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Abstract

Research on silicon oxide thin films developed as gas-barrier protection for polymer-based
components is reviewed, with attention paid to the relations between (i) coating defects,
cohesive strength and internal stress state, and (ii) interfacial interactions and related adhesion
to the substrate. The deposition process of the oxide from a vapor or a plasma phase leads in

both cases to the formation of covalent bonds between the two materials, with high adhesion
levels. The oxide coating contains nanoscopic defects and microscopic flaws, and their respec-
tive effect on the barrier performance and mechanical resistance of the coating is analyzed.

Potential improvements are discussed, including the control of internal stresses in the coating
during deposition. Controlled levels of compressive internal stresses in the coating are beneficial
to both the barrier performance and the mechanical reliability of the coated polymer. An

optimal coating thickness, with low oxygen permeation and high cohesive strength, is deter-
mined from experimental and theoretical analyses of the failure mechanisms of the coating
under mechanical load. These investigations are found relevant to tailor the interactions and

stress state in the interfacial region, in order to improve the reliability of the coating/substrate
assembly. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thin oxide films deposited on polymer substrates by vapor deposition techniques
are used in a broad variety of applications. The combination of polymer materials
with functional and protective coatings offers a number of key advantages over
alternative bulk materials, such as light weight, complex shape and design freedom,
transparency or tailored optical characteristics, and also cost-effectiveness [1]. The
past decades have seen a regular increase of the research effort to better understand
such material systems and improve corresponding technology, with approx. 3000
scientific papers currently published yearly on this topic, among which over 300 deal
with coatings on polymers, with an increase rate close to 10%. The numerous
applications fields include dielectric antireflection coatings based on SiO2/TiO2,
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SiO2/ZrO2 or SiO2/HfO2 multilayers for optical components [2–5], transparent con-
ducting tin-doped indium oxide (ITO) coatings, high refraction index and high per-
mittivity TiO2 coatings, and ZnO films for flat panel displays, solar cells, and other
opto- and micro-electronic devices [6–10], atomic-oxygen protective coatings of SiO2,
silicon oxinitrides, Al2O3, ITO or SnO2 for spacecraft components [11–15]. The present
review focuses on transparent silicon oxide (SiOx) thin coatings on thermoplastic sub-
strates, which have emerged in the 1980’s as an alternative to metallized plastics, to
protect pharmaceuticals [16,17] and food products [18–23] from oxygen (e.g. review
[24]). These systems proved also to be efficient barriers towards ingression of other
small penetrants such as moisture, as also aroma losses. The versatility of the
deposition technology has led to new applications including coating of bottles [25]
and natural polymers [26], and opens considerable potential for further applications.
These include the protection of polymers against photo-degradation [27] and of
microdevices and flat panel displays from oxygen and moisture ingression [28,29],
the prevention of conversion efficiencies decrease of solar cells [30], as well as patri-
mony conservation purposes [31]. As will be detailed in Section 2 of this report, SiOx

coatings of thickness of the order of 10 to 100 nm decrease the oxygen permeability
of polymer films by typically two orders of magnitude [24]. In the past two decades,
most of the research has been devoted to the physical and chemical analyses of the
barrier system, which includes the characterization of the apparent permeability of
the coated polymer with respect to the deposition process, and resulting coating and
interface defect structure. The main studies and related developments are presented
in Sections 2 and 3.
The importance of mechanical analyses of SiOx coated polymers, in terms of

coating strength, internal stress state, and adhesion to the substrate, motivated
additional research, although to a lesser extent than the above-mentioned physical
and chemical analyses. Theses features are nevertheless among the most important
coating/substrate properties, as depicted in Fig. 1. [32]. The reliability of the barrier
function is controlled by the cohesion of the brittle coating, and by its adhesion to

Fig. 1. Important coating/substrate properties for technological applications. Reproduced from Ref. [32]

with permission.
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the polymer, both being influenced by the process-induced internal stress state of the
coated assembly. In gas-barrier coated polymers, and, more generally, in all the
applications previously mentioned, the intrinsic resistance of the coating to thermal
and mechanical loads, its thickness and its adhesion to the substrate are among the
key characteristics to tailor for both performance and cost optimization. Reduced
thickness without impaired reliability enables cost savings. However, coatings with
thickness down in the nanometer range are often associated with growth hetero-
geneities and high residual stresses generated during the deposition process. More-
over, during all the conversion processes usually encountered in the manufacture of
the above-mentioned products, and during service, the thin, brittle oxide coating
and coating/substrate assembly must resist externally-applied mechanical and
hygrothermal loads. Section 4 presents the activities related to characterization and
modeling of process-induced stresses. Sections 5 and 6 review the various analyses of
(i) cohesive properties and (ii) adhesive properties of gas-barrier coatings, with
attention paid to the role of internal stresses.

2. Oxygen-barrier material systems

2.1. Background

Gas-barrier systems are developed to protect manufactured goods and compo-
nents from degradation, particularly that resulting from oxidative processes. Early
developments of gas-barrier thin films on polymer substrates date back in 1959 with
aluminum metallization techniques. Typical barrier improvement factor (ratio of
permeation rates of uncoated to coated polymer [24]) of the order of 100 was achieved
with 15 nm thick Al coatings formed by resistive evaporation [33]. For food packaging
applications, the oxygen transmission rate (OTR) of the packaging film should be of the
order of 1 cm3(STP)/m2/day/bar [24,34]. For a 100 mm thick film, this OTR value cor-
responds to a permeability of the order of 10�16 cm3(STP).cm/cm2/s/Pa. Polymers are
permeable towards diffusion of small molecules, including oxygen, however with con-
siderable differences depending on the physical interactions between the polymer and
the penetrant molecule (e.g. [35]). The oxygen permeabilities, PO2

, of a variety of
polymers are reported in Table 1. Additional information may be found in the
compilation of Pauly [36] and in the work of Ryder on commercial polymers used
for food packaging [18]. Low density polyethylene (LDPE) has a very high PO2

,
equal approximately to 2500.10�16 cm3(STP).cm/cm2/s/Pa, by contrast with high
barrier polymers such as poly(acrylonitrile) (PAN), poly(vinylidene chloride) (PVDC),
and ethylene vinyl alcohol (EVOH), whose PO2

are of the order of 1.10�16 cm3(STP)
cm/cm2/s/Pa. Liquid-crystalline polymers also offer very low oxygen permeabilities, but
suffer from their high price [37]. Multilayer films based on linear low-density poly-
ethylene grafted maleic anhydride (LLDPE-gMA), coextruded with polyamide (PA)
[38], and tailored blends, such as reactive blends of ternary blends composed of poly
(vinyl-alcohol)/polyamide 6/poly(ethylene-co-ethyl acrylate) (PVOH/PA6/PEEA)
[39], or blends possessing a process-induced laminar morphology [40,41] are devel-
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Table 1

Oxygen permeability of polymers and multiphase polymer systems

Polymer Coating Permeability, PO2

(1016 cm3(STP).

cm/cm2/s/Pa)

Ref.

Polyethylene, low density (LDPE) – �2500 [18,35,36]

Polyethylene, high density (HDPE) – 500 [35]

Polypropylene (PP) – 530–1700a [18,24,36,305]

Polystyrene (PS) – 2000

Poly(carbonate) (PC) – 1050

Poly(vinyl acetate) (PVAC) – 367

Poly(ethylene terephthalate) (PET) – 10–30a [18,24,36,306]

poly(vinylchloride) (PVC) – 5.9 [18]

Polyamide 6 (PA6) – 5–25a [18,36,128,307]

Poly(acrylonitrile) (PAN) – 0.15–5 [18,36]

Poly(vinylidene chloride) (PVDC) – 0.38–4 [18,36]

Poly(ethylene vinyl alcohol) (EVOH) – 0.05–6.65b [18,36]

LDPE/EVOH blends – 3.8 [40]

PET/EVOH blends – 5.1 [308]

Polypropylene/polyamide 6 blends – 1.7–850c [309]

Thermotropic liquid-crystalline

polymers

– <0.1–0.4 [37,310]

Alkylsulfonylmethyl-substituted

poly(oxyalkylene)

– 0.7–3.6 [43]

Poly(hydroxy amide ethers) – 1–20 [311–313]

PET copolymer/talc 32%wt

composite

– 14 [44]

Polyethylene/mica 10wt%

composite

– �2000 [314]

Polyamide 6/layered silicate

nanocomposite

– �10 [46]

Polyethylene SiOx 40 nm (PECVD) 85 [128]

Polyamide SiOx 40 nm (PECVD) 0.07 [128]

Polycarbonate (PC) SiOxCxHz /TiO2 100nm (PICVD) �3 [17]

Polypropylene, oriented (OPP) SiOx (React.sputter Si) 50 [315]

SiOx (React. evap.SiO) 50 [315]

SiOx (PECVD) 2 [82]

ORMOCER1 37 [213]

SiOx/ORMOCER1 0.12 [213]

Poly(ethylene terephthalate) (PET) Al<15nm React. evap. �0.15 [33]

Silica-poly(vinyl alcohol) �1 [316]

SiN (PECVD) 0.15 [317]

ZnO (Reactive sputtering) 1.2 [19]

SiOx70nm(Reactive evaporation) 0.3 [20]

SiOx 12nm (PECVD) 0.15 [318]

SiOx (PECVD) 0.12 [133]

SiOx (PECVD) 0.04 [74]

ORMOCER1/SiOx 0.069 [213]

a Depends on crystallinity, orientation, and water vapor in case of polyamides [307].
b Depends on ethylene content.
c Depends on composition. A marked decrease is observed for PA6 fractions greater than 60%.
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oped for improved barrier performance. In addition, research on novel polymers
with low oxygen permeabilities is currently being carried out. These include
poly(1,1-bis(hydroxymethyl)-2-vinylcyclopropane) [42] or alkylsulfonylmethyl-sub-
stituted poly(oxyalkylene)s [43], the latter achieving oxygen permeabilities lower
than 10�16 cm3(STP).cm/cm2/s/Pa. Layered composites have also been developed
for the same purpose, such as talc-filled semicrystalline thermoplastics [44]. A pro-
mising development is found in the field of layered silicate nanocomposites [45],
particularly those based on polyamide 6 (PA6) [46].
An alternative to the synthesis of new polymers is the use of thin gas-barrier

coatings, formed by means of vapor-deposition processes. The reason is, in a first
approximation, the transport of small penetrants through bilayer films can be
expressed following a parallel-type equation [47]:

h

P
¼

hc
Pc

þ
hs
Ps

ð1Þ

where h, hc and hs represent the coated film, coating and substrate thicknesses,
respectively. P is the apparent oxygen permeability of the coated film, and Pc and Ps

are the oxygen permeabilities of the coating and substrate, respectively. The appar-
ent permeability of the coated film P thus decreases with increasing coating thick-
ness, by typically two orders of magnitude, as shown in Fig. 2 for SiOx/PET
materials processed with various techniques. This, in fact, is only verified in a nar-
row range of small coating thickness, and does not capture the observation of a flat
minimum in P values when coating thickness is increased to beyond a given thresh-
old (Fig. 3). Common deposition technologies [48] are based on physical vapor
deposition (PVD process) such as reactive evaporation, and chemical vapor deposi-
tion (CVD). PVD processes operate under reduced pressure, and comprise eva-
poration and sputtering, characterized by the absence of chemical reactions in the
gas phase and at the substrate surface (at the exception of reactive evaporation
where a partial pressure of oxygen is used). An overview of PVD processes can be
found in Ref. [49]. Both evaporation and sputtering techniques use solid precursors
with low boiling points from which atoms are removed, either by thermal means in
the evaporation process, or through impact by gaseous ions in the sputtering process.
CVD processes use volatile precursors, which are decomposed by means of heat,
photons, or plasma. The latter technique, termed plasma enhanced CVD (PECVD),
is applicable for thermally sensitive substrates such as polymers, and has become the
mostly used process for the deposition of SiOx coatings. The following considers the
case of metallic coatings, and then the case of oxides.

