Durability of nanosized oxygen-barrier coatings on polymers

Yves Leterrier*

Laboratoire de Technologie des Composites et Polymères (LTC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Received 15 October 2001; accepted 17 December 2001

Abstract

Research on silicon oxide thin films developed as gas-barrier protection for polymer-based components is reviewed, with attention paid to the relations between (i) coating defects, cohesive strength and internal stress state, and (ii) interfacial interactions and related adhesion to the substrate. The deposition process of the oxide from a vapor or a plasma phase leads in both cases to the formation of covalent bonds between the two materials, with high adhesion levels. The oxide coating contains nanoscopic defects and microscopic flaws, and their respective effect on the barrier performance and mechanical resistance of the coating is analyzed. Potential improvements are discussed, including the control of internal stresses in the coating during deposition. Controlled levels of compressive internal stresses in the coating are beneficial to both the barrier performance and the mechanical reliability of the coated polymer. An optimal coating thickness, with low oxygen permeation and high cohesive strength, is determined from experimental and theoretical analyses of the failure mechanisms of the coating under mechanical load. These investigations are found relevant to tailor the interactions and stress state in the interfacial region, in order to improve the reliability of the coating/substrate assembly. © 2002 Elsevier Science Ltd. All rights reserved.

Contents

1. Introduction 1

2. Oxygen-barrier material systems .. 4

* Tel.: +41-21-693-4848; fax: +41-21-693-5880.
E-mail address: yves.letterrier@epfl.ch
1. Introduction

Thin oxide films deposited on polymer substrates by vapor deposition techniques are used in a broad variety of applications. The combination of polymer materials with functional and protective coatings offers a number of key advantages over alternative bulk materials, such as light weight, complex shape and design freedom, transparency or tailored optical characteristics, and also cost-effectiveness [1]. The past decades have seen a regular increase of the research effort to better understand such material systems and improve corresponding technology, with approx. 3000 scientific papers currently published yearly on this topic, among which over 300 deal with coatings on polymers, with an increase rate close to 10%. The numerous applications fields include dielectric antireflection coatings based on SiO₂/TiO₂,
SiO$_2$/ZrO$_2$ or SiO$_2$/HfO$_2$ multilayers for optical components [2–5], transparent conducting tin-doped indium oxide (ITO) coatings, high refraction index and high permittivity TiO$_2$ coatings, and ZnO films for flat displays, solar cells, and other opto- and micro-electronic devices [6–10], atomic-oxygen protective coatings of SiO$_2$, silicon oxinitrides, Al$_2$O$_3$, ITO or SnO$_2$ for spacecraft components [11–15]. The present review focuses on transparent silicon oxide (SiO$_x$) thin coatings on thermoplastic substrates, which have emerged in the 1980s as an alternative to metallized plastics, to protect pharmaceuticals [16,17] and food products [18–23] from oxygen (e.g. review [24]). These systems proved also to be efficient barriers towards ingestion of other small penetrants such as moisture, as also aroma losses. The versatility of the deposition technology has led to new applications including coating of bottles [25] and natural polymers [26], and opens considerable potential for further applications. These include the protection of polymers against photo-degradation [27] and of microdevices and flat panel displays from oxygen and moisture ingress [28,29], the prevention of conversion efficiencies decrease of solar cells [30], as well as patrimony conservation purposes [31]. As will be detailed in Section 2 of this report, SiO$_x$ coatings of thickness of the order of 10 to 100 nm decrease the oxygen permeability of polymer films by typically two orders of magnitude [24]. In the past two decades, most of the research has been devoted to the physical and chemical analyses of the barrier system, which includes the characterization of the apparent permeability of the coated polymer with respect to the deposition process, and resulting coating and interface defect structure. The main studies and related developments are presented in Sections 2 and 3.

The importance of mechanical analyses of SiO$_x$ coated polymers, in terms of coating strength, internal stress state, and adhesion to the substrate, motivated additional research, although to a lesser extent than the above-mentioned physical and chemical analyses. Theses features are nevertheless among the most important coating/substrate properties, as depicted in Fig. 1 [32]. The reliability of the barrier function is controlled by the cohesion of the brittle coating, and by its adhesion to

![Fig. 1. Important coating/substrate properties for technological applications. Reproduced from Ref. [32] with permission.](image)
the polymer, both being influenced by the process-induced internal stress state of the coated assembly. In gas-barrier coated polymers, and, more generally, in all the applications previously mentioned, the intrinsic resistance of the coating to thermal and mechanical loads, its thickness and its adhesion to the substrate are among the key characteristics to tailor for both performance and cost optimization. Reduced thickness without impaired reliability enables cost savings. However, coatings with thickness down in the nanometer range are often associated with growth heterogeneities and high residual stresses generated during the deposition process. Moreover, during all the conversion processes usually encountered in the manufacture of the above-mentioned products, and during service, the thin, brittle oxide coating and coating/substrate assembly must resist externally-applied mechanical and hygrothermal loads. Section 4 presents the activities related to characterization and modeling of process-induced stresses. Sections 5 and 6 review the various analyses of (i) cohesive properties and (ii) adhesive properties of gas-barrier coatings, with attention paid to the role of internal stresses.

