

Influence of Lamination Parameters on LTCC Shrinkage under Unconstrained Sintering

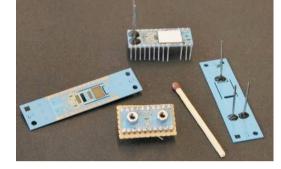
Yannick.Fournier@epfl.ch, speaker co-authors L.-S. Bieri, T. Maeder, P. Ryser

Session of Tuesday, May 23, 11:20

Groupe Couches Épaisses (Thick-Films Group) Laboratoire de Production Microtechnique <u>http://lpm.epfl.ch</u>, Prof. P. Ryser

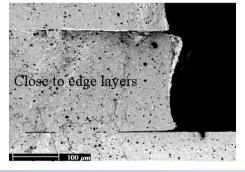
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Station 17, 1015 Lausanne, Switzerland



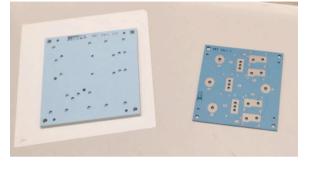

For **LTCC microfluidic circuits**, top manufacturing requirements are:

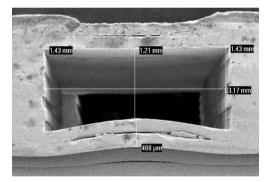
• accurate control of their absolute dimensions


• no crushing of empty cavities

Micro reactors and micro flow sensor

IMAPS – EMPS 2006 Terme Čatež


2 of 16


Our problems

In practice for unconstrained sintering this translates into:

- Variation of final dimensions due to variability of shrinkage
- Shrinkage different (higher) than announced by manufacturer
- **Crushing of cavities** when following manufacturers' lamination recommendations
- Layers delaminations at edges when reducing lamination pressure or temperature

This study aims to:

- Determine the influence on shrinkage of pre-firing parameters (most obviously lamination)
- Find a model to predict shrinkage
- Find a method to characterise a batch of LTCC
- Shorten the manufacturing process

We will show that *p* and *T* are predominant and obey a linear rule.

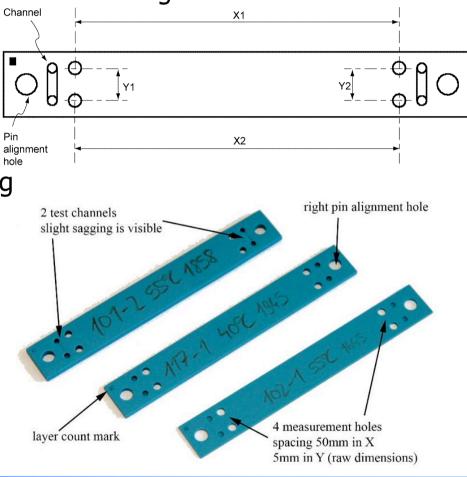
The problem of cavity integrity will be the object of future work.

Choice of parameters

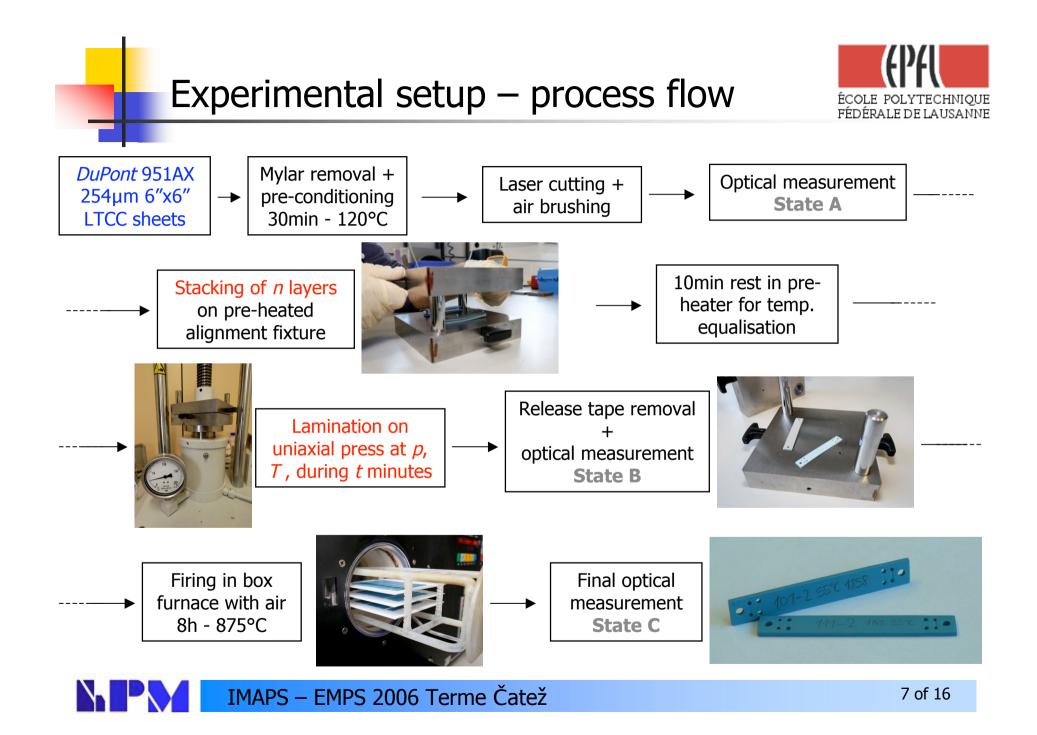
Parameters that can possibly influence LTCC shrinkage:

- ageing of LTCC
- method of removing Mylar tape
- pre-conditioning
- blanking method
- type of release tape
- layers stacking method, number of layers *n*
- lamination (type of press, pressure *p*, temperature *T*, duration *t*)
- elapsed times between steps
- firing method and type/flow of firing gas

LTCC test samples



Specific 72x10mm test samples have been designed:


- 4 holes for measurements
 - spacing $X_1 = X_2 = 50$ mm
 - spacing $Y_1 = Y_2 = 5mm$
- 2 test channels to detect sagging
- 2 holes for pin alignment

IMAPS – EMPS 2006 Terme Čatež

6 of 16

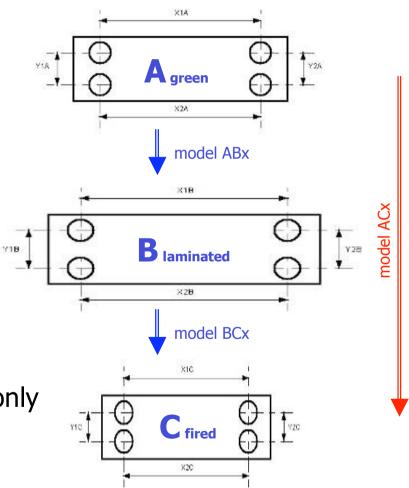
Explanations of parameters ranges

- Temperature *T* : 25-55°C
 - Too low (ambient): layers interpenetrate badly
 - Too high (~70°C): LTCC softens too much, cavity crushing
 - DuPont parameters cannot be used with our non-standard process, as test samples get too damaged to be measured
- Duration *t* : 5-25 mins
 - In literature we find 5 to 15 mins.
 - Pressure manually hold for first 2 mins, then lever released.

Experimental parameters – p, n

Explanations of parameters ranges

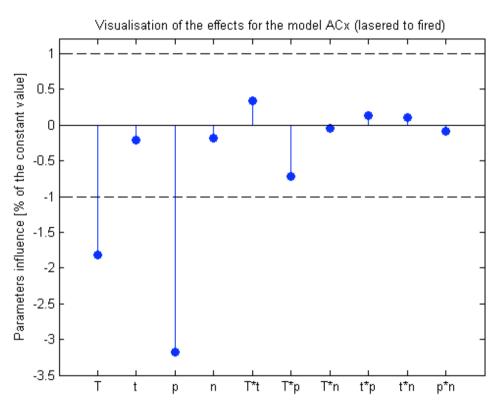
	<i>T</i> [°C]	<i>t</i> [min]	<i>p</i> [bar]
min	25±1	5±0.1	80±7
central	40±1	15±0.1	190±7
max	55±1	25±0.1	300±7
DuPont	70	10	206


- Pressure *p* : 80-300 bars
 - Too low (<80 bars): gets bad laminations
 - Too high (>300 bars): crushes channels
 - Unequal: leads to trapezoidal samples (precise fixture required)
- Number of layers *n* : 3-9 layers
 - must be \geq 3 to avoid warpage
 - rubbing between LTCC layers could influence shrinkage



Design of Experiments (DOE)

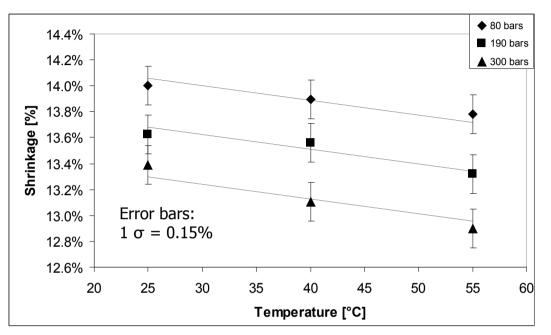
- Linear Full Factorial Design, with central point and interactions
- Focus on variations in X
- Y only for anisotropy estimations
- Initially two sub-models: ABx & BCx, but lamination ABx did not output relevant information
- \Rightarrow We confine the study to ACx model only