2.2. Thin metal coatings on polymers

A considerable amount of work has been dedicated to aluminized polymers in the
past decades, the main emphasis being put on the analysis of interface interactions
and chemistry [50–56]. In these works, the good adhesion between Al and a number
of polymers, particularly polyesters, was attributed to the formation of covalent
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bonds (Al–O–C oxi-carbide complex and carbide bonds), whereas hydrogen bonds
were found to have a negligible influence on adhesion [53]. There exist also numerous
analyses of interfacial interactions between metals and polymers, mostly poly(ethylene
terephthalate) (PET). These metals comprise Mg (thermal evaporation) [57,58], K
and Cr (evaporation) [59], Si and Cu (thermal evaporation) [57]. All these metals (M)
form complexes with the polymer, particularly carboxylic groups, and lead to M–O–
C and M–C bonds. By contrast with Al, Cu presents weak adhesion to PET [52],
unless an O2 plasma treatment is applied to the polymer, which increases the polar
component of the polymer surface energy [60], and leads to the formation of a Cu–
O–C metal complex [51].

2.3. Thin metal oxide coatings on polymers

Besides their excellent transparency, compared to thin metallic films, metal oxides
such as silicon oxide (SiOx) possess excellent barrier properties. Transparent barrier
SiOx coatings were originally industrialized in 1969 [61]. The very tight interstitial
spaces of the Si–O lattice and broad ranges in thermal stability leads to oxygen

Fig. 2. Oxygen transmission rate (OTR) of SiOx coated PET vs. coating thickness, for different deposition

technologies (data after refs [24,304]). Also shown is the OTR of Al/PET.
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diffusivities in the range 10�5–10�9 cm2/s. An in-depth analysis of oxygen and water
vapor transport through magnetically enhanced CVD SiOx coated PET barrier films
was performed by Trophsa and Harvey [62]. The authors concluded that the oxide
coating acted as simple defective blocks to oxygen transport, as depicted in Fig. 4,
and that the dominant transport mechanism was permeation through the polymer
substrate, followed by flux through available defects in the coating. This is in con-
trast to the behavior of water molecules that are believed to interact and react with
deposited metal and oxide coatings [63]. In spite of the reported defects, the oxygen
permeation of the coated polymer is typically two orders of magnitude lower than
that of the uncoated polymer, as indicated in Table 1.
The numerous analyses of the interfacial interactions between silicon oxide coatings

and various polymer substrates revealed the presence of Si–C and Si–O–C covalent
bonds [53,64–77]. The influence of deposition conditions and pretreatments, such as
plasma activation of the polymer surface, are reviewed by Benmalek and Dunlop in
case of SiOx and AlyOz coatings on polymer substrates [65]. The authors observed
that the barrier depends on coating thickness, and rougher surfaces, such as that of

Fig. 3. Apparent permeability of SiOx/PET films (dots: experimental data after refs [24,304], line: Eq. (1),

with hs=12 mm, Ps=16.5.10�16 cm3(STP).cm/cm2/s/Pa and Pc=4.9.10�19 cm3(STP).cm/cm2/s/Pa).
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polyethylene, require thicker coatings. The contribution of polar, hydrogen bonds to
adhesion was found to be negligible, and strong adhesion between SiOx and poly-
mers requires the presence of oxygen at the interface to form the above mentioned
covalent bonds [53].
Among the other relevant studies devoted to the deposition of oxides onto polymer

substrates, one may cite TiO2 coatings. Titania, due to unique UV-absorption char-
acteristics, would constitute interesting barrier material to protect polymers against
photodegradation. TiO2 coatings can be formed by laser ablation deposition [6], r.f.
magnetron sputtering in an oxygen-argon plasma from a titanium target (reactive pro-
cess) [7], and in a pure argon plasma from a titania target (non-reactive process) [78].
Ti–O–C covalent bonds were identified by XPS between PET and TiO2 in the case of
the reactive magnetron sputtering, with corresponding high adhesion level. By con-
trast, no chemical reaction seemed to occur between the PET and the titanium oxide
film sputtered under a pure argon plasma [78], and the adhesion resulting from
mechanical interlocking was reported to be weaker than in the previous case.

Fig. 4. Empirical model of oxygen transport through (a) uncoated PET, (b) PET film coated on one side

with a hypothetically defect free, continuous layer of ‘‘glass’’, (c) PET film coated on one side with an

imperfect, non-continuous layer of SiOx, and (d) PET film coated on two sides with imperfect, non-con-

tinuous layers of SiOx. The apparent free energies of activation for the transport of oxygen are indicated

for each case. Reproduced from Ref. [62] with permission.
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To summarize, covalent bonds are formed during the vapor deposition of thin
metal or metal oxide films onto polymer substrates, and these bonds leads to high
levels of adhesion, as will be detailed in Section 6 of this report. This, however, is a
necessary but not sufficient condition for coating performance. Of equal importance
is the cohesive strength of the thin film, which results from a complex interplay
between interface structure, coating growth, defects, and internal stress state.

3. Defects in thin oxide films on polymers

In their permeation study of polymer barrier systems, Rossi and Nulman found
that many small holes in a barrier layer lead to a much higher permeation than few
large holes, of same total area [79]. It was moreover established that the barrier
performance of coated polymers depends on coating thickness [80], on substrate
roughness [72,81], as also on coating density, as shown in Fig. 5 in case of an hex-
amethyldisiloxane/oxygen (HMDSO/O2) coating on polypropylene (PP) [82]. These
factors (defect size, coating thickness, coating density, and substrate roughness) are
all likely to affect the mechanical behavior of the coating. Particularly, rougher sur-
faces require thicker coatings for maintained barrier properties, which tend to pro-
mote cracking [65,83]. It is therefore essential to have a detailed understanding of
the initial surface morphology of the polymer substrate, of its evolution during the
deposition process, and the resulting final structure of the coating.

Fig. 5. Oxygen flow across membranes and density of HMDSO/O2 plasma polymer films on PP (with

error bars due to thickness incertitude of deposits) for different gas-phase compositions. Uncoated PP

reference flow=600 cm3/m2 day. Initial gas total pressure=10�1 mbar; power density=100 mW/cm2;

deposition time=10 min. Reproduced from Ref. [82] with permission.
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3.1. The surface morphology of the polymer substrate

The surface of polymers, particularly semi-crystalline thermoplastics, are char-
acterized by complex microstructures, and have been the subject of detailed investi-
gations in the last decade, with the advent of surface probe techniques. The surface
of amorphous [84], semi-crystalline [85], unixially stretched [86], and biaxially stret-
ched [87] PET films was largely studied. Surface restructuration upon exposure to
air or water was detected and modeled in the former case [84]. In the latter case,
attention was paid to the influence of the progressive molecular orientation towards
the extension direction, and eventual strain-induced crystallization, on surface
energetics [88] and surface topology [85–87]. Unger and co-workers reported a pre-
ferential orientation of the PET surface chain segments, with the benzene ring being
parallel to the surface plane [89], that gradually diminishes upon exposure to an
oxygen plasma [90]. Using interfacial force microscopy, Graham et al [91] measured
the mechanical properties of crystallized PET surfaces with nanometer resolution,
and reported Young’s moduli equal to 2.2 GPa in amorphous regions, and to 11.8
GPa on crystalline regions. A value of 4.3 GPa was also measured in the close vicinity
of the latter regions, which was attributed to an intermediate amorphous region, with
some degree of order. A detailed characterization of the surface macrolattice of extru-
ded PET could be achieved by means of contact-mode atomic force microscopy [85].
Keeping in mind the limited resolution of the pyramidal AFM tip, various measure-
ments led to mean surface roughness of the crystalline regions in the range 2.3–13 nm,
and of amorphous regions in the range 23–38 nm. RMS roughness as low as 1.13 nm
was reported for 12 mm thick, presumably biaxially oriented, PET films [65], and of
approx. 4 nm, for uniaxially oriented PET [86].
Commercial PET films contain a variety of additives including chemical com-

pounds, glass beads, clays, or silicate anti-tack particles, analyzed by XPS and ToF-
SIMS [92], and by acoustic microscopy [93,94]. Using scanning force microscopy
techniques, Ling and Legget observed radial features around silicate particles, that
may be attributed to localized strain-induced crystallization [87]. The diameter of
the particles, embedded in the polymer superficial layers, was found to lie in the
range 150–500 nm, with an average interparticulate spacing of approx. 500 nm. Few
particles protruded some 20–40 nm above the polymer surface, as indicated from
lateral force microscopy [86]. Similar studies were performed on magnetic tape PET
substrates [95]. The influence of such additives, located in subsurface layers, on the
surface topology of PET upon stretching was examined numerically by Gerlach et
al. [96], and a detailed theoretical analysis was carried out by Khan and Keener [97].
For PET films drawn to a ratio of 4, the density of anti-blocking particles is of
approx. 1000/mm2, and these increase the polymer roughness up to approx. 50 nm.
Such analyses are useful as design approaches to the manufacture of polymer films.
They could also be useful as input data in the determination of the influence of the
initial roughness of the polymer surface on the mechanical strength of the coating.
This would first imply that the evolution of the polymer surface during the early
deposition stages of the coating is carefully described especially when etching phe-
nomena are present. Fig. 6A is an attempt to summarize the main characteristics of
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the surface morphology of semi-crystalline PET, based on the observations descri-
bed in refs. [85,87]. The sketch depicts the alternation of soft and rough amorphous
regions with hard and smooth crystalline regions, some of which resulting from
nucleating and orientation processes induced on additive sites.