2. Oxygen-barrier material systems

2.1. Background

Gas-barrier systems are developed to protect manufactured goods and components from degradation, particularly that resulting from oxidative processes. Early developments of gas-barrier thin films on polymer substrates date back in 1959 with aluminum metallization techniques. Typical barrier improvement factor (ratio of permeation rates of uncoated to coated polymer [24]) of the order of 100 was achieved with 15 nm thick Al coatings formed by resistive evaporation [33]. For food packaging applications, the oxygen transmission rate (OTR) of the packaging film should be of the order of 1 cm³(STP)/m²/day/bar [24,34]. For a 100 μm thick film, this OTR value corresponds to a permeability of the order of 10⁻¹⁶ cm³(STP)-cm²/s/Pa. Polymers are permeable towards diffusion of small molecules, including oxygen, however with considerable differences depending on the physical interactions between the polymer and the penetrant molecule (e.g. [35]). The oxygen permeabilities, P_{O_2}, of a variety of polymers are reported in Table 1. Additional information may be found in the compilation of Pauly [36] and in the work of Ryder on commercial polymers used for food packaging [18]. Low density polyethylene (LDPE) has a very high P_{O_2}, equal approximately to 2500-10⁻¹⁶ cm³(STP)-cm²/s/Pa, by contrast with high barrier polymers such as poly(acrylonitrile) (PAN), poly(vinylidene chloride) (PVDC), and ethylene vinyl alcohol (EVOH), whose P_{O_2} are of the order of 1-10⁻¹⁶ cm³(STP)-cm²/s/Pa. Liquid-crystalline polymers also offer very low oxygen permeabilities, but suffer from their high price [37]. Multilayer films based on linear low-density polyethylene grafted maleic anhydride (LLDPE-gMA), coextruded with polyamide (PA) [38], and tailored blends, such as reactive blends of ternary blends composed of poly (vinyl-alcohol)/polyamide 6/poly(ethylene-co-ethyl acrylate) (PVOH/PA6/PEEA) [39], or blends possessing a process-induced laminar morphology [40,41] are devel-
<table>
<thead>
<tr>
<th>Polymer</th>
<th>Coating</th>
<th>Permeability, P_{O_2} (1016 cm3(STP).cm2/s/Pa)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene, low density (LDPE)</td>
<td>–</td>
<td>\sim2500</td>
<td>[18,35,36]</td>
</tr>
<tr>
<td>Polyethylene, high density (HDPE)</td>
<td>–</td>
<td>500</td>
<td>[35]</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>–</td>
<td>530–1700*</td>
<td>[18,24,36,305]</td>
</tr>
<tr>
<td>Polystyrene (PS)</td>
<td>–</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Poly(carbonate) (PC)</td>
<td>–</td>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>Poly(vinyl acetate) (PVAC)</td>
<td>–</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>Poly(ethylene terephthalate) (PET)</td>
<td>–</td>
<td>10–30*</td>
<td>[18,24,36,306]</td>
</tr>
<tr>
<td>Poly(vinyl chloride) (PVC)</td>
<td>–</td>
<td>5.9</td>
<td>[18]</td>
</tr>
<tr>
<td>Polyamide 6 (PA6)</td>
<td>–</td>
<td>5–25*</td>
<td>[18,36,128,307]</td>
</tr>
<tr>
<td>Poly(acrylonitrile) (PAN)</td>
<td>–</td>
<td>0.15–5</td>
<td>[18,36]</td>
</tr>
<tr>
<td>Poly(vinylidene chloride) (PVDC)</td>
<td>–</td>
<td>0.38–4</td>
<td>[18,36]</td>
</tr>
<tr>
<td>Poly(ethylene vinyl alcohol) (EVOH)</td>
<td>–</td>
<td>0.05–6.65b</td>
<td>[18,36]</td>
</tr>
<tr>
<td>LDPE/EVOH blends</td>
<td>–</td>
<td>3.8</td>
<td>[40]</td>
</tr>
<tr>
<td>PET/EVOH blends</td>
<td>–</td>
<td>5.1</td>
<td>[308]</td>
</tr>
<tr>
<td>Polypropylene/polyamide 6 blends</td>
<td>–</td>
<td>1.7–850c</td>
<td>[309]</td>
</tr>
<tr>
<td>Thermotropic liquid-crystalline polymers</td>
<td>–</td>
<td>$<0.1–0.4$</td>
<td>[37,310]</td>
</tr>
<tr>
<td>Alkylsulfonylmethyl-substituted poly(oxyalkylene)</td>
<td>–</td>
<td>0.7–3.6</td>
<td>[43]</td>
</tr>
<tr>
<td>Poly(hydroxy amide ethers)</td>
<td>–</td>
<td>1–20</td>
<td>[311–313]</td>
</tr>
<tr>
<td>PET copolymer/talc 32%wt composite</td>
<td>–</td>
<td>14</td>
<td>[44]</td>
</tr>
<tr>
<td>Polyethylene/mica 10wt% composite</td>
<td>–</td>
<td>\sim2000</td>
<td>[314]</td>
</tr>
<tr>
<td>Polyamide 6/layered silicate nanocomposite</td>
<td>–</td>
<td>\sim10</td>
<td>[46]</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>SiO$_x$ 40 nm (PECVD)</td>
<td>85</td>
<td>[128]</td>
</tr>
<tr>
<td>Polyamide</td>
<td>SiO$_x$ 40 nm (PECVD)</td>
<td>0.07</td>
<td>[128]</td>
</tr>
<tr>
<td>Polycarbonate (PC)</td>
<td>SiO$_x$C$_x$H$_y$/TiO$_x$ 100nm (PICVD)</td>
<td>\sim3</td>
<td>[17]</td>
</tr>
<tr>
<td>Polypropylene, oriented (OPP)</td>
<td>SiO$_x$ (React.sputter Si)</td>
<td>50</td>
<td>[315]</td>
</tr>
<tr>
<td></td>
<td>SiO$_x$ (React. evap.SiO)</td>
<td>50</td>
<td>[315]</td>
</tr>
<tr>
<td></td>
<td>SiO$_x$ (PECVD)</td>
<td>2</td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>ORMOCER*</td>
<td>37</td>
<td>[213]</td>
</tr>
<tr>
<td></td>
<td>SiO$_x$/ORMOCER*</td>
<td>0.12</td>
<td>[213]</td>
</tr>
<tr>
<td>Poly(ethylene terephthalate) (PET)</td>
<td>Al<15nm React. evap.</td>
<td>\sim0.15</td>
<td>[33]</td>
</tr>
<tr>
<td></td>
<td>Silica-poly(vinyl alcohol)</td>
<td>\sim1</td>
<td>[316]</td>
</tr>
<tr>
<td></td>
<td>SiN (PECVD)</td>
<td>0.15</td>
<td>[317]</td>
</tr>
<tr>
<td></td>
<td>ZnO (React. sputtering)</td>
<td>1.2</td>
<td>[19]</td>
</tr>
<tr>
<td></td>
<td>SiO$_x$70nm(Reactive evaporation)</td>
<td>0.3</td>
<td>[20]</td>
</tr>
<tr>
<td></td>
<td>SiO$_x$ 12nm (PECVD)</td>
<td>0.15</td>
<td>[318]</td>
</tr>
<tr>
<td></td>
<td>SiO$_x$ (PECVD)</td>
<td>0.12</td>
<td>[133]</td>
</tr>
<tr>
<td></td>
<td>SiO$_x$ (PECVD)</td>
<td>0.04</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td>ORMOCER*/SiO$_x$</td>
<td>0.069</td>
<td>[213]</td>
</tr>
</tbody>
</table>

* Depends on crystallinity, orientation, and water vapor in case of polyamides [307].

b Depends on ethylene content.

c Depends on composition. A marked decrease is observed for PA6 fractions greater than 60%.
oped for improved barrier performance. In addition, research on novel polymers with low oxygen permeabilities is currently being carried out. These include poly(1,1-bis(hydroxymethyl)-2-vinylcyclopropane) [42] or alkylsulfonylmethyl-substituted poly(oxyalkylene)s [43], the latter achieving oxygen permeabilities lower than 10^{-16} cm3(STP)-cm/cm2/s/Pa. Layered composites have also been developed for the same purpose, such as talc-filled semicrystalline thermoplastics [44]. A promising development is found in the field of layered silicate nanocomposites [45], particularly those based on polyamide 6 (PA6) [46].

An alternative to the synthesis of new polymers is the use of thin gas-barrier coatings, formed by means of vapor-deposition processes. The reason is, in a first approximation, the transport of small penetrants through bilayer films can be expressed following a parallel-type equation [47]:

$$h_P = \frac{h_c P_c}{P_s} + \frac{h_s P_c}{P_s}$$

where h, h_c, and h_s represent the coated film, coating and substrate thicknesses, respectively. P is the apparent oxygen permeability of the coated film, and P_c and P_s are the oxygen permeabilities of the coating and substrate, respectively. The apparent permeability of the coated film P thus decreases with increasing coating thickness, by typically two orders of magnitude, as shown in Fig. 2 for SiO$_x$/PET materials processed with various techniques. This, in fact, is only verified in a narrow range of small coating thickness, and does not capture the observation of a flat minimum in P values when coating thickness is increased to beyond a given threshold (Fig. 3). Common deposition technologies [48] are based on physical vapor deposition (PVD process) such as reactive evaporation, and chemical vapor deposition (CVD). PVD processes operate under reduced pressure, and comprise evaporation and sputtering, characterized by the absence of chemical reactions in the gas phase and at the substrate surface (at the exception of reactive evaporation where a partial pressure of oxygen is used). An overview of PVD processes can be found in Ref. [49]. Both evaporation and sputtering techniques use solid precursors with low boiling points from which atoms are removed, either by thermal means in the evaporation process, or through impact by gaseous ions in the sputtering process. CVD processes use volatile precursors, which are decomposed by means of heat, photons, or plasma. The latter technique, termed plasma enhanced CVD (PECVD), is applicable for thermally sensitive substrates such as polymers, and has become the mostly used process for the deposition of SiO$_x$ coatings. The following considers the case of metallic coatings, and then the case of oxides.

