

Processing – Property Relationship in Co-fired LTCC Structures

H. Birol, T. Maeder, C. Jacq & P. Ryser

Ecole Polytechnique Federale de Lausanne Laboratoire de Production Microtechnique Thick-Film Group Ipmwww.epfl.ch

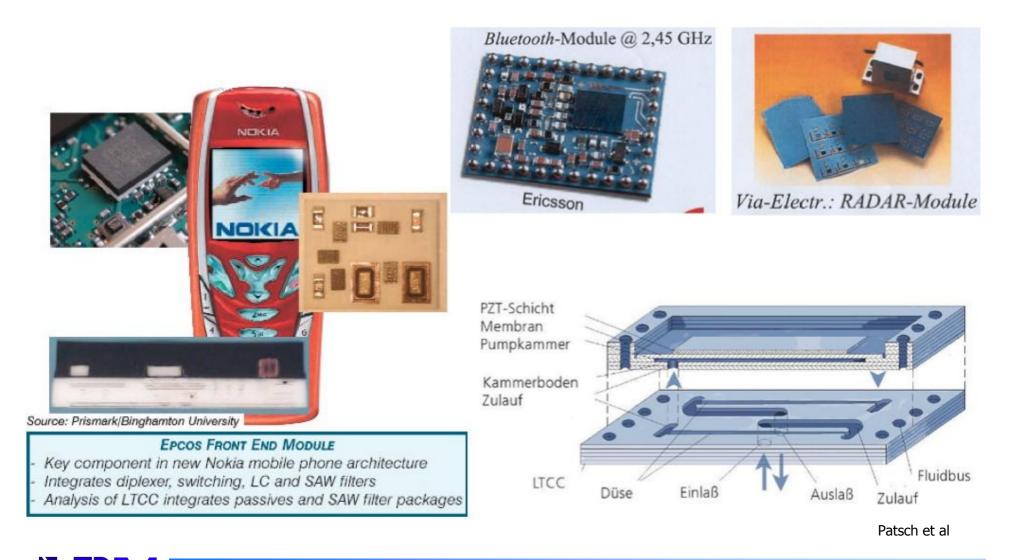
PURPOSE OF THE PRESENTATION

- To present the electrical properties of selected TFR, processed by LTCC technology
- To highlight the direct effect of processing conditions on the properties

 To give an insight into the extent of physical and chemical interactions between the co-fired materials

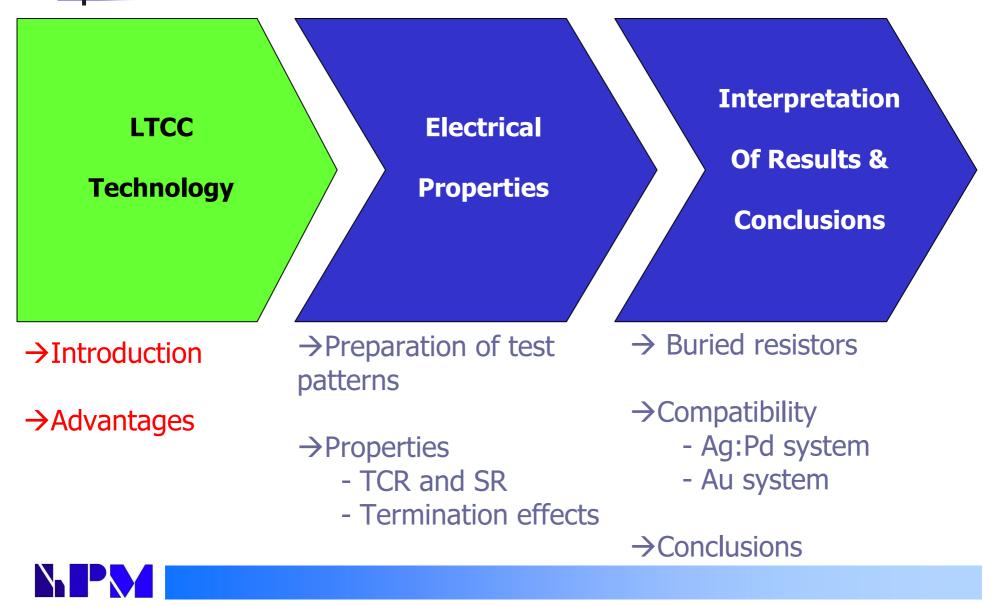
Situation → LTCC technology has been pointed as a smart packaging concept for a long time

Issue → In spite of its numerous advantages, challanges do arise due to material interactions during processing


Question → What are these challenges and their extent on final properties?