Fig. 6. Schematics of the formation of coating defects during deposition, based on the observations reported

in refs. [85,87,132]. (a) Cross section of the initial polymer surface, characterized by crystalline and amorphous

regions, and subsurface silicate particles. (b) Early stages of the deposition process, with plasma activation of

reactive sites and concomitant erosion and surface roughening, preferential in the amorphous domains. (c)

Formation of an interfacial region, with covalent bonds between the polymer and the oxide, and growth of the

oxide layer, with sharp nanodefects and circular microdefects (pin-holes).
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3.2. Surface modification of the polymer substrate

During the early stages of the vacuum deposition of thin films, the initial surface of
the polymer substrate undergoes considerable modifications. The surface dynamics of
PET are already drastically affected with SiOx coatings of thickness of less than 5 nm
[98]. These changes determine the formation of the interfacial microstructure and
stress state, and, thus, the coating cohesion and adhesion to the substrate. Several
techniques were in fact developed to modify the surface polarity of polymers for
improved adhesion, amongst which plasmas have become ubiquitous processes
[99,100]. Reviews of plasma treatments of polymer surfaces are found in refs. [101–
103]; the main effects are four-fold, namely cleaning, ablation, crosslinking, and
surface modification. Abundant literature reports the influence of various plasma
using different gases (O2, CO2, He–O2 mixtures, Ar) on polymer surface chemistry,
energetics and morphology, particularly PET (e.g. refs. [60,104–109]) and PP [110].
According to Unger and co-workers [111], the phenyl rings in partially crystalline
PET provide effective protection against plasma attack, compared for instance to
polystyrene, for which the phenyl rings are on side chains. The case of silicon-con-
taining polymers is interesting in the sense that their exposure to oxygen plasma was
reported to lead to the formation of thin SiOx coatings [112]. Oxygen microwave
plasma treatments were reported to increase oxygen species on otherwise apolar
surfaces such as those of polyethylene and polypropylene, leading to the formation
of metal–O–C groups, with corresponding increase in adhesion with Al and other
metals [51,72]. Similar findings were obtained with PET [51], as also using CO2

plasma [105,113]. Fig. 7 shows the evolution of the dispersive and polar contribu-
tions to the surface energy of PET during short plasma treatment with CO2 [105].
The authors found that the highest adhesion between treated PET and alumina
coating was obtained when the polar component of the surface energy was the
highest. The same result was reported in case of SiOx coatings on silylated PET
[114]. Whereas plasma led to an increase of PE and PET roughness [51], it resulted
in smoothing of PP surface [34,72]. The latter authors further observed that the
electrons, ions and UV radiation also present in the oxygen plasma weaken the
cohesive strength of the PP by inner chain scissions, and concluded that the atomic
oxygen of the plasma should dominate the pretreatment process. In case of an Ar
plasma, and using non-contact mode scanning force microscopy imaging, Beake et
al. [108]. observed the formation of ridges, normal to the final draw direction of the
film, as a consequence of the preferential erosion of amorphous material, up to 4
nm/min at 0.1 mbar Ar pressure. Spacing between adjacent ridges was approx. 50
nm. Similar effects were reported by Gupta et al. [109], with approx. 35 nm spacing
between ridges. These values are more than twice as large as the lamellar periodicity
determined on highly drawn films using 2-dimensional small angle X-ray scattering
[115], which may result from convolution effects between the AFM tip and the
morphological features.
A further important effect is the surface reorganization resulting from annealing

at temperature above the glass transition of the polymer, a possible consequence of
the heat dissipated into the polymer substrate during coating deposition. For
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example, Silvain et al [57] reported improved adhesion of metals to annealed PET,
due to the reorientation of the aromatic ring parallel to the surface [89,116], which,
in turn, favored the formation of metal-polymer complex. Other treatments include
low-pressure discharge, applied to PP to increase the polar component of its surface
energy and, consequently, its adhesion to Al [117], and reactive ion assisted interface
bonding and mixing followed by annealing, applied to sputter deposited Al on
polytetrafluoroethylene (PTFE) [118], used for interconnects in micro-engineering
applications. Corona treatment of PET led to only minor differences of interfacial
interactions compared to untreated PET [55]. Heat treatments have been found to
improve wet adhesion of Al to PET [119]. The above findings, in terms of changes in
surface roughness and polarity of semi-crystalline PET, are sketched in Fig. 6B.
Amorphous regions exhibit increased roughness, whereas a higher density of active
sites are found on crystalline regions. Additive particles initially embedded in the
surface layers tend to protrude above the eroded polymer surface.

3.3. Coating and interface defects

The deposition technique and deposition conditions determine the final coating
microstructure, and therefore the barrier performance of the coated polymer [120] as
also its mechanical strength. Wertheimer and co-workers reported the superiority of
PECVD coatings over PVD coatings [75,76]. In contrast to the former, the latter are
characterized by columnar growth morphology, and their lower density explains
their lower barrier performance. The presence of Ar gas during deposition of

Fig. 7. Variation in dispersive component gsD and polar component gsP of the PET surface energy gs vs. r.f.
power density. Reproduced from Ref. [105] with permission.
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PECVD SiOx was reported to lead to denser structures [121]. The density of PECVD
SiOx coatings, and therefore their oxygen permeability, was found to be strongly
dependent on process conditions such as input power, pressure, and O2/precursor
ratio, the maximum density being slightly larger than 2.2 g/cm3 [122]. The density of
evaporated SiOx coatings was reported to be equal to 2.32 g/cm3 by Fukugami et al.
[123], value which is intermediate between the densities of amorphous SiO2 and bulk
crystallized SiO2, respectively equal to approx. 2.2 and 2.6 g/cm3. The higher density
of evaporated silicon oxide thin films, compared to that of amorphous SiO2 goes
along with the corresponding values of elastic constants. Young’s modulus of fused
quartz is equal to 72.9 GPa [124], and the value for SiOx coatings was reported to be
equal to 79.5 GPa from tensile testing of coated PET films [125], and to 93–134 GPa,
depending on coating thickness, from Brillouin spectroscopy [126]. A mention
should be made at this point as for the difficulty to determine the elastic properties
of very thin films, and the bulge test technique appears as an interesting method to
this end [127].
Generally speaking, two kinds of defects are found in thin oxide films, namely

microdefects and nanodefects. On the one hand, microdefects comprise so-called
pin-holes and microcracks [24,128], with sizes of the order of 1 mm. Microdefects in
form of uncoated areas were detected in the case of PE substrates, which were rela-
ted to the high roughness of the initial polymer surface [65]. A detailed character-
ization of microdefects was performed by Wertheimer and co-workers, using
reactive ion etching in oxygen plasma followed by microscopy analyses [75,120,129].
These authors correlated the residual permeation of PECVD SiOx on PET films to
the measured density of pin-holes, found to be equal to 2000/mm2 for 8 nm thick
coatings, and to 80/mm2 for 70 nm thick coatings. The latter defects were char-
acterized by an approximately gaussian size distribution of diameters, with an aver-
age value equal to 0.6 mm. It should be pointed out that PECVD of organosilane
precursors on polymer substrates leads to the formation of SiOxCyHz films, as
detailed by Deville et al [130]. Multilayer structures based on SiOxCyHz/TiO2 films
on PC substrates were found to possess low pin-holes densities, of less than 100/mm2

[17]. On the other hand, nanodefects result from the non-equilibrium thermo-
dynamic nature of the vapor process, as recently investigated using Monte Carlo
simulations [131]. For nucleation site densities of 2 nm�2 typical of PET, the authors
determine porosity as high as approximately 10%. By contrast with the above ana-
lyses of microdefects, several studies concluded that nanodefects within the coating,
rather than microdefects, control the permeation with oxygen [62,132,133] and
water, although with different mechanisms due to interactions with the coating itself
[62,133,134]. In their permeation modeling of O2 through evaporated SiOx coatings,
Briggs and co-workers report pore size distributions in the range 2.7 to 4 Å in
coatings with thicknesses smaller than 90 nm [132]. In thicker coatings, sub-micron
cracks would appear, thus leading to relaxation of deposition-induced internal
stresses, as will be detailed in the next section.
The two types of defects are sketched in Fig. 6C. Also depicted is an interfacial

region, characterized by a high density of Si–O–C and Si–C bonds, as mentioned
earlier, which determines the final functionality of the coated barrier film [72]. In the
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case of PECVD coatings, as a result of fragmentation/redeposition mechanisms in the
early deposition stages, such a region may also consist of an organosilicon phase with
Si–CHx bonds of tens of nm, believed to improve adhesion and cohesion of the coated
film [76]. The final defect structure of the thin coating is intimately linked to its internal
stress state to which we now turn our attention.

4. Internal stresses

Internal stresses are inherent to most multimaterial assemblies, where dissimilar
materials with different thermo-mechanical properties are processed together. In the
case of coated films, such stresses clearly impact coating performance, and therefore
must be controlled. Tensile stresses greater than the cohesive strength of the coating
lead to cracks, as shown in Fig. 8 [9], and excessive levels of compressive stresses
result in buckling phenomena. The influence of internal stresses on the properties of
coated systems, particularly the adhesion of thin oxide films, has been examined
extensively in case of glass [135] or metallic substrates [136], but, to a far less extent,
in case of polymer substrates. The general lack of information is in spite of the fact
that internal stresses have been shown to considerably change failure processes such
as debonding at the interface, as analyzed by Wheeler and Osaki [137]. However,

Fig. 8. Sheet resistance of 1.5% Ga-substituted ZnO films grown at 190 �C vs. bending stress. The

micrographs were taken using an optical microscope at �40 magnification. Reproduced from Ref. [9] with

permission.
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when such effects are accurately determined, the knowledge of residual stresses
proves to be advantageous to measure adhesion, because the stress change providing
the driving force for debonding is elastic, whatever the magnitude of the initial
coating stress [138]. General overviews on this subject have been given by Atkinson
[139] and Clyne [140]. In the former case of glass substrates, compressive residual
stresses were found to increase the adherence strength by increasing the resistance to
the tensile cracking failure. As shown in Fig. 9, compressive stresses also improve
oxygen-barrier efficiency of titania coatings, with related increase in crystallinity and
compactness resulting from increased kinetic energy of the sputtered particles [7].
Whether this interesting result holds for SiOx coatings, which do not crystallize, is
open for research.
In brief, the influence of internal stresses on the stress transfer property of an

interface is a priori unknown, although, in composite materials, it was recognized
that it could be considerable (see for instance Ref. [141]). Let us first examine how
internal stresses are generated in the coated film, and how to measure them, after
what methods to control these stresses will be presented. The influence of process-
induced stresses on coating failure and adhesion to the substrate are treated in fol-
lowing sections. One should note that the essential of the work related to stress

Fig. 9. Oxygen permeation of TiO2 coated PET films vs. coating residual stress (data from Ref. [7]).
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build-up in thin films considers crystalline and epitaxial thin films (see for instance
the review of intrinsic stresses in polycrystalline thin films [142], Refs. [143–145], and
the monographs of Ohring [48] and Campbell [146]).