2.2. Thin metal coatings on polymers

A considerable amount of work has been dedicated to aluminized polymers in the past decades, the main emphasis being put on the analysis of interface interactions and chemistry [50–56]. In these works, the good adhesion between Al and a number of polymers, particularly polyesters, was attributed to the formation of covalent
bonds (Al–O–C oxi-carbide complex and carbide bonds), whereas hydrogen bonds were found to have a negligible influence on adhesion [53]. There exist also numerous analyses of interfacial interactions between metals and polymers, mostly poly(ethylene terephthalate) (PET). These metals comprise Mg (thermal evaporation) [57,58], K and Cr (evaporation) [59], Si and Cu (thermal evaporation) [57]. All these metals (M) form complexes with the polymer, particularly carboxylic groups, and lead to M–O–C and M–C bonds. By contrast with Al, Cu presents weak adhesion to PET [52], unless an O₂ plasma treatment is applied to the polymer, which increases the polar component of the polymer surface energy [60], and leads to the formation of a Cu–O–C metal complex [51].

2.3. Thin metal oxide coatings on polymers

Besides their excellent transparency, compared to thin metallic films, metal oxides such as silicon oxide (SiOₓ) possess excellent barrier properties. Transparent barrier SiOₓ coatings were originally industrialized in 1969 [61]. The very tight interstitial spaces of the Si–O lattice and broad ranges in thermal stability leads to oxygen

![Fig. 2. Oxygen transmission rate (OTR) of SiOₓ coated PET vs. coating thickness, for different deposition technologies (data after refs [24,304]). Also shown is the OTR of Al/PET.](image)
diffusivities in the range 10^{-5}–10^{-9} cm2/s. An in-depth analysis of oxygen and water vapor transport through magnetically enhanced CVD SiO$_x$ coated PET barrier films was performed by Trophsa and Harvey [62]. The authors concluded that the oxide coating acted as simple defective blocks to oxygen transport, as depicted in Fig. 4, and that the dominant transport mechanism was permeation through the polymer substrate, followed by flux through available defects in the coating. This is in contrast to the behavior of water molecules that are believed to interact and react with deposited metal and oxide coatings [63]. In spite of the reported defects, the oxygen permeation of the coated polymer is typically two orders of magnitude lower than that of the uncoated polymer, as indicated in Table 1.

![Fig. 3. Apparent permeability of SiO$_x$/PET films (dots: experimental data after refs [24,304], line: Eq. (1), with $h_c = 12$ μm, $P_s = 16.5\times10^{-16}$ cm3(STP).cm/cm2/s/Pa and $P_c = 4.9\times10^{-19}$ cm3(STP).cm/cm2/s/Pa).](image-url)
polyethylene, require thicker coatings. The contribution of polar, hydrogen bonds to adhesion was found to be negligible, and strong adhesion between SiO\textsubscript{x} and polymers requires the presence of oxygen at the interface to form the above mentioned covalent bonds [53].

Among the other relevant studies devoted to the deposition of oxides onto polymer substrates, one may cite TiO\textsubscript{2} coatings. Titania, due to unique UV-absorption characteristics, would constitute interesting barrier material to protect polymers against photodegradation. TiO\textsubscript{2} coatings can be formed by laser ablation deposition [6], r.f. magnetron sputtering in an oxygen-argon plasma from a titanium target (reactive process) [7], and in a pure argon plasma from a titania target (non-reactive process) [78]. Ti–O–C covalent bonds were identified by XPS between PET and TiO\textsubscript{2} in the case of the reactive magnetron sputtering, with corresponding high adhesion level. By contrast, no chemical reaction seemed to occur between the PET and the titanium oxide film sputtered under a pure argon plasma [78], and the adhesion resulting from mechanical interlocking was reported to be weaker than in the previous case.
To summarize, covalent bonds are formed during the vapor deposition of thin metal or metal oxide films onto polymer substrates, and these bonds leads to high levels of adhesion, as will be detailed in Section 6 of this report. This, however, is a necessary but not sufficient condition for coating performance. Of equal importance is the cohesive strength of the thin film, which results from a complex interplay between interface structure, coating growth, defects, and internal stress state.

3. Defects in thin oxide films on polymers

In their permeation study of polymer barrier systems, Rossi and Nulman found that many small holes in a barrier layer lead to a much higher permeation than few large holes, of same total area [79]. It was moreover established that the barrier performance of coated polymers depends on coating thickness [80], on substrate roughness [72,81], as also on coating density, as shown in Fig. 5 in case of an hexamethyldisiloxane/oxygen (HMDSO/O₂) coating on polypropylene (PP) [82]. These factors (defect size, coating thickness, coating density, and substrate roughness) are all likely to affect the mechanical behavior of the coating. Particularly, rougher surfaces require thicker coatings for maintained barrier properties, which tend to promote cracking [65,83]. It is therefore essential to have a detailed understanding of the initial surface morphology of the polymer substrate, of its evolution during the deposition process, and the resulting final structure of the coating.

![Fig. 5](https://example.com/fig5.png)

Fig. 5. Oxygen flow across membranes and density of HMDSO/O₂ plasma polymer films on PP (with error bars due to thickness incertitude of deposits) for different gas-phase compositions. Uncoated PP reference flow = 600 cm³/m² day. Initial gas total pressure = 10⁻¹ mbar; power density = 100 mW/cm²; deposition time = 10 min. Reproduced from Ref. [82] with permission.
3.1. The surface morphology of the polymer substrate

The surface of polymers, particularly semi-crystalline thermoplastics, are characterized by complex microstructures, and have been the subject of detailed investigations in the last decade, with the advent of surface probe techniques. The surface of amorphous [84], semi-crystalline [85], uniaxially stretched [86], and biaxially stretched [87] PET films was largely studied. Surface restructuration upon exposure to air or water was detected and modeled in the former case [84]. In the latter case, attention was paid to the influence of the progressive molecular orientation towards the extension direction, and eventual strain-induced crystallization, on surface energetics [88] and surface topology [85–87]. Unger and co-workers reported a preferential orientation of the PET surface chain segments, with the benzene ring being parallel to the surface plane [89], that gradually diminishes upon exposure to an oxygen plasma [90]. Using interfacial force microscopy, Graham et al [91] measured the mechanical properties of crystallized PET surfaces with nanometer resolution, and reported Young’s moduli equal to 2.2 GPa in amorphous regions, and to 11.8 GPa on crystalline regions. A value of 4.3 GPa was also measured in the close vicinity of the latter regions, which was attributed to an intermediate amorphous region, with some degree of order. A detailed characterization of the surface macrolattice of extruded PET could be achieved by means of contact-mode atomic force microscopy [85]. Keeping in mind the limited resolution of the pyramidal AFM tip, various measurements led to mean surface roughness of the crystalline regions in the range 2.3–13 nm, and of amorphous regions in the range 23–38 nm. RMS roughness as low as 1.13 nm was reported for 12 μm thick, presumably biaxially oriented, PET films [65], and of approx. 4 nm, for uniaxially oriented PET [86].