MMA-2004, Inuyama - Japan

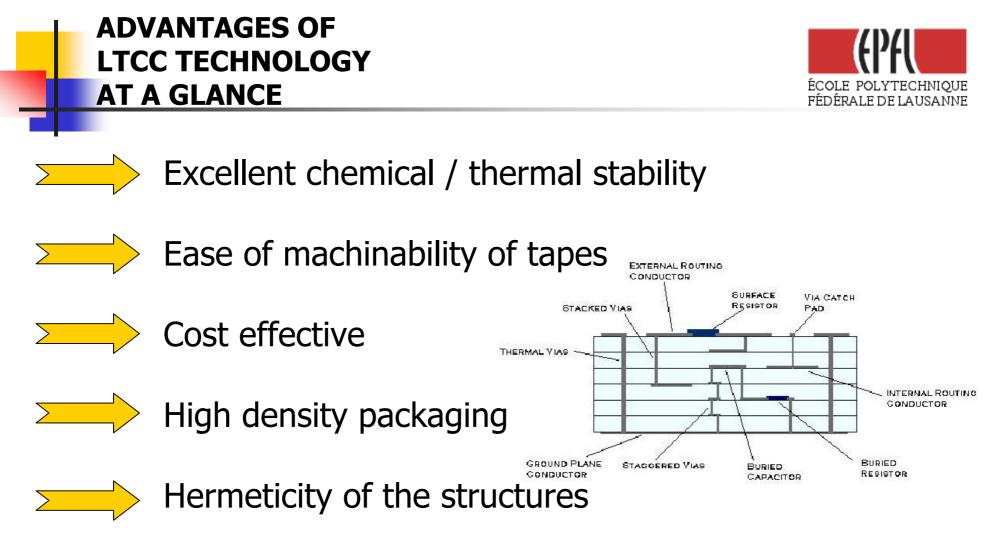
APPLICATION EXAMPLES



MMA-2004, Inuyama - Japan

Based on LTCC tapes of various thicknesses which

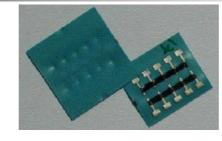
- sinter below 900°C
- are glass ceramics with excellent dielectric properties
- are screen-printed and co/post-fired with thickfilm electronic passive components

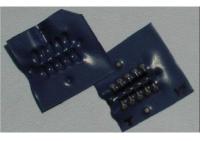


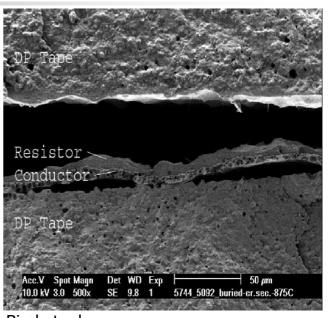
	COMPONENTS					
	SUBSTRATE	PASSIVES				
Components	Таре	Conductor	Resistor			
Function	Dielectric layer	Thick-film paste	Thick-film paste			
Functional group	Dielectric powder	Precious metal, fine size powder	Conductive oxide, fine size powder			
Glass	✓Lowers T _{firing} , ✓ increases dielectric strength and density	 ✓ Lowers T_{firing}, ✓ increases adhesion to substrate and density 	 ✓ Lowers T_{firing}, ✓ increases density ✓ surrounds conductive powder 			
Organics	Binder, solvent,	dispersant for appro	priate rheology			