4.1. Generation of internal stresses in thin coatings on polymers

The two main sources for internal stress generation during deposition of thin
oxide coatings on polymer substrates are (i) growth and associated disorder, and (ii)
temperature gradients. The former leads to so-called intrinsic stresses, and the latter
to thermal stresses, both of which are detailed as follows. Additional internal stresses
may result from the subsequent conversion operation, including elastic recovery of
the substrate, upon unloading after coating deposition. These stresses, of thermo-
mechanical origin, will add to the two previously mentioned stresses, and the total
stress may eventually evolve during long-term use. These subjects are also treated
thereafter.

4.1.1. Intrinsic stress

Physical as well as chemical vapor deposition techniques, albeit of considerably
differing nature, are non-equilibrium thermodynamics processes, and lead to a
quenched disorder state in the oxide coating. This disorder is associated with defects
in the Si–O network, such as nanovoids [62], of sizes ranging from 2 to 4 Å [132],
dangling Si–OH bonds and, generally speaking, with intrinsic internal stresses. The
intrinsic stress is mostly insensitive to the type of substrate, and to coating thickness.
This was demonstrated in case of metal coatings on silicon wafer substrates [147],
and silica coatings on Si and Ge substrates [136], although, in both works, the pos-
sible effects due to the anisotropic nature of the substrate were ignored. In case of
sputtered metallic coatings, the rearrangement of deposited atoms with high kinetic
energy decreases the intrinsic tensile stress and favors the obtention of high density
coatings [148]. On the contrary, SiOx evaporated on crystalline Si was reported to be
under tensile stress [149], as a result of high porosity, and sputtered oxide films with
high density, promote high compressive stress [7].
Following Ohring [48], it appears that no model exists which would provide rea-

listic prediction of the intrinsic stress state in SiOx coatings on polymer substrates.
Such a model for stress build-up has yet to be developed, which, at best, would be
limited to specific material systems and type of deposition technique. Most grown
oxide coatings are under compression (e.g. Ref. [150,151]).

4.1.2. Thermal stress

Besides the generation of quenched disorder in the coating, heat is dissipated in the
polymer substrate during the deposition process, resulting in a rapid temperature
increase of the substrate. Stresses subsequently build-up during the final cooling of the
coated film due to large differences in elastic moduli and in coefficients of thermal
expansion between the oxide and the polymer. According to BenAmor et al. [7], the
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thermal stress in titania coatings formed on PET substrates represents approx. 10%
of the total stress. A similar result was reported for TiN coatings on ABS substrates
[152]. Assuming a thermo-elastic behavior, the in-plane thermal stress is expressed
following:

�i; th ¼
Ec

ð1� �cÞ

ðT2

T1

�sðTÞ � �cðTÞ
� �

	dT ð2Þ

where the prefactor of the RHS represents the coating biaxial modulus, Ec and �c
being the coating Young’s modulus and Poisson’s ratio, respectively, and �s and �c
are the linear coefficients of thermal expansion (LCTE) of the substrate and coating,
respectively, both being a-priori temperature dependent factors. The average LCTE
of SiO2 between 20 and 320 �C is equal to approx. 0.5.10�6 K�1 [153,154]. The
average value of the LCTE of SiOx between 23 �C and 350 �C was reported to be
equal to 2.7.10�6 K-1, where the stoichiometric index x reflects the presence of a
mixture of SiO2, SiO1.5, SiO and SiO0.5 [155]. T1 represents the temperature of the
coated film at the end of the deposition operation, and T2 represents the service
temperature. Very few studies have investigated the evolution of the temperature of
polymer substrates during thin film deposition. Gonzalez et al. report the chemical
vapor deposition of dense and adherent silicon oxide films at substrate temperatures
of 100 �C [156], and remote plasma-enhanced CVD techniques may be used also to
limit substrate heating [157]. Yamamoto et al. [158], in spite of a very confusing
presentation, report temperature increases as low as 0.4–3 �C for a 12 mm thick PET
substrate during plasma irradiation. The temperature of PET during RF-magnetron
sputtering of TiO2 was estimated to be of the order of several 10 �C, from the data
reported in the work of Ben Amor et al. [7]. Similar values were measured by Wendt
et al. [159], for the deposition of ZnO:Al thin films, and by Trakhtenberg et al. [160].
in their analysis of DLC sputtering on PE substrates. These authors found that
optimal adhesion was achieved when the substrate temperature was in the close
vicinity of the polymer melting point. In addition to the generation of thermal stress,
water vapor can be released from the polymer due to substrate heating, thus
increasing the oxygen content in the deposited thin film [161]. Modeling of the
kinetics of substrate temperature were recently carried out by Mohnjuk et al. in the
case of a RF plasma deposition [162], and by Andritschky et al. [148] in case of
magnetron sputtering. Taking the LCTE of SiOx equal to 2.7.10�6 K�1 into
account, Young’s modulus Ec equal to 80 GPa, Poisson’s ratio �c equal to 0.2, and
assuming an average LCTE of the polymer substrate �s equal to 5.10�5 K�1, a final
deposition temperature T1 equal to 100 �C and a service temperature T2 equal to
20 �C, one calculates a typical value for the compressive thermal stress �i; th ¼

Ec= 1� �cð Þð Þ	 �s � �cð Þ	 T2 � T1ð Þ=�378 MPa, which corresponds to a compressive
strain, of thermal origin, equal to approximately �0.5%. This value is in fact com-
parable to the residual strains of evaporated SiOx coatings on PET films, reported in
Fig. 10. This result suggests that the thermal stress dominates the total stress for this
type of coating.
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Takeda and co-workers [132,163,164] and Leterrier et al. [165] found that, in case
of evaporated SiOx coatings on PET, thicker coatings are associated with lower
compressive stresses, thus indicating that stress relaxation processes occur as the
coating growths. These relaxation processes result from the formation of nanoscopic
cracks, as was indicated in the preceding section. The same tendency for the com-
pressive stress was observed by Grimberg et al. [152] for crystalline TiN coatings on
ABS. Stress relaxation was, in that case, attributed partly to improved micro-
structure of thicker films, and partly to the presence of a ductile metallic underlayer.
These results are contrary to those of Ben Amor et al. [7], who report increasing
stress in TiO2 coatings on PET at higher coating thickness, due to the accumulation
of growth defects and impurities. By contrast, decrease compressive stress is
obtained at increased oxygen partial pressure, due to the development of a columnar
microstructure, which favors the adsorption OH-groups, and corresponding
enhancement of attractive forces in the coating microstructure. This latter finding
could also be relevant to the case of PECVD SiOx coatings, also characterized by
columnar microstructures [62,133]. Increasing compressive stress in SiO2 thin films
was observed with increasing film density [166].

Fig. 10. Residual compressive stress vs. coating thickness for evaporated SiOx coatings on PET films

(data from refs. [163–165]).
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4.2. Stress optimization during conversion operations

In their study of stoichiometric SiO films formed by molecular-beam deposition
(MBD) in high vacuum, Chand et al. [155] found that the thin films were under a
tensile stress smaller than 100 MPa, which is significantly lower than that observed
in other dielectric films. In fact, this result may be due to an inappropriate use of
Stoney’s stress calculation [167] detailed thereafter, only valid in the limit of very
small coating/substrate thickness ratio. At low deposition rates and at high pressures
of oxygen, SiOx (14x42) films were obtained. Introduction of a small amount of
oxygen during deposition reduces the tensile stress; at an O2 pressure of 5.10

�7 Torr
and above, the films were in compression. This allows the tunability of stress, and
deposition of films essentially free from stress.
In addition to the above-mentioned intrinsic and thermal stresses, the conversion

operations in which the coated polymer is processed into the final product are likely to
change the overall stress state of the coated film. In the case of web coating applications,
the polymer film is usually unwound under tension to ensure flatness during the
deposition process. The unloading of the coated film during any subsequent conversion
operation will give rise to additional compressive stress within the thin coating, the
value of which can be directly approximated from the tensile force applied in the web
process. In previous investigations, the amount of tensile force during PECVD deposi-
tion of SiOx on various polymer films, was in fact controlled to tailor the state of stress
in the coating [168]. Moreover, calendering processes with other polymer films suscep-
tible to shrinkage will induce further compressive stresses in the thin coating [169].
Heat-set treatments were developed to overcome orientation relaxation and crystal-
lization shrinkage of the polymer if the temperature is high enough. An example is the
sterilization cycle routinely applied to pharmaceutical packaging, in which the multi-
layer film is held for 20 min at 121 �C, i.e. in the cold-crystallization regime of the
polymer substrates such as PET. Generally speaking, process temperature cycles can be
optimized to tailor the stress state in the thin coating prior to the use phase of the pro-
duct, to avoid potential damage, and loss of barrier performance [170].
Eventually, during use, the internal stress state of the coated polymer changes with

time. This is due, once the one hand, to the time-dependent nature of polymers and,
on the other hand, to aging phenomena in the oxide thin film, particularly those
resulting from interactions with moisture [166]. Polymers are organic materials that
exhibit so-called viscoelastic properties, and which are usually brought out of ther-
modynamic equilibrium when cooled to below their glass transition temperature.
The resulting time dependent phenomena have been particularly studied in the case
of biaxially stretched PET films [171,172]. Polymers are also permeable to small
molecules, which may lead to physical swelling phenomena, hence, to changes in
stress state. The issue of long-term evolution of process-induced internal stresses,
and related changes in interfacial adhesion between PET and SiOx are detailed in a
recent work, in which a proportional relation between both factors was established
[169,173]. In addition, long-term exposure of thin oxide films to ambient air may
affect their stress state. As shown in Fig. 11, hydration of SiO2 thin films by water
vapor during aging leads to a relaxation of the deposition-induced compressive
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stress, and to a compressive-to-tensile transition [136,174]. Corrosion stress cracking
was observed in mechanically constrained plasma polymerized hexamethyldisiloxane
(HMDSO) thin films, initially under compressive stress, upon exposure to alcohols
[175]. Also, changes in intrinsic stress in SiOx films, formed by PECVD using a tetra-
ethoxysilane (TEOS) precursor, upon long-term exposure of to an ambient atmo-
sphere were reported to lead to cracks [176]. This problem was overcome using an
ethyltrimethylsilane (ETMS) precursor, which allowed higher film density. Similar
stress changes upon annealing were reported by Haque et al. [177]. The authors
indicate that moisture plays a key role in such phenomena, as it diffuses into the film
and reacts with strained Si–O bonds and reconstructs them into a minimum energy
configuration. Capping the SiO2 film with SixNy to prevent moisture diffusion leads
to considerable improvement in stress stability.