Relative influence of parameters and their interactions in regard to the constant value (13.48% of shrinkage)

- *p* -3.2%
- *T* -1.8%
- *T*'*p* -0.7%
- *t*, *n* no big role
- other no big role or negligible

 \Rightarrow Simplifications can be made: only *T* and *p* retained (parameters >abs(1%))



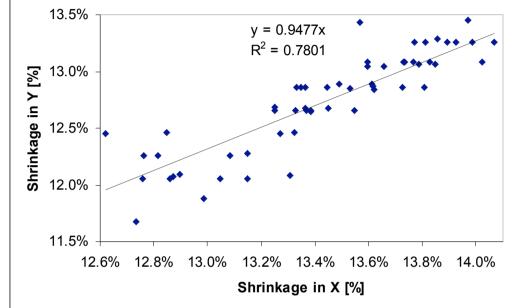
Second run of tests, t = 5 mins, n = 3 layers. DOE composite design, N=2

 Clearly a linear relation, but only works in our limited range of parameters

- Relative broad range of shrinkage: from 13% to 14%
- Variability between experiments of same parameters is 2x to 5x bigger than variability between two same samples fired at once ⇒ operator variability
 - \Rightarrow LTCC inhomogeneities

$$f_{ACx}$$
[%]=14.62-1.13·10⁻²·T-3.45·10⁻³·p

- Formula for our LTCC batch, between 80-300 bars, 25-55°C.
- Good Fischer P-factors for model (3 \cdot 10⁻¹²) and T, p (10⁻⁴ to 10⁻⁶)
- No *T*·*p* interaction retained (P-factor 0.63)
- Comparison of model with data from *DuPont* : with $T = 70^{\circ}$ C and p = 206 bars, shrinkage = 13.11% instead of 12.5%
- It confirms our expectations, but we must be careful:
 - ➤ above 55°C binder properties are expected to become nonlinear
 - > *DuPont* recommends 10 mins and we used 5


Results 4) anisotropy

All second runs displayed

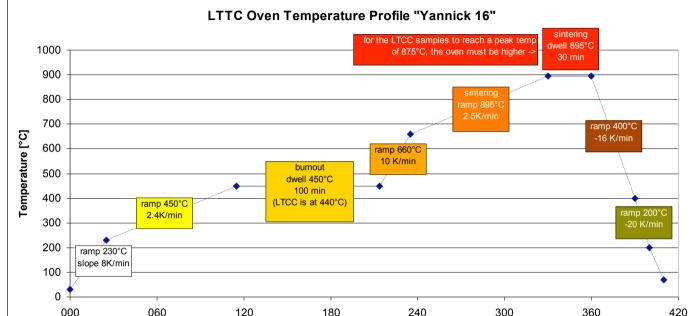
Y-shrinkage \approx 95% X-shrinkage

 $1 \sigma = 1.55\%$

- Linear tendency is observed
- High scatter in the low shrinkage area, especially for 55°C – 300 bars points

• R² for this model not satisfactory, experiment with same distances in Y as X should be carried out

- Non-negligible influence of **lamination** on shrinkage of LTCC unconstrained sintering
- Pressure and temperature are most significant
- Influence of duration and number of layers can be neglected
- Good linear model (P-factor 3⁻10⁻¹²)
- Good process repeatability: 0.15% (usually 0.2-0.3%)
- Results tend to confirm that *DuPont* data is too low: we get 13.11% of shrinkage instead of 12.5%
- Manufacturers could use our method to characterise the shrinkage
- Better understanding of shrinkage, but cavity integrity is still unsatisfying \Rightarrow new methods of lamination must be sought.



Thank you for your attention!

Annexes – air furnace temperature

000	060	120	180	240	300	360	420			
			Time [min]		Step		Duration [h:min]	Total time [h:min]	Final temp [°C]	Slope [K/min]
				1	Fast ramp		00:25	00:25	230	8
				2	Ramp to 440°C		01:30	01:55	450	2.4
				3	Burnout dwell 10	0 mins	01:39	03:34	450	0
				4	Fast ramp		00:21	03:55	660	10
				5	Sintering ramp to	o 875 °C	01:35	05:30	895	2.5
				6	Sintering dwell 3	0 mins	00:30	06:00	895	0
				7	Natural furnace of	cooling	00:30	06:30	400	-16.5
				8	Fast cooling		00:10	06:40	200	-20
				g			00:10	06:50	70	-13
	IMA	IMAPS – EMPS 2006 Terme Čatež							17 of 16	