Mechanical and electrical functions in one system

Integration capability with other technologies

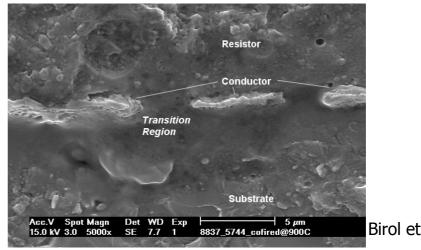

MMA-2004, Inuyama - Japan


CHALLENGES



1. Physical Issues

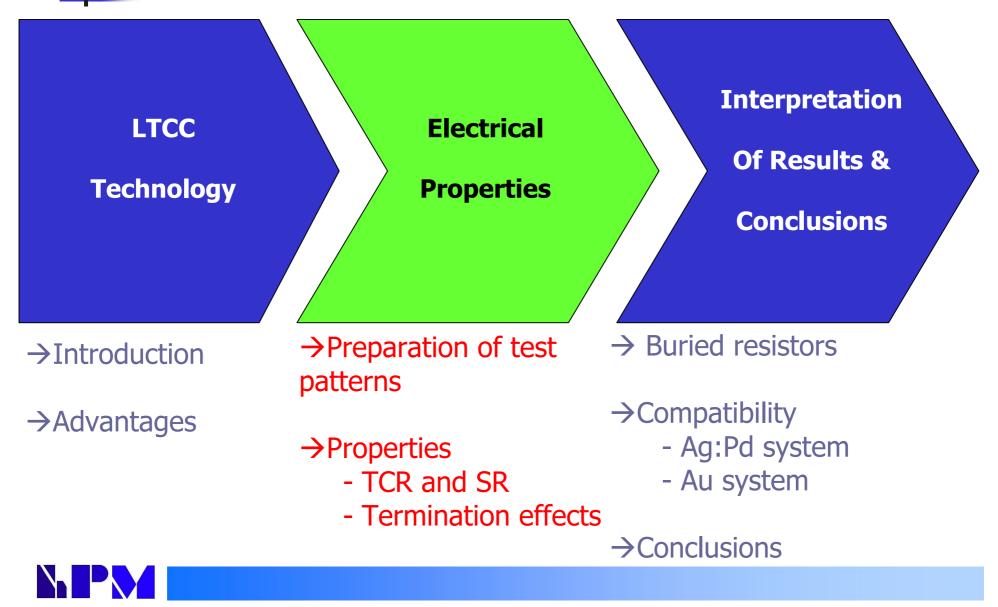
- \rightarrow differential shrinkage
- \rightarrow degassing
- \rightarrow lamination



Birol et. al.

2. Chemical Issues

- \rightarrow Interaction of components
- \rightarrow Oxidizing /reducing conditions



Birol et. al.