4.3. Stress analysis

The presence of internal stresses leads to a curling of the coating/substrate
assembly: stresses are compressive in the coating when it is located on the convex
side of the curl. Any change in the internal stress state will result in a change in the

Fig. 11. Aging time effect on the residual stresses in SiO2 films deposited on Si substrates at room tem-

perature with a base pressure of 2.10�5 mbar (~) or under an oxygen partial pressure of 1.10�4 mbar (*)

and 3.10�4 mbar (^); the mass density of these films were 1.97, 1.79, and 1.49 g cm�3, respectively.

Reproduced from Ref. [174] with permission.
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radius of curvature. Extensive studies have examined and modeled this phenom-
enon, as reviewed by Benadbi and Roche [178]. Most of these works follow the one-
dimensional analysis of Stoney [167], who derived the classic expression relating the
radius of curvature of the coated film, R, to its internal stress, �i:

�i ¼ �
Es h2s
6R hc

ð3Þ

where Es is the Young’s modulus of the substrate, hs and hc are the substrate and
coating thickness, respectively. The usual convention, where compressive stresses are
negative, was adopted. The above equation disregards the effect of substrate Pois-
son’s ratio and of coating thickness, which, in the case of a (oxide) coating-to-
(polymer) substrate thickness ratio larger than approx. 10�3 can not be ignored.
Timoshenko [179] initially proposed to correct for higher orders of the thickness
ratio, hc/hs, and refined corrections to Stoney’s equation [Eq. (3)], accounting for
different values of Poisson’s ratio and different substrate thickness and substrate
width have since been derived. Such corrections turn out to be less than a few per-
cent if the radius of curvature, R, is greater than, or approximately equal to W2/hs,
where W represents substrate width [146]. The case of thick films was treated by
Brenner and Senderoff [180]. Stoney’s equation was corrected by Hofmann for the
case of biaxial in-plane stress [181]. Alternative expressions derived in the past dec-
ades are numerous, as reported in Table 2, a critical assessment of which can be
found in Refs. [178,182]. The use of the biaxial in-plane modulus provides relevant
determination of in-plane stress in case of anisotropic substrates possessing third-
order or higher z-axis symmetry such as single crystals [183]. The case of an aniso-
tropic stress state, related to magnetostriction effects, is treated by van de Riet [184].
Further theoretical analyses of stress distributions were carried out by Townsend et
al. for the general case of multilayer laminates [185].

5. Failure initiation and coating strength

The strength of brittle oxide materials depends on the behavior of microcracks
under stress [186]. Fig. 12 shows crack initiation in PECVD SiOx coating on PET
[254], and PECVD SiOx coatings on PA12 [188]. In both instances, crack initiation
on microscopic defect sites is evident, as also described in Ref. [187]. A remarkable
observation is that the spherulitic crystalline structure of the PA12 substrate does
not affect crack initiation mechanisms. In thin films, microcracks comprise growth
heterogeneities and surface flaws, related to the initial surface morphology of the
polymer substrate. Indeed, the evolution of the size of sputtered TiO2 fragments on
PET under tension shown in Fig. 13, measured by BenAmor et al. [78], suggest that
untreated PET provides the highest coating crack onset strain, and various cold
plasma treatments decrease this value. An interesting study, where calibrated particles
were purposely introduced at the coating/substrate interface, confirmed the detrimental
effect of stress concentrations on coating strength [189].
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Table 2

Theoretical expressions of the coating internal stress

Author Coating internal stress �i
a Eq. Stress ratiob

�i/�Stoney

Remarks Ref.

Stoney, 1909 �Stoney ¼ �
Es h2s
6R hc

(3) 1 Valid in the limit of infinitely thin coatings;

no-in-plane deformation of the substrate

[167]

Timoshenko, 1925 �
Es h2s
6Rhc

1þ2�� 2þ3�þ2�2ð Þþ�2�4

1þ�

� �
c (4) 1.619 Case of thick coatings; no in-plane

deformation of the substrate

[179,319]

Brenner and

Senderoff, 1949

�
Es h2s
6Rhc

1þ hc
hsþhc

4 Ec

Es
� 1

� �� �
(5) 1.612 Case of thick coatings; the original equation

was derived for biaxial stress state, and the

second and higher order terms in thickness

ratio are omitted here.

[180,320d]

Inoue, 1958 �
Es h2s
6Rhc

1���2ð Þ
3
1��ð Þþ �� �þ2ð Þþ1ð Þ

3
þ� ��2þ2�þ1ð Þ

3

2 1þ�ð Þ 1þ��3ð Þ

� �
c (6) 2.165 Case of thick coatings; accounts for in-

plane substrate deformation

[321]

Glang et al., 1965 �
Es h2s

6R�3�ð Þ hc
(7) – The original equation was derived for

biaxial stress state; d stands for substrate

deflection over half of a wafer length

[322]

Röll, 1976 �
Es h2s
6Rhc

1þ hc
hs

4 Ec

Es
� 1

� �� �
(8) 1.617 Second and higher order terms in thickness

ratio neglected; no in-plane deformation of

the substrate; homogeneous through-

thickness stress distribution

[323]

Atkinson, 1995 �
Esh

3
s

6R h2c 1þhs=hcð Þ
(9) 0.992 The initial equation was derived for biaxial

stress state

[139,324e]

Yanaka, 1998 �
Es h2s
6Rhc

1þ4��
1þ�ð Þ 1þ��ð Þ

� �
c (10) 1.394 Based on 2D formula for thermal

transformation of cross-ply laminates

[163]

a Uniaxial in-plane stress state (i.e. Poisson’s ratio effects are neglected). In case of biaxial in-plane stresses, the expression should be divided by 1-�s, where �s is the

Poisson’s ratio of the polymer substrate.
b The ratio was calculated with the following values: hc=100 nm; hs=12 mm; Ec=75 GPa; Es=4 GPa.
c � ¼ Ec=Es ðuniaxial stressÞ or � ¼ Ec 1� �sð Þ=Es 1� �cð Þ ðbiaxial stressÞ; and � ¼ hc=hs
d The authors have used an approximation of the original equation derived in [180].
e Reference is made to Ref. [181].
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It should be pointed out that an accurate measurement of the coating crack onset
strain, within 0.1% error, is required to use the models described in the next sec-
tions. Due to elastic recovery of the substrate, any cracks present on samples
strained to less than the substrate yield strain will close and will not be visible if the
sample is unloaded. In-situ tests, where the material is maintained under stress,
resolve this drawback [190].

Fig. 12. Micrographies of crack initiation sites. PECVD SiOx coating on PET (a) [254]. PECVD SiOx

coating on PA12 (b) [188].
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5.1. Linear elastic fracture mechanics approach for crack onset prediction

To start with, the classical energy-balance analysis of the extension of an isolated
crack in a solid under stress by Griffith [191] provides a rough estimate of typical
flaw size. In uniaxial tension, this analysis leads to the following failure criteria,
which relates the strength, �max, to coating properties (Young’s modulus, Ec and
surface energy, 	c), and to half of the critical crack length, c:

�max ¼ ð2Ec 	c=
 cÞ1=2 ð11Þ

Assuming a strength �max of the coating of infinite size equal to 3 GPa, a modulus
equal to 80 GPa, and a surface energy 	c equal to 5 J/m2 leads to a critical flaw size,
2c, of approximately 50 nm, that is, of comparable dimension of coating thickness.
The various kinds of flaws are associated with stress concentrations, whose magni-
tude depends on the shape of the flaw, as initially studied by Inglis in the case of an
elliptical hole in a plate [192]. The theoretical analysis of the corresponding plane
stress field in the hole vicinity can be found in Ref. [193]. Real coatings contain a
distribution of flaws, hence a distribution of strength, whose statistical nature will be
treated in a further section.
Linear elastic fracture mechanics (LEFM) models have been successfully employed

for crack onset and crack density prediction in laminated composites [194], and also
extended to coating cracking analysis under uniaxial loading [195]. The energy balance
equation for crack propagation implies that the strain energy released due to crack
growth equals coating fracture toughness, Gc: Gchc ¼ �A ��W, where �A and

Fig. 13. Fragment widths in titania coatings deposited by reactive sputtering vs. elongation for a refer-

ence sample (^) and for samples in which the PET surface was treated by different cold plasmas: (&) Ar,

(^) Ar + 5% O2, (&) CO2. Reproduced from Ref. [78] with permission.
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�W are the work done by the applied load, and the strain energy released due to crack
extension through the coating (all per unit width of the film). Since the random nature
of fracture is not considered, fracture strain depends on geometrical parameters, that is
coating and substrate thickness. A direct implication of the energetic approach is that,
for elastic materials, the coating strain at failure scales with the inverse of the square
root of its thickness [195–200], which is also the case for cross-ply laminate composites
[194,201]. Expressions for crack onset strain are reproduced in Table 3.
The simplest analytical approach for stress redistribution calculation is the shear lag

model. This approach was adopted by Laws and Dvorak [201] to solve the energy
release rate equation, using a non-dimensional shear lag parameter, x, determined by
fitting the experimental data. The corresponding crack onset expression was found to
scale with the inverse of the square root of coating thickness [Eq. (12) in Table 3]. A
further expression for strain energy release rate was derived by Nairn and Kim
[195,200] by minimizing the complementary energy of the film, assuming that the axial
stress in coating and substrate does not depend on the thickness coordinate [Eq. (13) in
Table 3]. Both shear-lag and variation mechanics solutions can be applied to extra-
polate crack onset strain vs. coating thickness, providing that the parameter x or the
coating toughness Gc are fitted by testing one film with a given coating thickness.
Another approach was proposed recently by Takeda and co-workers [163] to calculate
the crack onset stress, with the assumption that the additional displacement in the
substrate due to cracking varies linearly in the thickness direction [Eq. (14) in Table 3].
The corresponding crack onset strain is found inversely proportional to hc

1/4.
The above derivations [Eqs. (12)–(14) in Table 3] are reproduced in Fig. 14 against

experimental data obtained for SiOx coatings of thickness ranging from 30 to 160
nm, formed by reactive evaporation on PET substrate. Since a direct measurement
of the coating fracture toughness Gc was not available, curve fit to experimental data
was done with adjustable x [Eq. (12)] or adjustable Gc [Eqs. (13) and (14)] values.
The measured decrease of crack onset strain with increasing coating thickness is
reproduced with reasonable accuracy by the models, however with considerably
different values of the fitting parameters. The first shear lag model [Eq. (12)] is
hampered by the presence of the empirical parameter x. The apparent coating
toughness Gc is found to be equal to 60 J/m2 in the case of the variational model [Eq.
(13)], and to 76 J/m2 in the case of the shear lag model including the linear variation
of the additional displacement in the substrate due to cracking [Eq. (14)]. Both
values are very high, compared to the fracture toughness of bulk glass, of the order
of 10 J/m2 [202], value which is obviously an upper bound for the defect containing
oxide coating. This discrepancy is likely to arise from neglecting plastic effects in the
substrate, at the interface vicinity.