Commercial PET films contain a variety of additives including chemical compounds, glass beads, clays, or silicate anti-tack particles, analyzed by XPS and ToF-SIMS [92], and by acoustic microscopy [93,94]. Using scanning force microscopy techniques, Ling and Legget observed radial features around silicate particles, that may be attributed to localized strain-induced crystallization [87]. The diameter of the particles, embedded in the polymer superficial layers, was found to lie in the range 150–500 nm, with an average interparticulate spacing of approx. 500 nm. Few particles protruded some 20–40 nm above the polymer surface, as indicated from lateral force microscopy [86]. Similar studies were performed on magnetic tape PET substrates [95]. The influence of such additives, located in subsurface layers, on the surface topology of PET upon stretching was examined numerically by Gerlach et al. [96], and a detailed theoretical analysis was carried out by Khan and Keener [97]. For PET films drawn to a ratio of 4, the density of anti-blocking particles is of approx. 1000/mm², and these increase the polymer roughness up to approx. 50 nm. Such analyses are useful as design approaches to the manufacture of polymer films. They could also be useful as input data in the determination of the influence of the initial roughness of the polymer surface on the mechanical strength of the coating. This would first imply that the evolution of the polymer surface during the early deposition stages of the coating is carefully described especially when etching phenomena are present. Fig. 6A is an attempt to summarize the main characteristics of
the surface morphology of semi-crystalline PET, based on the observations described in refs. [85,87]. The sketch depicts the alternation of soft and rough amorphous regions with hard and smooth crystalline regions, some of which resulting from nucleating and orientation processes induced on additive sites.

Fig. 6. Schematics of the formation of coating defects during deposition, based on the observations reported in refs. [85,87,132]. (a) Cross section of the initial polymer surface, characterized by crystalline and amorphous regions, and subsurface silicate particles. (b) Early stages of the deposition process, with plasma activation of reactive sites and concomitant erosion and surface roughening, preferential in the amorphous domains. (c) Formation of an interfacial region, with covalent bonds between the polymer and the oxide, and growth of the oxide layer, with sharp nanodefects and circular microdefects (pin-holes).
3.2. Surface modification of the polymer substrate

During the early stages of the vacuum deposition of thin films, the initial surface of the polymer substrate undergoes considerable modifications. The surface dynamics of PET are already drastically affected with SiO$_x$ coatings of thickness of less than 5 nm [98]. These changes determine the formation of the interfacial microstructure and stress state, and, thus, the coating cohesion and adhesion to the substrate. Several techniques were in fact developed to modify the surface polarity of polymers for improved adhesion, amongst which plasmas have become ubiquitous processes [99,100]. Reviews of plasma treatments of polymer surfaces are found in refs. [101–103]; the main effects are four-fold, namely cleaning, ablation, crosslinking, and surface modification. Abundant literature reports the influence of various plasma using different gases (O$_2$, CO$_2$, He–O$_2$ mixtures, Ar) on polymer surface chemistry, energetics and morphology, particularly PET (e.g. refs. [60,104–109]) and PP [110]. According to Unger and co-workers [111], the phenyl rings in partially crystalline PET provide effective protection against plasma attack, compared for instance to polystyrene, for which the phenyl rings are on side chains. The case of silicon-containing polymers is interesting in the sense that their exposure to oxygen plasma was reported to lead to the formation of thin SiO$_x$ coatings [112]. Oxygen microwave plasma treatments were reported to increase oxygen species on otherwise apolar surfaces such as those of polyethylene and polypropylene, leading to the formation of metal–O–C groups, with corresponding increase in adhesion with Al and other metals [51,72]. Similar findings were obtained with PET [51], as also using CO$_2$ plasma [105,113]. Fig. 7 shows the evolution of the dispersive and polar contributions to the surface energy of PET during short plasma treatment with CO$_2$ [105]. The authors found that the highest adhesion between treated PET and alumina coating was obtained when the polar component of the surface energy was the highest. The same result was reported in case of SiO$_x$ coatings on silylated PET [114]. Whereas plasma led to an increase of PE and PET roughness [51], it resulted in smoothing of PP surface [34,72]. The latter authors further observed that the electrons, ions and UV radiation also present in the oxygen plasma weaken the cohesive strength of the PP by inner chain scissions, and concluded that the atomic oxygen of the plasma should dominate the pretreatment process. In case of an Ar plasma, and using non-contact mode scanning force microscopy imaging, Beake et al. [108] observed the formation of ridges, normal to the final draw direction of the film, as a consequence of the preferential erosion of amorphous material, up to 4 nm/min at 0.1 mbar Ar pressure. Spacing between adjacent ridges was approx. 50 nm. Similar effects were reported by Gupta et al. [109], with approx. 35 nm spacing between ridges. These values are more than twice as large as the lamellar periodicity determined on highly drawn films using 2-dimensional small angle X-ray scattering [115], which may result from convolution effects between the AFM tip and the morphological features.

A further important effect is the surface reorganization resulting from annealing at temperature above the glass transition of the polymer, a possible consequence of the heat dissipated into the polymer substrate during coating deposition. For
example, Silvain et al [57] reported improved adhesion of metals to annealed PET, due to the reorientation of the aromatic ring parallel to the surface [89,116], which, in turn, favored the formation of metal-polymer complex. Other treatments include low-pressure discharge, applied to PP to increase the polar component of its surface energy and, consequently, its adhesion to Al [117], and reactive ion assisted interface bonding and mixing followed by annealing, applied to sputter deposited Al on polytetrafluoroethylene (PTFE) [118], used for interconnects in micro-engineering applications. Corona treatment of PET led to only minor differences of interfacial interactions compared to untreated PET [55]. Heat treatments have been found to improve wet adhesion of Al to PET [119]. The above findings, in terms of changes in surface roughness and polarity of semi-crystalline PET, are sketched in Fig. 6B. Amorphous regions exhibit increased roughness, whereas a higher density of active sites are found on crystalline regions. Additive particles initially embedded in the surface layers tend to protrude above the eroded polymer surface.

3.3. Coating and interface defects

The deposition technique and deposition conditions determine the final coating microstructure, and therefore the barrier performance of the coated polymer [120] as also its mechanical strength. Wertheimer and co-workers reported the superiority of PECVD coatings over PVD coatings [75,76]. In contrast to the former, the latter are characterized by columnar growth morphology, and their lower density explains their lower barrier performance. The presence of Ar gas during deposition of
PECVD SiO\textsubscript{x} was reported to lead to denser structures [121]. The density of PECVD SiO\textsubscript{x} coatings, and therefore their oxygen permeability, was found to be strongly dependent on process conditions such as input power, pressure, and O\textsubscript{2}/precursor ratio, the maximum density being slightly larger than 2.2 g/cm3 [122]. The density of evaporated SiO\textsubscript{x} coatings was reported to be equal to 2.32 g/cm3 by Fukugami et al. [123], value which is intermediate between the densities of amorphous SiO\textsubscript{2} and bulk crystallized SiO\textsubscript{2}, respectively equal to approx. 2.2 and 2.6 g/cm3. The higher density of evaporated silicon oxide thin films, compared to that of amorphous SiO\textsubscript{2} goes along with the corresponding values of elastic constants. Young’s modulus of fused quartz is equal to 72.9 GPa [124], and the value for SiO\textsubscript{x} coatings was reported to be equal to 79.5 GPa from tensile testing of coated PET films [125], and to 93–134 GPa, depending on coating thickness, from Brillouin spectroscopy [126]. A mention should be made at this point as for the difficulty to determine the elastic properties of very thin films, and the bulge test technique appears as an interesting method to this end [127].