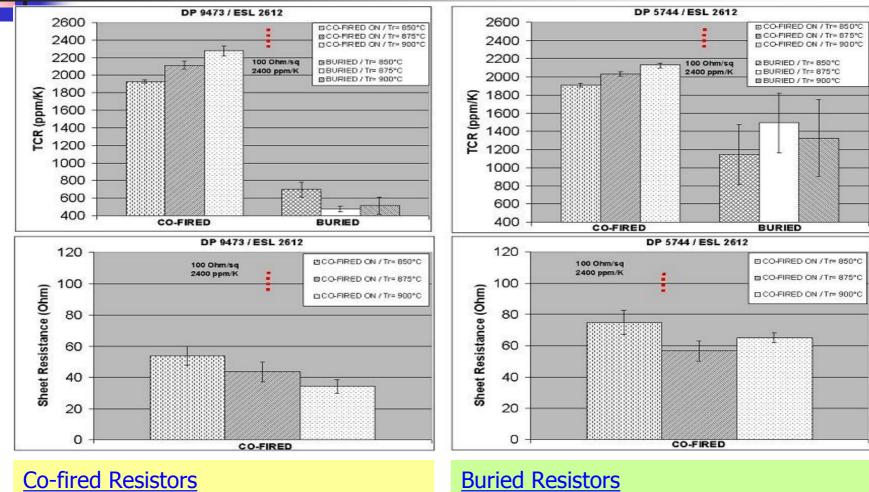
MMA-2004, Inuyama - Japan

OUTLINE OF THIS PRESENTATION

MMA-2004, Inuyama - Japan

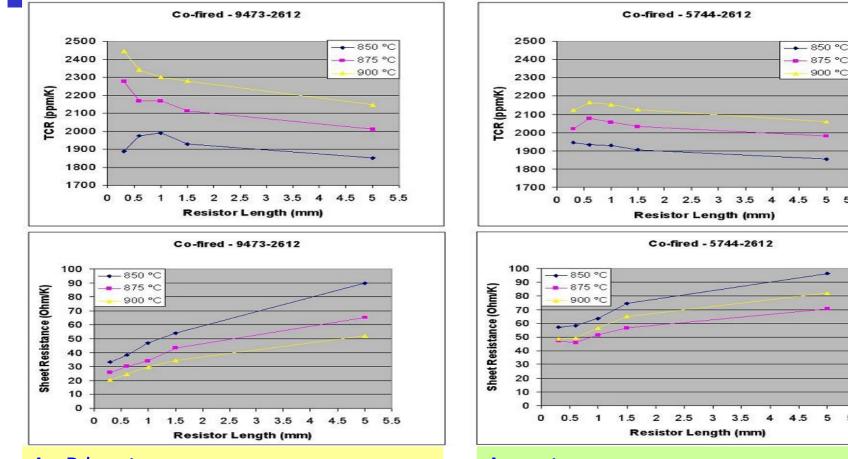
PREPARATION OF TEST PATTERNS

Function	10.00	ommercial Product	10000	emical rigin	Specificati	on	10.200 213 22000 2200	r layout ometry	Heating Cycle
Substrate	10 10 10 10 10 10 10 10 10 10 10 10 10 1	nt (DP) 951-AX TCC Tape	10000	ass- ramic	254µ-thickne	ess	# 5	1 w 1.5 1.5	STEP1: 25°C → 440°C
Conductor		DP 9473	Ag	j :Pd	Alloyed		万 克 1	0.3 1.5 0.6 1.5	5°C/min, t _{dwell} = 120min
	[DP 5744		Au	Classic			1.0 1.5 5.0 1.5	STEP2: 440°C→ T _{firing}
Resistor	E	SL 2612 I	28544	based 'TC	R _s = 100Ω / 🗆 a TCR = 2400 p			l: length w: width	5°C/min, t _{dwell} = 25min
Firing me	thod	Screen-prin	ting	Drying	Lamination	Firin	ig (heating)	cycle)	STEP3: T _{fining} → 25°C
Co-fir	ed	+	1997	+			+	1000 - 100 - 1 1	10°C/min
Burie	d	+		+	+		+		a v vianna


Properties of Interest

- Temperature Coefficient of Resistance (TFR)
- Sheet Resistance (SR)

-in a TCR/SR range by specified values -standard deviation is small - Au closer to SR than Ag:Pd Buried Resistors - non-reproducible TCR values -SD is very broad