5.2. Case of a plastic interface

For a ductile substrate, crack propagation can also involve small-scale yielding at
the coating–substrate interface, and introduces a dissipative term in the energy bal-
ance: Gchc þ Wd ¼ �A ��W. The term Wd is the energy dissipated by deforming
the plastic interface per unit width of the film, found to dominate the total work of
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Table 3

Theoretical expression for crack onset strain vs. coating thickness, hc. The parameters Es, Ec, and E are the substrate, coating and film moduli, respectively, and

hs is the substrate thickness

Author Crack onset strain �onset Eq. Scaling Remark Ref.

Laws and Dvorak, 1989
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gc � hs Es

hc hsþhcð ÞEc E

q
(12) h�1=2

c The factor x is a non-dimensional shear lag parameter

determined by fitting the above equation to

experimental data.

[201]

Nairn and Kim, 1992
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gc

E2
c C3 hc lim

D !0
YðDÞ

r
� "rca (13) h�1=2

c Minimization of the complementary energy of the film,

assuming that the axial stress in coating and substrate

does not depend on the thickness coordinate. C3 is a

geometrical parameter, and Y(D) is a calibration

function which depends on crack density.

[195,200]

Takeda and co-workers, 1998

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gc

3E3=2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�cð Þhchs=Es

p

r
� "rca (14) h�1=4

c Assumes that the additional displacement in the

substrate due to cracking varies linearly in the

thickness direction.

[163]

Hu and Evans, 1989 Gc ¼
�2onsethc

Ec

� � �onset
3�

þ 
F �ð Þ

� �
(15) h�1=3

c Assumes that interface yield is controlled by a constant

shear stress �, and where F(�) is an elastic function.

[197]

Leterrier and Andersons, 2000
1��2c
1���c

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Gc�

E2
chc 1��2cþ

Echc
Eshs

1� �2s
� �� �s

� "rc
1þ�c
1���c

(1) (16) h�1=3
c Explicit formulation, based on elementary laminated

plate theory, and assuming that interface yield is

controlled by a constant shear stress �.

[165]

a "rc represents the coating internal strain.
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fragmentation [203]. Hu and Evans solved the problem, assuming that interface
yield is controlled by a constant shear stress � [197], through the use of an elastic
function F(�) [Eq. (15) in Table 3]. The crack onset strain is subsequently derived as
function of material parameters Gc and �, from the crack onset stress,
�onset ¼ Ec 	 "onset þ "rcð Þ, following intricate resolution, as the real root of Eq. 15.
Curve fitting the data in Fig. 14 using the solution of Eq. 15 with adjustable Gc and �
values was carried out, assuming that F(�)=0.8 [197], and the result of the proce-
dure is shown in Fig. 15. For any selected value of Gc, there exists one optimal value
of � which fits best the measured crack onset strain values, and vice-versa. Interest-
ingly, as depicted in the Fig. 15, if the strength � of the perfectly plastic interface is
taken equal to 50 MPa, a typical value for the von Mises yield shear stress of
biaxially stretched PET substrates, as derived from tensile measurements [204–206],
then the best Gc value if found to be equal to approx. 7 J/m2. In spite of the need of
numerical calculation of the function F(�), it is worthwhile to point out that such
fracture toughness value appears to be a very reasonable estimate for silicon oxide,
compared to the fracture toughness of bulk silica, of the order of 10 J/m2 as men-
tioned above. In addition, as also shown in Fig. 15, it is evident that neglecting
residual strains leads to important overestimation of coating toughness.

Fig. 14. Thickness dependence of crack onset strain of evaporated SiOx coatings on PET under uniaxial

tension (after refs [165,259]). The models discussed in the present Section are compared (see text for details).
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Furthering this approach, and to overcome the need of numerical tools, Leterrier et
al. derived an explicit solution of the energy balance, based on elementary laminated
plate theory [Eq. (16) in Table 3] [165]. The solution is reproduced in Fig. 14, using an
interfacial shear strength � equal to 50 MPa. As shown in Fig. 15, the corresponding
coating fracture toughness is found to be equal to approx. 3 J/m2. This value corre-
sponds to a Griffith flaw size equal to approximately 300 nm.

5.3. Defect-tolerant high-barrier thin films

The reduction of the size of the critical Griffith flaws was at the base of the con-
siderable development in sizing agents, systematically applied to brittle glass fila-
ments such as the ones used as reinforcements in composite materials. These
molecules form aggregates of typical dimensions of the order of 150 nm, that pene-
trate into the nanoscopic cracks, thus increasing the radius of the defect tip [207], as
schematically depicted in Fig. 16. Similar phenomena could explain the superior

Fig. 15. Relation between interfacial shear strength, t, and coating fracture toughness, Gc, which pro-

vides best fit to the crack onset strain data reproduced in Fig. 14, using either Eq. (15), with or without

internal strain "rc [197] or Eq. (16) [165]. The following values were used in the calculation: coating’s

modulus Ec=80 GPa and Poisson’s ratio �c=0.2; substrate modulus Es=4 GPa and Poisson’s ratio

�s=0.44; Poisson’s ratio of coated film �=0.4; elastic function, used in Eq. (15), F(�)=0.8.
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performance of polymer/oxide/polymer multilayer systems [208,209], and hybrid
polymers with inorganic and organic structural units. These materials comprise
organically modified oxides [210], plasma-polymerized HMDSO coatings [211,212],
so-called organically modified ceramics (ORMOCER [213]) and organically mod-
ified silicates (ORMOSIL [214]). One could also mention the hydrogenated amor-
phous carbon coatings [215–217], such as those developed by Moser et al. that
combine ductility and efficient barrier properties [218–220]. An alternative to
develop new types of defect-tolerant high-barrier thin films could be based on theo-
retical analyses of mechanical contacts, that lead to optimal coatings with gradient
in mechanical properties [221]. Such gradient, represented in Fig. 17, could be
achieved for instance through a control of the oxygen partial pressure during
PECVD deposition from an organosilane precursor vapor, to eventually generate a
gradient in carbon composition in the oxide. Further research is obviously required
to explore this concept.

Fig. 16. Schematics of the effect of sizing on surface flaws (after Ref. [207]).

Fig. 17. ‘‘Optimal’’ coating structure with gradient in Young’s modulus in case of a polymer substrate,

and under mixed (normal and shear) load conditions. Reproduced from Ref. [221] with permission.
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6. Adhesion

Besides coating internal stress state and cohesive strength, the interfacial adhesion
of the coating/substrate assembly is a key feature. It is controlled, on the one hand,
by the type of interactions present at the interface between the oxide and the poly-
mer and, on the other hand, by the level of process-induced internal stresses. The
high density of covalent bonds formed during vacuum deposition between oxides
and polymer, such as Si–C and Si–O–C reported in Section 2, are expected to lead to
very high adhesion levels. The following summarizes the benefits and limitations of
the methods used to determine the adhesion between thin oxide films and ductile
polymer substrates, with special attention paid to the so-called fragmentation test.
The influence of internal stresses on interfacial adhesion is subsequently addressed.

6.1. Adhesion measurements of thin oxide films on polymer substrates

There exist a large variety of methods developed to measure the adhesion between
thin films and polymer substrates. The reader is referred to the abundant informa-
tion on this subject compiled by Mittal and other researchers in the past decades
[222–226]. A recent review (in French) of methods to determine the mechanical
properties and adhesion of thin films was made by Ignat and co-workers [227]. An
important aspect of adhesion testing is the determination of the locus of failure, i.e.,
whether adhesive failure is the dominant failure mechanism, or cohesive failure of
one of the phases has also taken place. Chemical methods to address this issue are
discussed by Baun [228], such as the time-of-flight secondary ion mass spectroscopy
(ToF-SIMS, used in Ref. [229] in case of SiOx coatings on plasma-treated PET
substrates). Three main adhesion test methods are used in the case of thin oxide
barrier films on polymer substrates, namely the peel test, the indentation and related
scratch techniques, and the tensile or fragmentation test.
In the peel test, the thin coating is peeled from the substrate of well-defined width,

at a specified angle, usually 90 or 180 �, using a backing material such as ethylene
acrylic acid (EAA). This technique, or derivatives, have been largely used to test the
adhesion of thin metal films on polymers [57,60,113,230–234] and oxides on poly-
mers [7,78]. In the case of metal oxide thin films on PET and PVC, Bichler et al.
concluded that the peel strength often exceeds the measurement limit, and the thin
films cannot be peeled off due to high adhesion levels [53,71,72]. Another limitation
of the peel test is the introduction of third body, the adhesive backing, in the system,
which seriously complicates the determination of absolute value of coating adhesion.
In the scratch test, developed by Weaver and co-workers (e.g. Ref. [235]), a stylus is