Generally speaking, two kinds of defects are found in thin oxide films, namely microdefects and nanodefects. On the one hand, microdefects comprise so-called pin-holes and microcracks [24,128], with sizes of the order of 1 \textmu m. Microdefects in form of uncoated areas were detected in the case of PE substrates, which were related to the high roughness of the initial polymer surface [65]. A detailed characterization of microdefects was performed by Wertheimer and co-workers, using reactive ion etching in oxygen plasma followed by microscopy analyses [75,120,129]. These authors correlated the residual permeation of PECVD SiO\textsubscript{x} on PET films to the measured density of pin-holes, found to be equal to 2000/mm2 for 8 nm thick coatings, and to 80/mm2 for 70 nm thick coatings. The latter defects were characterized by an approximately gaussian size distribution of diameters, with an average value equal to 0.6 \textmu m. It should be pointed out that PECVD of organosilane precursors on polymer substrates leads to the formation of SiO\textsubscript{x}C\textsubscript{y}H\textsubscript{z} films, as detailed by Deville et al [130]. Multilayer structures based on SiO\textsubscript{x}C\textsubscript{y}H\textsubscript{z}/TiO\textsubscript{2} films on PC substrates were found to possess low pin-holes densities, of less than 100/mm2 [17]. On the other hand, nanodefects result from the non-equilibrium thermodynamic nature of the vapor process, as recently investigated using Monte Carlo simulations [131]. For nucleation site densities of 2 nm-2 typical of PET, the authors determine porosity as high as approximately 10%. By contrast with the above analyses of microdefects, several studies concluded that nanodefects within the coating, rather than microdefects, control the permeation with oxygen [62,132,133] and water, although with different mechanisms due to interactions with the coating itself [62,133,134]. In their permeation modeling of O\textsubscript{2} through evaporated SiO\textsubscript{x} coatings, Briggs and co-workers report pore size distributions in the range 2.7 to 4 \AA-1 in coatings with thicknesses smaller than 90 nm [132]. In thicker coatings, sub-micron cracks would appear, thus leading to relaxation of deposition-induced internal stresses, as will be detailed in the next section.

The two types of defects are sketched in Fig. 6C. Also depicted is an interfacial region, characterized by a high density of Si–O–C and Si–C bonds, as mentioned earlier, which determines the final functionality of the coated barrier film [72]. In the
case of PECVD coatings, as a result of fragmentation/redeposition mechanisms in the early deposition stages, such a region may also consist of an organosilicon phase with Si–CH₃ bonds of tens of nm, believed to improve adhesion and cohesion of the coated film [76]. The final defect structure of the thin coating is intimately linked to its internal stress state to which we now turn our attention.

4. Internal stresses

Internal stresses are inherent to most multimaterial assemblies, where dissimilar materials with different thermo-mechanical properties are processed together. In the case of coated films, such stresses clearly impact coating performance, and therefore must be controlled. Tensile stresses greater than the cohesive strength of the coating lead to cracks, as shown in Fig. 8 [9], and excessive levels of compressive stresses result in buckling phenomena. The influence of internal stresses on the properties of coated systems, particularly the adhesion of thin oxide films, has been examined extensively in case of glass [135] or metallic substrates [136], but, to a far less extent, in case of polymer substrates. The general lack of information is in spite of the fact that internal stresses have been shown to considerably change failure processes such as debonding at the interface, as analyzed by Wheeler and Osaki [137]. However,

![Figure 8](image-url)
Fig. 8. Sheet resistance of 1.5% Ga-substituted ZnO films grown at 190 °C vs. bending stress. The micrographs were taken using an optical microscope at x40 magnification. Reproduced from Ref. [9] with permission.
when such effects are accurately determined, the knowledge of residual stresses proves to be advantageous to measure adhesion, because the stress change providing the driving force for debonding is elastic, whatever the magnitude of the initial coating stress [138]. General overviews on this subject have been given by Atkinson [139] and Clyne [140]. In the former case of glass substrates, compressive residual stresses were found to increase the adherence strength by increasing the resistance to the tensile cracking failure. As shown in Fig. 9, compressive stresses also improve oxygen-barrier efficiency of titania coatings, with related increase in crystallinity and compactness resulting from increased kinetic energy of the sputtered particles [7]. Whether this interesting result holds for SiO$_x$ coatings, which do not crystallize, is open for research.

In brief, the influence of internal stresses on the stress transfer property of an interface is a priori unknown, although, in composite materials, it was recognized that it could be considerable (see for instance Ref. [141]). Let us first examine how internal stresses are generated in the coated film, and how to measure them, after what methods to control these stresses will be presented. The influence of process-induced stresses on coating failure and adhesion to the substrate are treated in following sections. One should note that the essential of the work related to stress

![Fig. 9. Oxygen permeation of TiO$_2$ coated PET films vs. coating residual stress (data from Ref. [7]).](image-url)
build-up in thin films considers crystalline and epitaxial thin films (see for instance the review of intrinsic stresses in polycrystalline thin films [142], Refs. [143–145], and the monographs of Ohring [48] and Campbell [146]).

4.1. Generation of internal stresses in thin coatings on polymers

The two main sources for internal stress generation during deposition of thin oxide coatings on polymer substrates are (i) growth and associated disorder, and (ii) temperature gradients. The former leads to so-called intrinsic stresses, and the latter to thermal stresses, both of which are detailed as follows. Additional internal stresses may result from the subsequent conversion operation, including elastic recovery of the substrate, upon unloading after coating deposition. These stresses, of thermomechanical origin, will add to the two previously mentioned stresses, and the total stress may eventually evolve during long-term use. These subjects are also treated thereafter.

4.1.1. Intrinsic stress

Physical as well as chemical vapor deposition techniques, albeit of considerably differing nature, are non-equilibrium thermodynamics processes, and lead to a quenched disorder state in the oxide coating. This disorder is associated with defects in the Si–O network, such as nanovoids [62], of sizes ranging from 2 to 4 Å [132], dangling Si–OH bonds and, generally speaking, with intrinsic internal stresses. The intrinsic stress is mostly insensitive to the type of substrate, and to coating thickness. This was demonstrated in case of metal coatings on silicon wafer substrates [147], and silica coatings on Si and Ge substrates [136], although, in both works, the possible effects due to the anisotropic nature of the substrate were ignored. In case of sputtered metallic coatings, the rearrangement of deposited atoms with high kinetic energy decreases the intrinsic tensile stress and favors the obtention of high density coatings [148]. On the contrary, SiO$_x$ evaporated on crystalline Si was reported to be under tensile stress [149], as a result of high porosity, and sputtered oxide films with high density, promote high compressive stress [7].