MMA-2004, Inuyama - Japan

ELECTRICAL CHARACTERIZATION -Termination Effects

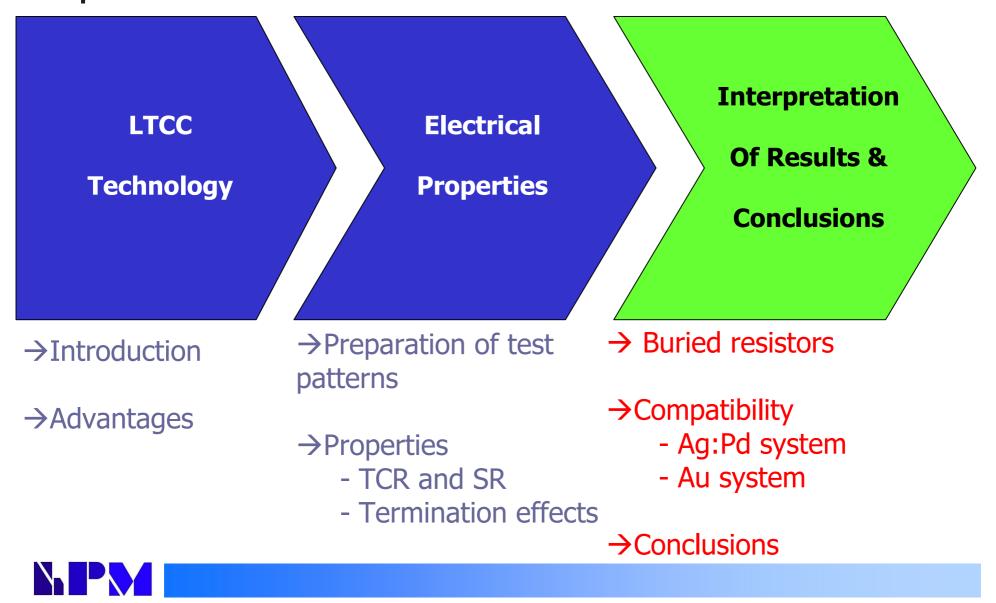
°C

5.5

Ag:Pd system

-Steeper TCR - SR vs resistor length curve indicating an increased influence - Increasing SR at all resistor lengths

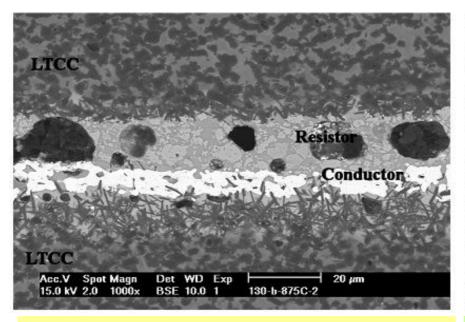
Au system


- -Shallower curves closer to zero slope
- -Closer SR value to expected values
- -Constant SR value at short lengths

MMA-2004, Inuyama - Japan

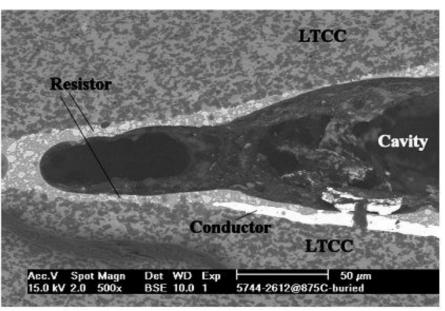
5.5

OUTLINE OF THIS PRESENTATION



MMA-2004, Inuyama - Japan

BURIED RESISTORS



Ag:Pd system

-Reaction zone (light grey) going only along the conductor pad (at all T's):

> -- beltween the conductor and LTCC -- between the resistor and LTCC

-Its thickness depends on temperature

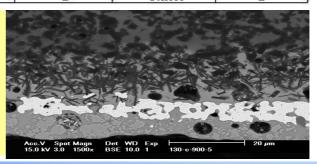
Au system

-Severe deformation at the termination as a result of:

-swelling due to entrapped organic burnout products

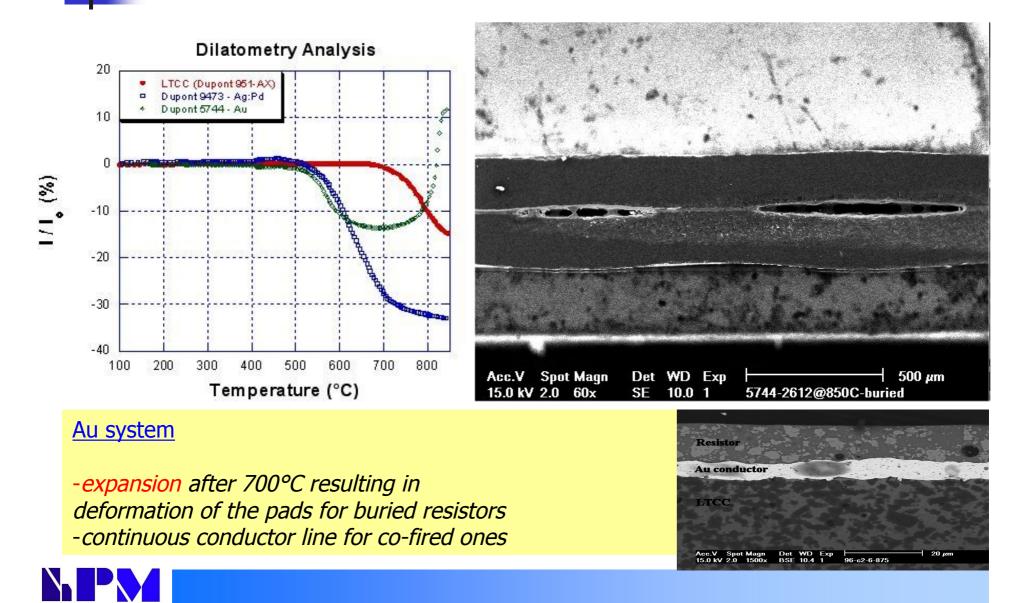
- delamination
- -high-temperature reaction (?)

