design parameters, as well as of bit rate \(f_b \), noise factor \(Q_{BER} \) (≈ 7.1 for a BER < 10⁻¹²) and deterministic jitter \(DJ_{pp} \).

\[
OMA_{min} = \sqrt{A^2 + B^2 \cdot Q_{BER} \cdot I_{net}} \tag{1}
\]

While \(I_{net} \) summarizes the noise components in the amplification chain (Equation 2), \(A \) and \(B \) represent the vertical and horizontal eye closure terms respectively.

\[
I_{net} = \sqrt{I_{net}^2 + \frac{V_{minLA}^2}{R_{TIA}}} \tag{2}
\]

As illustrated in Equations 3 and 4, these terms do not depend on the overall system noise, but only on the receiver bandwidth, jitter tolerance and two channel characteristics: deterministic jitter \(DJ_{chan} \) and contributed relative intersymbol interference \(\zeta_{chan} \). In this expression, \(T = f_b \) and \(\tau_{TIA} = (2\pi BW_{TIA})^{-1} \).

\[
A = \left[\frac{\tanh \left(\frac{2\pi \cdot BW_{TIA}}{2f_b} \right)}{0.55} + \frac{1 + 2\zeta_{chan}}{2} \right]^{-1} \tag{3}
\]

\[
B = \left(JTOL - DJ_{chan} - \frac{\tau_{TIA}}{2T} \ln \frac{1 + e^{-2\tau_{TIA}}}{1 - e^{-2\tau_{TIA}}} + e^{-2\tau_{TIA}} \right) BW_{TIA} \tag{4}
\]

Reduction of the signal bandwidth lowers the total amplifier noise, but increases both \(A \) and \(B \). Indeed, at much lower bandwidth, appearance of intersymbol interference (ISI) leads to both deterministic jitter and vertical eye closure, limiting the benefits of reduced noise bandwidth. While long-haul designs based on low-noise bipolar transistors in compound technologies apply the well-known bandwidth value of 0.75\(f_b \) which guarantees the absence of ISI, the higher MOS device noise results in a shift of the optimum bandwidth for lowest input sensitivity (Figure 5).

Figure 4. Receiver block diagram with major design parameters

Figure 5. Input sensitivity as a function of signal bandwidth
The complete receiver design flow propagating the top-level specifications to the block parameters is shown in Figure 6. Starting with the detector parameters, the LA input capacitance and the maximum TIA GBW achievable in the given technology, we can calculate the maximum feedback resistor and the required LA voltage gain according to the included equations.

Following these calculations, we can apply the previously discussed input sensitivity analysis to obtain the noise parameters for both amplifiers. Through this flow, all block-level specifications are determined in accordance with the top-level receiver specifications. As such, this design methodology leads to transistor-level design results which are consistent with the overall system requirements.

Based on the propagation of all system-level specifications to the block level, the detailed design of TIA and LA are addressed in the Section IV, while the design of the clock and data recovery unit is presented in Section V.

IV. SIGNAL AMPLIFICATION

The use of compound materials not only improves the detector performance, but also provides commercial gigabit-range transceivers with larger transconductance and voltage head-room, as available e.g. in SiGe BiCMOS processes. Building competitive high-performance transimpedance and limiting amplifiers in a digital CMOS process remains a major challenge and requires smart circuit topologies as presented in [4] and [5]. Minimum inter-channel crosstalk and sensitivity to supply noise from the digital core are achieved through the use of fully differential topologies and careful supply decoupling.

Based on the previously obtained block-level specifications, the transimpedance amplifier is designed. A two-stage differential pair topology is used to achieve sufficient gain using the faster NMOS devices only and providing good regulation of the output common-mode voltage, a critical issue to correctly drive the limiting amplifier (Figure 7). The output stage was dimensioned based on the non-dominant pole specification, followed by the design of the input stage. As all pole locations depend on transistor ratios only, good control of the amplifier stability is achieved without adding Miller capacitors. Finally, the amplifier noise is simulated to verify the noise specifications.