Following Ohring [48], it appears that no model exists which would provide realistic prediction of the intrinsic stress state in SiO$_x$ coatings on polymer substrates. Such a model for stress build-up has yet to be developed, which, at best, would be limited to specific material systems and type of deposition technique. Most grown oxide coatings are under compression (e.g. Ref. [150,151]).

4.1.2. Thermal stress

Besides the generation of quenched disorder in the coating, heat is dissipated in the polymer substrate during the deposition process, resulting in a rapid temperature increase of the substrate. Stresses subsequently build-up during the final cooling of the coated film due to large differences in elastic moduli and in coefficients of thermal expansion between the oxide and the polymer. According to BenAmor et al. [7], the
thermal stress in titania coatings formed on PET substrates represents approx. 10% of the total stress. A similar result was reported for TiN coatings on ABS substrates [152]. Assuming a thermo-elastic behavior, the in-plane thermal stress is expressed following:

\[
\sigma_{i, \text{th}} = \frac{E_c}{(1 - \nu_c)} \int_{T_1}^{T_2} \left[\alpha_s(T) - \alpha_c(T) \right] \cdot dT
\]

where the prefactor of the RHS represents the coating biaxial modulus, \(E_c\) and \(\nu_c\) being the coating Young’s modulus and Poisson’s ratio, respectively, and \(\alpha_s\) and \(\alpha_c\) are the linear coefficients of thermal expansion (LCTE) of the substrate and coating, respectively, both being a-priori temperature dependent factors. The average LCTE of SiO\(_2\) between 20 and 320 °C is equal to approx. 0.5 \(\times 10^{-6}\) K\(^{-1}\) [153,154]. The average value of the LCTE of SiO\(_x\) between 23 °C and 350 °C was reported to be equal to 2.7 \(\times 10^{-6}\) K\(^{-1}\), where the stoichiometric index \(x\) reflects the presence of a mixture of SiO\(_2\), SiO\(_{1.5}\), SiO and SiO\(_{0.5}\) [155]. \(T_1\) represents the temperature of the coated film at the end of the deposition operation, and \(T_2\) represents the service temperature. Very few studies have investigated the evolution of the temperature of polymer substrates during thin film deposition. Gonzalez et al. report the chemical vapor deposition of dense and adherent silicon oxide films at substrate temperatures of 100 °C [156], and remote plasma-enhanced CVD techniques may be used also to limit substrate heating [157]. Yamamoto et al. [158], in spite of a very confusing presentation, report temperature increases as low as 0.4–3 °C for a 12 µm thick PET substrate during plasma irradiation. The temperature of PET during RF-magnetron sputtering of TiO\(_2\) was estimated to be of the order of several 10 °C, from the data reported in the work of Ben Amor et al. [7]. Similar values were measured by Wendt et al. [159], for the deposition of ZnO:Al thin films, and by Trakhtenberg et al. [160], in their analysis of DLC sputtering on PE substrates. These authors found that optimal adhesion was achieved when the substrate temperature was in the close vicinity of the polymer melting point. In addition to the generation of thermal stress, water vapor can be released from the polymer due to substrate heating, thus increasing the oxygen content in the deposited thin film [161]. Modeling of the kinetics of substrate temperature were recently carried out by Mohnjuk et al. in the case of a RF plasma deposition [162], and by Andritschky et al. [148] in case of magnetron sputtering. Taking the LCTE of SiO\(_x\) equal to 2.7\(\times 10^{-6}\) K\(^{-1}\) into account, Young’s modulus \(E_c\) equal to 80 GPa, Poisson’s ratio \(\nu_c\) equal to 0.2, and assuming an average LCTE of the polymer substrate \(\alpha_s\) equal to 5\(\times 10^{-5}\) K\(^{-1}\), a final deposition temperature \(T_1\) equal to 100 °C and a service temperature \(T_2\) equal to 20 °C, one calculates a typical value for the compressive thermal stress \(\sigma_{i, \text{th}} = (E_c/(1 - \nu_c))(\alpha_s - \alpha_c)(T_2 - T_1) = -378 \text{ MPa}\), which corresponds to a compressive strain, of thermal origin, equal to approximately \(-0.5\%\). This value is in fact comparable to the residual strains of evaporated SiO\(_x\) coatings on PET films, reported in Fig. 10. This result suggests that the thermal stress dominates the total stress for this type of coating.
Takeda and co-workers [132,163,164] and Leterrier et al. [165] found that, in case of evaporated SiO\textsubscript{x} coatings on PET, thicker coatings are associated with lower compressive stresses, thus indicating that stress relaxation processes occur as the coating grows. These relaxation processes result from the formation of nanoscopic cracks, as was indicated in the preceding section. The same tendency for the compressive stress was observed by Grimberg et al. [152] for crystalline TiN coatings on ABS. Stress relaxation was, in that case, attributed partly to improved microstructure of thicker films, and partly to the presence of a ductile metallic underlayer. These results are contrary to those of Ben Amor et al. [7], who report increasing stress in TiO\textsubscript{2} coatings on PET at higher coating thickness, due to the accumulation of growth defects and impurities. By contrast, decrease compressive stress is obtained at increased oxygen partial pressure, due to the development of a columnar microstructure, which favors the adsorption OH-groups, and corresponding enhancement of attractive forces in the coating microstructure. This latter finding could also be relevant to the case of PECVD SiO\textsubscript{x} coatings, also characterized by columnar microstructures [62,133]. Increasing compressive stress in SiO\textsubscript{2} thin films was observed with increasing film density [166].
4.2. Stress optimization during conversion operations

In their study of stoichiometric SiO films formed by molecular-beam deposition (MBD) in high vacuum, Chand et al. [155] found that the thin films were under a tensile stress smaller than 100 MPa, which is significantly lower than that observed in other dielectric films. In fact, this result may be due to an inappropriate use of Stoney’s stress calculation [167] detailed thereafter, only valid in the limit of very small coating/substrate thickness ratio. At low deposition rates and at high pressures of oxygen, SiO\textsubscript{x} (1 ≤ x ≤ 2) films were obtained. Introduction of a small amount of oxygen during deposition reduces the tensile stress; at an O\textsubscript{2} pressure of 5·10-7 Torr and above, the films were in compression. This allows the tunability of stress, and deposition of films essentially free from stress.

In addition to the above-mentioned intrinsic and thermal stresses, the conversion operations in which the coated polymer is processed into the final product are likely to change the overall stress state of the coated film. In the case of web coating applications, the polymer film is usually unwound under tension to ensure flatness during the deposition process. The unloading of the coated film during any subsequent conversion operation will give rise to additional compressive stress within the thin coating, the value of which can be directly approximated from the tensile force applied in the web process. In previous investigations, the amount of tensile force during PECVD deposition of SiO\textsubscript{x} on various polymer films, was in fact controlled to tailor the state of stress in the coating [168]. Moreover, calendering processes with other polymer films susceptible to shrinkage will induce further compressive stresses in the thin coating [169]. Heat-set treatments were developed to overcome orientation relaxation and crystallization shrinkage of the polymer if the temperature is high enough. An example is the sterilization cycle routinely applied to pharmaceutical packaging, in which the multilayer film is held for 20 min at 121°C, i.e. in the cold-crystallization regime of the polymer substrates such as PET. Generally speaking, process temperature cycles can be optimized to tailor the stress state in the thin coating prior to the use phase of the product, to avoid potential damage, and loss of barrier performance [170].