MMA-2004, Inuyama - Japan

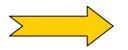

COMPATIBILITY ISSUES Ag:Pd System

Agira c	onductor	B				Pd conductor RZ	
Acc.V Sp 15.0 kV 2.0	ot Magn Det WD I 2000x BSE 10.0	Exp High Parts - pelle	10 μm t fired at 900C	Acc.V Spot M 15.0 kV 2.0 2	Magn Det WD Exp 2500x BSE 10.0 1		10 µm
Acc.V Sp 15.0 kV 2.0	ot Magn Det WD 1 2000x BSE 10.0	1 DP 9473 - pelle		15.0 kV 2.0 2	2500x BSE 10.0 1	 130-b-850C-5	
Acc.V Sp 15.0 kV 2.0 Element	2000x BSE 10.0 1	1 DP 9473 - pelle	t fired at 900C	15.0 kV 2.0 2	Asyn Det WD Exp 2500x BSE 10.0 1 tion zone) Atomic %	 130-b-850C-5	10 <i>µ</i> m
15.0 kV 2.0 Element	2000x BSE 10.0	1 DP 9473 - pelle	t fired at 900C	15.0 kV 2.0 2 RZ (read	tion zone)	 130-ь-850С-5 Matrix i	10 µm
15.0 kV 2.0	A Atomic %	1 DP 9473 - pelle Element	t fired at 900C B Atomic %	15.0 kV 2.0 2 RZ (reac Element	tion zone) Atomic %	130-b-850C-5 Matrix i Element	10 µm in LTCC Atomic %
15.0 kV 2.0 Element Ag	2000x BSE 10.0 A A Atomic % 24	1 DP 9473 - pelle Element O	t fired at 900C B Atomic % 57	15.0 kV 2.0 2 RZ (reac Element O	ESO0x BSE 10.0 1 stion zone) Atomic % 59 59	130-b-850C-5 Matrix i Elem ent O	10 µm in LTCC Atomic % 55 10
15.0 kV 2.0 Element Ag	2000x BSE 10.0 A A Atomic % 24	1 DP 9473 - pelle Element O Zn	t fired at 900C B Atomic % 57 10 4	15.0 kV 2.0 2 RZ (reac Element O Na	Section zone Atomic % 59 4	130-ь-850С-5 Маtrix i Elem ent О А1	10 gm in LTCC Atomic % 55 10 26
15.0 kV 2.0 Element Ag	2000x BSE 10.0 A A Atomic % 24	1 DP 9473 - pelle Element O Zn Al	t fired at 900C B Atomic % 57 10 4 8	15.0 kV 2.0 2 RZ (read C Na A1 Si	Atomic % 59 4 10	130-b-850C-5 Matrix i Element O A1 Si	10 gm in LTCC Atomic % 55 10 26
15.0 kV 2.0 Element Ag	2000x BSE 10.0 A A Atomic % 24	1 DP 9473 - pelle Element O Zn Al Si	t fired at 900C B Atomic % 57 10 4	15.0 kV 2.0 2 RZ (read C Element O Na Al	Atomic % 59 4 10	130-b-850C-5 Matrix i Element ○ Al Si Pb	10 gm in LTCC Atomic % 55 10

Ag:Pd system


-reaction zone (RZ) due to interaction of glasses in LTCC and conductor (at all T's) -discontinuous conductor line

MMA-2004, Inuyama - Japan


MMA-2004, Inuyama - Japan

Buried resistors deviate from expected values

The deviation arises from various mechanical (Au) and/or chemical (Ag:Pd) sources

The chemistry of the material in addition to the processing conditions effect properties directly

Fundamental understanding of the mechanism of formation of deformation in buried structures

Characterization of glass used in the components

Manufacturing of conductors those having shrinkage behavior similar to LTCC tape