drawn across the coating under increasing vertical load [32,236–239]. The critical load
at coating failure is often taken as a semi-quantitative measure of adhesion [5,67–
69,240]. A related technique, the nanoindentation, was developed for the specific pur-
pose of thin films characterization [241]. Novel developments of the scratch test based
on scanning force microscope techniques have been reported [242]. The models devel-
oped to analyze the critical normal force (see review of Bull, Rickerby, et al. [32,239])
do not seem appropriate in the case of soft and ductile polymer substrates. Indeed,
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the main drawback of the scratch test is, again, the introduction of a third body, the
stylus, in the system, which yields a complex triaxial stress field in the polymer sub-
strate, resulting from the ploughing effort of the indenter. If the test is unable to
provide an absolute value of coating adhesion [243], it is nevertheless very useful for
comparative purposes and coating optimization. Progress in numerical analyses of
the stress field and in standardization methods should improve further the usefulness
of the scratch test [244,245].
The fragmentation test proved its relevance in the case of a variety of thin brittle

films on ductile metal [197,199,246–250] and polymer substrates [10,137,251–255],
particularly PET [78,105,125,163,164,187,256–266]. In this technique, the evolution
of crack patterns in the brittle coating is monitored as a function of the tensile load
applied to the substrate. In-situ optical [190] or scanning electron microscopy
[254,267,268] are usually employed for the detection of cracks. An acoustic emission
technique was also reported, but was limited to films of thickness larger than 500 nm
[269]. In the fragmentation test, the adhesion, usually represented by the interfacial
shear strength (IFSS), is related to the density of coating cracks, measured in the
saturation stage of the fragmentation process, i.e., when no more cracks are formed
as the strain is increased. A variant of the test, applied to prenotched coatings, was
proposed by Dillard et al. [270]. The fragmentation test was used to determine the
effects of changes in surface energy of the substrate (e.g. Fig. 13) [78,105,114], of
coating thickness [163,164,259], and of temperature [125,263] on coating adhesion.
The fragmentation test usually operates in uniaxial tension; the application of equi-
biaxial tension was further investigated to provide additional information regarding
coating failure mechanisms [165,271,272].
Correlations were reported between the IFSS values determined from fragmenta-

tion and scratch tests [243], and, more specifically between the crack density at
fragmentation saturation, and the critical normal force measured during scratching,
as shown in Fig. 18 [229]. This is a solid indication that both techniques detect an
intrinsic property of the coating/substrate assembly, usually considered to be either
the interfacial toughness, or the interfacial shear strength (IFSS), that will be
detailed in the next Section.
Other tests include acoustic microscopy, particularly suited for defect detection

[93,94], pull-off methods [273,274], laser spallation [275], and blister tests [276–278],
the latter three being hardly applicable in case of thin, flexible polymer substrates.

6.2. The three stages of coating fragmentation

The phenomenology of coating fragmentation comprises three main stages [137],
shown in Fig. 19. In the first stage, termed random cracking, crack interaction is
negligible, therefore the rate of crack generation is governed solely by the coating
strength distribution and the crack location is determined by the defect distribution
in the coating (Fig. 19A). The stress state in a coating fragment is equal to the
equivalent far field stress, except along some critical distance from the edges, where
stress relaxes to zero. The second fragmentation stage, mid-point cracking, corre-
sponds to crack spacing becoming small with respect to twice the critical length
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(Fig. 19B). As a result, the maximum stress in a fragment cannot reach the unper-
turbed far-field level, which leads to a marked reduction of the fragmentation rate.
The first two stages are in fact intimately correlated, as was demonstrated by
Handge et al. [279]. Transverse buckling failure of coating fragments is often
observed during this second stage, due to lateral contraction of the substrate result-
ing from Poisson’s ratio effects [83,280–282] (Fig. 19B). The third and final stage
begins with the delamination of the coating, and the fragmentation rate virtually
stops (Fig. 19C). The same three stages occur in case of equibiaxial loading, with,
however, important differences with respect to the uniaxial case. Whereas transverse
buckling is absent in the 2D geometry, dynamic fracture processes were reported,
that lead to a considerable broadening of the fragment size distribution [272]. This
phenomena is illustrated in Fig. 20, with crack patterns in thin SiOx coatings on PP
and PET substrates under equibiaxial tension. The unique features of the 2D frag-
mentation, particularly the broad distribution of fragment areas compared to the
1D case, relate to the presence of high stresses in the stress recovery zone, as briefly
explained in the figure. A detailed insight into this topic is beyond the scope of the
present work, and the reader is referred to previous studies on relevant phenomena,
observed in various materials at a broad range of length scales [283,284].

6.3. Analysis of the fragmentation test

Models and simulations of fiber or coating cracking during straining have been
reported in several studies, most of which consider the evolution of crack spacing as
a function of applied strain. In their earlier work, Grosskreutz and McNeil [285]
introduced a stress relaxation mechanism at the coating/substrate interface, in which

Fig. 18. Correlation between the critical normal force, measured during scratch test, and the crack density

at saturation, determined during fragmentation test, for sputtered PVD SiOx coatings on plasma treated

PET substrates. Reproduced from Ref. [229] with permission.
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the stress decay was inversely proportional to the radial distance from the crack
[193]. The authors, neglecting the important effect of coating thickness, derived the
relation Ln "="0ð Þ ¼ 4g=dð Þ	 1� d=d0ð Þ where g is a constant which reflects the form
of the interfacial shear stress, "0 is the crack onset strain, " is the actual strain, d0 is the
crack spacing at strain "0, and d is the crack spacing at strain ". The relevant literature is
summarized in the study of Wojciechowski and Mendolia [252,253], who propose an
explicit dependence of crack density on coating thickness, however based on the strong
assumption of constant substrate modulus. A further semi-empirical development,

Fig. 19. The three main stages of coating fragmentation (after Ref. [137]). A: random cracking. B: mid-point

cracking, and initiation of transverse buckling. C: delamination. Stages B and C are evident on the scanning

electron micrograph of a 20 nm PECVD SiOx coating on PET under 50% strain, shown on the bottom.
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Fig. 20. Fragmentation patterns of a 100 nm thick evaporated SiOx coating on PP under 1.6% equibiaxial strain (a), and 53 nm thick evaporated SiOx coating on

PET under 4.5% equibiaxial strain (b), and schematics of the stress field in the vicinity of an existing crack, under uniaxial loading (c) and equibiaxial loading (d).
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based on Weibull statistics, was developed by Mezin et al. and reported by Ignat and
co-workers [250,286] in the form of an stretched exponential function of the strain.
These various analytical treatments are compared in Fig. 21 with experimental data
of the fragmentation of a 100 nm thick SiOx coating on PET. More sophisticated
simulations of the fragmentation process based on statistical treatments of the rup-
ture process were carried out, following stress [287–291] or fracture mechanics
[195,292] approaches.
The pure geometry of the fragmentation test, together with the absence of third

body interactions, allows for a good control of the stress state in the material during
its elongation, similar to the classic single fiber fragmentation test originally descri-
bed by Fraser et al. [293]. The single fiber composite test has become one of the key
methods to study failure mechanisms in fiber-reinforced composites, and most of the
theoretical treatments of the fragmentation test can be found in the corresponding
literature (e.g. refs. [294–296]). In both coating/substrate and fiber/matrix geometry,
modeling the load transfer at the interface is a typical shear-lag analysis [297]. The two
central features in this analysis are, on the one hand, the critical stress transfer length
[298], also related to so-called ineffective length [293], recovery length [299], shielded or
exclusion zone [291], and, on the other hand, the statistical nature of the coating or
fiber failure [300], for which Weibull statistics was found appropriate [301].

Fig. 21. Modeling of the fragmentation process of a 100 nm thick SiOx coating on PET (data reproduced

from Ref. [259]). See text for details on the models.
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The classical stress transfer approach of Kelly and Tyson [298] assumes a perfectly
plastic behavior of the coating/substrate interface, i.e., a constant IFSS. In spite of
its simplicity, the assumption of a constant IFSS in the exclusion zone is very robust
[295]. This results from the fact that the stress in the brittle coating is much larger
than the typical IFSS values, so that the size of the exclusion zone is proportional to
the coating stress. In that sense, calculated IFSS value from fragmentation data
reflects some effective shear property of the interfacial region. For ductile polymer
substrates, a constant IFSS assumption is often preferable to alternative elastic
models due to the plastic flow of the polymer in the strain range of coating frag-
mentation. Based on this approach, the resolution of the mechanical equilibrium of
an infinitesimal coating element adhering onto a substrate under uniaxial tension
leads to the following stress transfer equation [197]:

� ¼ 2hc �maxðlcÞ=lc ð17Þ

where hc is the coating thickness, �max its size-dependent tensile strength, character-
istic of its defect-controlled cohesion, and lc is the critical stress transfer length
defined as the minimum coating length in which the maximum allowable coating
stress (�max) is achieved. The length lc is not a measurable quantity, and was related
using a stochastic failure approach to the average fragment length at saturation, lsat,
that is, the average length when an increase in strain does not lead to further frag-
mentation of the coating: lsat ¼ 0:67 lc [257]. Important to point out that, since
internal stresses are not explicitly accounted for, the IFSS defined in Eq. (17) repre-
sents an apparent, or effective, strength, that is, a value of practical adhesion, and
not an intrinsic property of the coating/substrate system. The same goes for the
coating tensile strength �max.

6.4. Weibull analysis of coating tensile strength

The tensile strength �max of brittle materials is defect controlled and exhibits size-
dependent effects, which can be accounted for by the Weibull weakest-link model
[301,302]. In case only one population of defects (e.g., volume defects) control the
strength of the material, the Weibull model is written as a two-parameter equation:

�max lð Þ¼�0 l=l0ð Þ
�1=m � 1þ 1=mð Þ ð18Þ

where l0 is a normalization factor, chosen equal to 1 mm, � is the gamma function,
and s0 and m are the Weibull scale and shape factors, respectively. For thin coat-
ings, these two factors are usually derived from a linear approximation of the initial
part of the fragmentation diagram, where the average fragment size is reported as a
function of applied strain, in logarithmic coordinates [125]. Weakest link models
used to describe the strength of brittle materials easily account for the internal stress
�i as an additional model parameter. Nonetheless, this approach is hardly applicable
to nanosized coatings, for which too few experimental data are available in practice
in the strain range of interest, to derive the internal stress with reasonable accuracy.
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As a consequence, in the presence of internal stresses, the value of �max derived from
the two-parameter Weibull model [Eq. (18)] represents an apparent strength.