Eventually, during use, the internal stress state of the coated polymer changes with time. This is due, on the one hand, to the time-dependent nature of polymers and, on the other hand, to aging phenomena in the oxide thin film, particularly those resulting from interactions with moisture [166]. Polymers are organic materials that exhibit so-called viscoelastic properties, and which are usually brought out of thermodynamic equilibrium when cooled to below their glass transition temperature. The resulting time dependent phenomena have been particularly studied in the case of biaxially stretched PET films [171,172]. Polymers are also permeable to small molecules, which may lead to physical swelling phenomena, hence, to changes in stress state. The issue of long-term evolution of process-induced internal stresses, and related changes in interfacial adhesion between PET and SiO\textsubscript{x} are detailed in a recent work, in which a proportional relation between both factors was established [169,173]. In addition, long-term exposure of thin oxide films to ambient air may affect their stress state. As shown in Fig. 11, hydration of SiO\textsubscript{2} thin films by water vapor during aging leads to a relaxation of the deposition-induced compressive
stress, and to a compressive-to-tensile transition [136,174]. Corrosion stress cracking was observed in mechanically constrained plasma polymerized hexamethyldisiloxane (HMDSO) thin films, initially under compressive stress, upon exposure to alcohols [175]. Also, changes in intrinsic stress in SiO$_x$ films, formed by PECVD using a tetraethoxysilane (TEOS) precursor, upon long-term exposure of to an ambient atmosphere were reported to lead to cracks [176]. This problem was overcome using an ethyltrimethylosilane (ETMS) precursor, which allowed higher film density. Similar stress changes upon annealing were reported by Haque et al. [177]. The authors indicate that moisture plays a key role in such phenomena, as it diffuses into the film and reacts with strained Si–O bonds and reconstructs them into a minimum energy configuration. Capping the SiO$_2$ film with Si$_x$N$_y$ to prevent moisture diffusion leads to considerable improvement in stress stability.

4.3. Stress analysis

The presence of internal stresses leads to a curling of the coating/substrate assembly: stresses are compressive in the coating when it is located on the convex side of the curl. Any change in the internal stress state will result in a change in the
radius of curvature. Extensive studies have examined and modeled this phenomenon, as reviewed by Benadbi and Roche [178]. Most of these works follow the one-dimensional analysis of Stoney [167], who derived the classic expression relating the radius of curvature of the coated film, R, to its internal stress, σ_i:

$$\sigma_i = -\frac{E_s}{6Rh_c} \frac{h_s^2}{h_c^2}$$

(3)

where E_s is the Young’s modulus of the substrate, h_s and h_c are the substrate and coating thickness, respectively. The usual convention, where compressive stresses are negative, was adopted. The above equation disregards the effect of substrate Poisson’s ratio and of coating thickness, which, in the case of a (oxide) coating-to-(polymer) substrate thickness ratio larger than approx. 10^{-3} can not be ignored. Timoshenko [179] initially proposed to correct for higher orders of the thickness ratio, h_c/h_s, and refined corrections to Stoney’s equation [Eq. (3)], accounting for different values of Poisson’s ratio and different substrate thickness and substrate width have since been derived. Such corrections turn out to be less than a few percent if the radius of curvature, R, is greater than, or approximately equal to W^2/h_s, where W represents substrate width [146]. The case of thick films was treated by Brenner and Senderoff [180]. Stoney’s equation was corrected by Hofmann for the case of biaxial in-plane stress [181]. Alternative expressions derived in the past decades are numerous, as reported in Table 2, a critical assessment of which can be found in Refs. [178,182]. The use of the biaxial in-plane modulus provides relevant determination of in-plane stress in case of anisotropic substrates possessing third-order or higher z-axis symmetry such as single crystals [183]. The case of an anisotropic stress state, related to magnetostriction effects, is treated by van de Riet [184]. Further theoretical analyses of stress distributions were carried out by Townsend et al. for the general case of multilayer laminates [185].

5. Failure initiation and coating strength

The strength of brittle oxide materials depends on the behavior of microcracks under stress [186]. Fig. 12 shows crack initiation in PECVD SiO$_x$ coating on PET [254], and PECVD SiO$_x$ coatings on PA12 [188]. In both instances, crack initiation on microscopic defect sites is evident, as also described in Ref. [187]. A remarkable observation is that the spherulitic crystalline structure of the PA12 substrate does not affect crack initiation mechanisms. In thin films, microcracks comprise growth heterogeneities and surface flaws, related to the initial surface morphology of the polymer substrate. Indeed, the evolution of the size of sputtered TiO$_2$ fragments on PET under tension shown in Fig. 13, measured by BenAmor et al. [78], suggest that untreated PET provides the highest coating crack onset strain, and various cold plasma treatments decrease this value. An interesting study, where calibrated particles were purposely introduced at the coating/substrate interface, confirmed the detrimental effect of stress concentrations on coating strength [189].
Table 2
Theoretical expressions of the coating internal stress

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Coating internal stress σ_f^a</th>
<th>Eq.</th>
<th>Stress ratio $\sigma_f/\sigma_{Stoney}^b$</th>
<th>Remarks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoney, 1909</td>
<td>$\sigma_{Stoney} = -\frac{E_c h_c^3}{6R_h^2}$</td>
<td>(3)</td>
<td>1</td>
<td>Valid in the limit of infinitely thin coatings; no-in-plane deformation of the substrate</td>
<td>[167]</td>
</tr>
<tr>
<td>Timoshenko, 1925</td>
<td>$-\frac{E_c h_c^3}{6R_h^2} \left(\frac{1+2\mu(2+3\beta+2\beta^2)\sigma^2 + \mu^2}{1+\beta}\right)$</td>
<td>(4)</td>
<td>1.619</td>
<td>Case of thick coatings; no in-plane deformation of the substrate</td>
<td>[179,319]</td>
</tr>
<tr>
<td>Brenner and Senderoff, 1949</td>
<td>$-\frac{E_c h_c^3}{6R_h^2} \left(1 + \frac{h_c}{h_s} \left(4 \frac{E_c}{E_s} - 1\right)\right)$</td>
<td>(5)</td>
<td>1.612</td>
<td>Case of thick coatings; the original equation was derived for biaxial stress state, and the second and higher order terms in thickness ratio are omitted here.</td>
<td>[180,320]</td>
</tr>
<tr>
<td>Inoue, 1958</td>
<td>$-\frac{E_c h_c^3}{6R_h^2} \left(\frac{(1-\sigma^2)(1-\sigma+4\beta(1+\beta)+2\beta^2+4\beta^3)}{2(1+\beta)(1+\sigma^2)}\right)$</td>
<td>(6)</td>
<td>2.165</td>
<td>Case of thick coatings; accounts for in-plane substrate deformation</td>
<td>[321]</td>
</tr>
<tr>
<td>Gläng et al., 1965</td>
<td>$-\frac{E_c h_c^3}{6R_h^2}$</td>
<td>(7)</td>
<td>-</td>
<td>The original equation was derived for biaxial stress state; δ stands for substrate deflection over half of a wafer length</td>
<td>[322]</td>
</tr>
<tr>
<td>Roll, 1976</td>
<td>$-\frac{E_c h_c^3}{6R_h^2} \left(1 + \frac{h_c}{h_s} \left(4 \frac{E_c}{E_s} - 1\right)\right)$</td>
<td>(8)</td>
<td>1.617</td>
<td>Second and higher order terms in thickness ratio neglected; no in-plane deformation of the substrate; homogeneous through-thickness stress distribution</td>
<td>[323]</td>
</tr>
<tr>
<td>Atkinson, 1995</td>
<td>$-\frac{E_c h_c^3}{6R_h^2} \left(1 + \frac{h_c}{h_s} \left(1 + \alpha \beta \delta\right)\right)$</td>
<td>(9)</td>
<td>0.992</td>
<td>The initial equation was derived for biaxial stress state</td>
<td>[139,324]</td>
</tr>
<tr>
<td>Yanaka, 1998</td>
<td>$-\frac{E_c h_c^3}{6R_h^2} \left(\frac{1+4\alpha \beta \delta}{(1+\beta)(1+\alpha \beta)}\right)$</td>
<td>(10)</td>
<td>1.394</td>
<td>Based on 2D formula for thermal transformation of cross-ply laminates</td>
<td>[163]</td>
</tr>
</tbody>
</table>