Two limiting amplifier topologies, with and without inductive peaking, were designed and characterized. Although more advanced topologies have already been published (e.g. in [5]), it was decided to proceed with a cascade of resistively loaded gain stages. One reason for choosing a simple amplifier topology is its portability to new process technologies. The second reason is the goal to analyze potential magnetic coupling between neighboring channels using inductive peaking amplifiers. An array of four TIA and LA channels, as well as a wafer-probed two-channel limiting amplifier design, has been manufactured in a 0.18µm digital CMOS process (Figure 8).

A thorough comparison of inductive peaking and inductor-less topologies, followed by a systematic design approach to optimize the limiting amplifier gain-bandwidth trade-off has been performed. Figure 9 shows a 2.5-Gbps eye diagram measured at the output of the inductive peaking LA.
V. CLOCK AND DATA RECOVERY CIRCUIT

While each receiver channel requires a dedicated amplification path, an area and power efficient clock and data recovery scheme with partial resource sharing has been implemented (Figure 10). In each channel, a clock in sync with the incoming data is obtained at the output of a gated current-controlled oscillator (GCCO). While the oscillation frequency of the GCCOs is under the control of tuning currents delivered by the shared phase-locked loop (PLL), the synchronicity with the data is guaranteed by a gating signal generated individually on each incoming data edge.

In absence of long-term memory in this system, jitter tolerance has to be accurately analyzed to guarantee the overall system performance. This has been done through the development of a jitter-estimation based top-down design methodology, leading to BER estimations based on bathtub curves (Figure 11).

The implemented seven-channel receiver achieves accurate clock recovery at 2.5Gbps/channel with a per channel power consumption of 8.75mW and silicon area occupation of only 0.045mm² (Figure 12). Although the performance of the complete receiver chain has not yet been measured, measurements of the building blocks allow for an estimation of the overall receiver sensitivity (Table 1). Except for the transimpedance amplifier, which has been over-designed for load capacitance, the presented design proves the feasibility of monolithically integrated silicon photonic receivers operating at multi-gigabit data rates.

VI. CONCLUSIONS

We presented a systematic approach to the design and integration of all-silicon high-speed multi-channel fiber-optic receivers. The complete receiver has been designed based on the propagation of specifications from the system level down to the transistor level. The presented measurement results illustrate the proper operation of all building blocks. Achieving multi-gigabit data rates in mainstream silicon technologies, this work proves the validity of such a methodology in the context of high-speed circuit design, as well as the feasibility of fully integrated CMOS receivers acting as high-speed I/Os in future microprocessors.

REFERENCES

TABLE 1. MEASURED RECEIVER PERFORMANCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>0.18μm CMOS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supply voltage (except PD)</td>
<td>1.6</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Detector Responsivity</td>
<td>0.4</td>
<td>-</td>
<td>A/W</td>
</tr>
<tr>
<td>Detector Capacitance (30μm diameter)</td>
<td>70</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>Detector Bandwidth</td>
<td>7.0</td>
<td>-</td>
<td>GHz</td>
</tr>
<tr>
<td>Total Transimpedance Gain</td>
<td>80</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>TIA / LA / CDR Data Rate</td>
<td>2.5</td>
<td>-</td>
<td>Gbps</td>
</tr>
<tr>
<td>TIA Input Referred Current Noise (sim.)</td>
<td>390</td>
<td>nA<sub>MIN</sub></td>
<td></td>
</tr>
<tr>
<td>LA Input Referred Voltage Noise (meas.)</td>
<td>440</td>
<td>μV<sub>MIN</sub></td>
<td></td>
</tr>
<tr>
<td>CDR Jitter Tolerance (sim.)</td>
<td>0.75</td>
<td>-</td>
<td>UI</td>
</tr>
<tr>
<td>Total Input Sensitivity at BER=10^-12</td>
<td>26.5</td>
<td>-</td>
<td>μW<sub>MIN</sub></td>
</tr>
<tr>
<td>Total Power Consumption @ 25°C</td>
<td>94.25</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td>TIA</td>
<td>74</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>11.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CDR</td>
<td>8.75</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. Multi-channel gated oscillator clock recovery topology

Figure 11. Simulated bathtub curve for DJ=0.2UIpp, RJ=0.021UI_{MAX} and S_{L0+G}=0.2UIpp, SJ_{MAX}=0.05f₀

Figure 12. Eye diagram at 2.5-Gbps per channel at the CDR output