6.5. Role of internal stresses on interfacial shear strength and coating tensile strength

Internal stresses were reported to change to a considerable extent the hardness,
coefficient of friction, and practical adhesion of ITO coatings on glass [303], as also
the IFSS of SiOx coatings on PET [169]. The relaxation of internal stresses upon
coating delamination further contributes to the energy release rate [138], thus it is
essential to include these in the analysis of the fragmentation test. The axial stress
resulting from tensile loading of the substrate add to the initial axial internal stress
in the oxide layer. Upon fragmentation, the average coating stress relaxes, as the
average stress in the fragments decreases when their size decreases. Since at frag-
mentation saturation lsat ¼ 0:67 lc, and with the assumption of constant shear
stress, one eventually obtains a linear dependence between the apparent IFSS �,
(sum of an intrinsic term, �*, and an internal stress term, �i) and coating internal
stress, �i [169]:

Fig. 22. Comparison between the apparent SiOx/PET interfacial shear strength (open circles) and the

theoretical prediction [Eq. (19); solid line], versus coating internal compressive stress. Reproduced from

Ref. [169] with permission.
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� ¼ �� þ �i ¼ 2 hc ��
maxðlcÞ � 0:67 �i

� �
=lc ð19Þ

where the term ��
maxðlcÞ represents the intrinsic tensile strength of the coating at cri-

tical length, which can be determined from the values of apparent strength �max(lc)
and of internal stress �i: �

�
maxðlcÞ ¼ �maxðlcÞ þ 0:67 �i. Any change in internal stress

level, ��i, will result in a proportional change in apparent IFSS, �� ¼
� 1:34 hc=lcð Þ	��i, as shown in Fig. 22 for SiOx coatings formed by reactive PVD
on PET [169]. The extrapolation of the data to zero internal stress gives a value of
intrinsic IFSS equal to 73 MPa. This very high value is intermediate between the
Von Mises yield stress in shear of the PET substrate, equal to 55 MPa [204], and its
shear strength, equal to approximately 150 MPa, which thus demonstrates the strain
hardening ability of the interfacial region [125,259]. It also reflects the high density
of covalent bonds mentioned in Section 2. IFSS values comparable to the bulk shear
strength of the polymer substrate were also found for PECVD coatings on low
density polyethylene [254] and polyamide 12 [29]. Clearly, there is no need to
improve interfacial adhesion of oxide thin films on polymer substrates, because then,
cohesive failure of the underlying polymer substrate will take place [114].

Fig. 23. Effect of coating thickness on oxygen transmission rate (OTR [24,164,304], open squares; the

dotted line is a fit to the data) and crack onset strain (filled dots, experimental [164,259]; line, theoretical

derivation [165]), for PVD SiOx coatings on 12 mm PET.
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6.6. Optimal coating thickness

Fig. 23 represents the coating thickness dependence of the oxygen transmission
rate (OTR) and crack onset strain and IFSS, in the case of evaporated SiOx/PET
films. The OTR drops from 120 cc/day/m2 for uncoated, 12 mm thick PET, to an
optimal value equal to 2
1 cc/day/m2 when the coating thickness is increased in the
range from approximately 50 to 100 nm, after which it starts to gradually increase
[24,164,304]. By contrast, the coating crack onset strain, related to its cohesive
strength, continuously decreases with increasing coating thickness, at least up to 300
nm [164,259]. In the same range, the IFSS is approximately constant, and therefore
is not a limiting factor [259]. Thus, the optimal coating thickness is the minimum
thickness, which provides the lower OTR. For this type of oxide, the optimal coat-
ing thickness is of the order of 50 nm.

7. Conclusions

The cohesion and adhesion of metal oxide thin films on polymer substrates used
as gas-barrier systems have been reviewed, with attention paid to deposition-induced
defects and internal stresses. Experimental and theoretical analyses of these factors
lead to three main conclusions.

� Vapor deposition processes of oxides on polymers lead to the formation of an
interfacial region of thickness in the nanometer range, characterized by a
high density of Metal–O–C and Metal–C bonds, and an organosilicon phase
with Si–CHx bonds in case of PECVD. This region, and the underlying duc-
tile polymer substrate, exhibits strain hardening ability, and results in very
high levels of interfacial shear strength, intermediate between the shear yield
stress and the shear strength of the bulk polymer substrate. Therefore, there
is no need to improve interfacial adhesion of oxide thin films on polymer
substrates.

� The oxide coating contains nanoscopic defects and microscopic flaws. The
former are characteristic of the frozen-in structure of the oxide, and control
both the permeability of oxygen and the cohesion of the oxide material. The
latter comprise pin-holes and roughness-induced defects, resulting from the
presence of additives in the superficial layers of the substrate. These micro-
scopic flaws do not severely affect the barrier performance of the coating.
However, they act as crack initiation sites, and thus significantly affect the
mechanical resistance of the coating. New types of defect-tolerant high-barrier
thin films, based on organic-inorganic hybrids, or on a gradient in carbon
composition, or using sizing agents similar to those used to improve the
strength of glass filaments, are promising developments.

� Compressive internal stresses are generated in the coating during deposition.
These are beneficial (i) to the barrier performance of the coated polymer, (ii)
to the coating tensile strength and, (iii) to the coating/substrate adhesion.
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Novel approaches to control the internal stress level, such as that based on
the application of a tensile load on the substrate during coating deposition,
should be emphasized in future studies.

Accounting for these various factors enables to define an optimal coating thick-
ness, which combines low oxygen permeation and high cohesion, without sacrificing
the quality of interfacial adhesion.
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Delachaux A, Favez D, Leterrier Y, Månson J-AE, Fayet P, 2001. Influence of defects and internal

stresses on the mechanical resistance and adhesion of thin PECVD oxide films on semi-crystalline

polymers. Proc. ECASIA’2001, Avignon (F), September 30–October 5, 2001.

[30] Baik DG, Cho SM. Application of sol–gel derived films for ZnO/N-Si junction solar-cells. Thin

Solid Films 1999;354:227.

[31] Gilbert E. Anoxic environments, oxygen scavengers and barrier films: their use in museums,

libraries and galleries. Paper Conservation News, 2000; 93.

[32] Bull SJ, Rickerby DS. Evaluation of coatings. Br Ceram Trans J 1989;88:177.

[33] Jamieson EHH, Windle AH. Structure and oxygen-barrier properties of metallized polymer

film. J Mater Sci 1983;18:64.

[34] Moosheimer U, Bichler C. Plasma pretreatment of polymer-films as a key issue for high barrier

food packagings. Surf Coat Technol 1999;119:812.

[35] Miller KS, Krochta JM. Oxygen and aroma barrier properties of edible films—a review. Trends

Food Sci Technol 1997;8:228.

[36] Pauly S. In: Brandrupt J, Immergut EH, editors. Polymer handbook 4th ed. New York: Wiley,

1999.

[37] Lusignea RW. Orientation of LCP blown film with rotating dies. Polym Eng Sci 1999;39:2326.

Y. Leterrier / Progress in Materials Science 48 (2003) 1–55 43



[38] Sanchez-Vales S, Orona-Villarreal F, Lopez-Quintanilla M, Yanez-Flores I, RamosdeValle L F,

Guerrero-Salazar C. Performance of multilayer films using maleated linear low-density polyethylene

blends. Polym Eng Sci 1998;38:150.

[39] Koulouri EG, Kallitsis JK. Miscibility behavior of poly(vinyl-alcohol) nylon-6 blends and their

reactive blending with poly(ethylene-co-ethyl-acrylate). Polymer 1998;2373:39.

[40] Lee SY, Kim SC. Laminar morphology development and oxygen permeability of LDPE/EVOH

blends. Polym Eng Sci 1997;37:463.

[41] Lee SY, Kim SC. Laminar morphology development using hybrid EVOH-nylon blends. J Appl

Polym Sci 1998;67:2001.

[42] Okazaki T, Sanda F, Endo T. Syntheses and radical ring-opening polymerizations of 1,1-bis(hy-

droxymethyl)-2-vinylcyclopropane and 1,1-bis(methoxymethyl)-2-vinylcyclopropane. Polym Bull

1997;39:141.

[43] Lee JC, Litt MH, Rogers CE. Oxyalkylene polymers with alkylsulfonylmethyl side-chains—gas

barrier properties. J Polym Sci B Polym Phys 1998;36:75.

[44] Sekelik DJ, Stepanov EV, Nazarenko S, Schiraldi HDA, Baer E. Oxygen barrier properties of

crystallized and talc-filled poly(ethylene terephthalate). J Polym Sci B Polym Phys 1999;37:847.

[45] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses

of a new class of materials. Mater Sci Eng R Reports 2000;28:1.

[46] Scherer C. PA film grade with improved barrier properties for flexible food packaging applications.

Proc. New Plastics ’99, London, 2–4 February, 1999.

[47] Schrenk P, Alfrey T. Some physical properties of multilayered films. J Polym Eng Sci 1969;9:393.

[48] Ohring M. The materials science of thin films. New York: Academic Press; 1992.

[49] Reichelt K, Jiang X. Preparation of thin films by physical vapour deposition methods. Thin Solid

Films 1990;191:91.

[50] Rancourt JD, Hollenhead JB, Taylor LT. Chemistry of the interface between aluminum and

polyester films. J Adhesion 1993;40:267.

[51] Ringenbach A, Jugnet Y, Duc TM. Interfacial chemistry in Al and Cu metallization of untreated

and plasma-treated polyethylene and poly(ethylene terephthalate). J Adhes Sci Technol 1995;9:

1209.

[52] Travaly Y, Bertrand P. Static SIMS investigation of metal-polymer interfaces. Surf Interf Anal

1995;23:328.

[53] Bichler C, Langowski HC, Moosheimer U, Seifert B. Adhesion mechanism of aluminum, aluminum

oxide, and silicon oxide on biaxially oriented polypropylene (BOPP), poly(ethylene terephthalate)

(PET), and poly(vinyl chloride) (PVC). J Adhes Sci Technol 1997;11:233.

[54] Sutcliffe R, Lee WW, Gaynor JF, Luttmer JD, Martini D, Kelber J, et al. Characterization and

aluminum metallization of a parylene Af-4 surface. Appl Surf Sci 1998;126:43.

[55] Sandrin L, Sacher E. X-ray photoelectron-spectroscopy studies of the evaporated aluminum

corona-treated poly(ethylene terephthalate) interface. Appl Surf Sci 1998;135:339.
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[323] Röll K. Analysis of stress and strain distribution in thin films and substrates. J Appl Phys 1976;47:

3224.

[324] Schafer JD, NafeH,Aldinger F.Macrostress andmicrostress analysis in sol–gel derived Pb(ZrxTi1-x)O3

thin films. J Appl Phys 1999;85:8023.

Y. Leterrier / Progress in Materials Science 48 (2003) 1–55 55