Footnotes:

- a Uniaxial in-plane stress state (i.e. Poisson’s ratio effects are neglected). In case of biaxial in-plane stresses, the expression should be divided by $1-\nu_s$, where ν_s is the Poisson’s ratio of the polymer substrate.
- b The ratio was calculated with the following values: $h_c = 100 \text{ nm}; h_s = 12 \mu\text{m}; E_c = 75 \text{ GPa}; E_s = 4 \text{ GPa}.$
- c $\alpha = E_u/E_s$ (uniaxial stress) or $\alpha = E_u(1 - \nu_s)/E_s(1 - \nu_c)$ (biaxial stress), and $\beta = h_c/h_s$.
- d The authors have used an approximation of the original equation derived in [180].
- e Reference is made to Ref. [181].
It should be pointed out that an accurate measurement of the coating crack onset strain, within 0.1% error, is required to use the models described in the next sections. Due to elastic recovery of the substrate, any cracks present on samples strained to less than the substrate yield strain will close and will not be visible if the sample is unloaded. In-situ tests, where the material is maintained under stress, resolve this drawback [190].

Fig. 12. Micrographies of crack initiation sites. PECVD SiO$_2$ coating on PET (a) [254]. PECVD SiO$_2$ coating on PA12 (b) [188].
5.1. Linear elastic fracture mechanics approach for crack onset prediction

To start with, the classical energy-balance analysis of the extension of an isolated crack in a solid under stress by Griffith [191] provides a rough estimate of typical flaw size. In uniaxial tension, this analysis leads to the following failure criteria, which relates the strength, σ_{max}, to coating properties (Young’s modulus, E_c and surface energy, γ_c), and to half of the critical crack length, c:

$$\sigma_{\text{max}} = \left(\frac{2E_c\gamma_c}{\pi c}\right)^{1/2}$$

Assuming a strength σ_{max} of the coating of infinite size equal to 3 GPa, a modulus equal to 80 GPa, and a surface energy γ_c equal to 5 J/m2 leads to a critical flaw size, $2c$, of approximately 50 nm, that is, of comparable dimension of coating thickness. The various kinds of flaws are associated with stress concentrations, whose magnitude depends on the shape of the flaw, as initially studied by Inglis in the case of an elliptical hole in a plate [192]. The theoretical analysis of the corresponding plane stress field in the hole vicinity can be found in Ref. [193]. Real coatings contain a distribution of flaws, hence a distribution of strength, whose statistical nature will be treated in a further section.

Linear elastic fracture mechanics (LEFM) models have been successfully employed for crack onset and crack density prediction in laminated composites [194], and also extended to coating cracking analysis under uniaxial loading [195]. The energy balance equation for crack propagation implies that the strain energy released due to crack growth equals coating fracture toughness, G_c: $G_c h_c = \Delta A - \Delta W$, where ΔA and
ΔW are the work done by the applied load, and the strain energy released due to crack extension through the coating (all per unit width of the film). Since the random nature of fracture is not considered, fracture strain depends on geometrical parameters, that is coating and substrate thickness. A direct implication of the energetic approach is that, for elastic materials, the coating strain at failure scales with the inverse of the square root of its thickness [195–200], which is also the case for cross-ply laminate composites [194,201]. Expressions for crack onset strain are reproduced in Table 3.

The simplest analytical approach for stress redistribution calculation is the shear lag model. This approach was adopted by Laws and Dvorak [201] to solve the energy release rate equation, using a non-dimensional shear lag parameter, ξ, determined by fitting the experimental data. The corresponding crack onset expression was found to scale with the inverse of the square root of coating thickness [Eq. (12) in Table 3]. A further expression for strain energy release rate was derived by Nairn and Kim [195,200] by minimizing the complementary energy of the film, assuming that the axial stress in coating and substrate does not depend on the thickness coordinate [Eq. (13) in Table 3]. Both shear-lag and variation mechanics solutions can be applied to extrapolate crack onset strain vs. coating thickness, providing that the parameter ξ or the coating toughness G_c are fitted by testing one film with a given coating thickness. Another approach was proposed recently by Takeda and co-workers [163] to calculate the crack onset stress, with the assumption that the additional displacement in the substrate due to cracking varies linearly in the thickness direction [Eq. (14) in Table 3]. The corresponding crack onset strain is found inversely proportional to $h_c^{1/4}$.

The above derivations [Eqs. (12)–(14) in Table 3] are reproduced in Fig. 14 against experimental data obtained for SiO$_x$ coatings of thickness ranging from 30 to 160 nm, formed by reactive evaporation on PET substrate. Since a direct measurement of the coating fracture toughness G_c was not available, curve fit to experimental data was done with adjustable ξ [Eq. (12)] or adjustable G_c [Eqs. (13) and (14)] values. The measured decrease of crack onset strain with increasing coating thickness is reproduced with reasonable accuracy by the models, however with considerably different values of the fitting parameters. The first shear lag model [Eq. (12)] is hampered by the presence of the empirical parameter ξ. The apparent coating toughness G_c is found to be equal to 60 J/m2 in the case of the variational model [Eq. (13)], and to 76 J/m2 in the case of the shear lag model including the linear variation of the additional displacement in the substrate due to cracking [Eq. (14)]. Both values are very high, compared to the fracture toughness of bulk glass, of the order of 10 J/m2 [202], value which is obviously an upper bound for the defect containing oxide coating. This discrepancy is likely to arise from neglecting plastic effects in the substrate, at the interface vicinity.

5.2. Case of a plastic interface

For a ductile substrate, crack propagation can also involve small-scale yielding at the coating–substrate interface, and introduces a dissipative term in the energy balance: $G_c h_c + W_d = \Delta A - \Delta W$. The term W_d is the energy dissipated by deforming the plastic interface per unit width of the film, found to dominate the total work of
Table 3
Theoretical expression for crack onset strain vs. coating thickness, h_c. The parameters E_s, E_c, and E are the substrate, coating and film moduli, respectively, and h_s is the substrate thickness.

<table>
<thead>
<tr>
<th>Author</th>
<th>Crack onset strain ϵ_{onset}</th>
<th>Eq.</th>
<th>Scaling</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laws and Dvorak, 1989</td>
<td>$\sqrt{\frac{2G_c h_c E_c}{h_s (h_s + h_c) E_s}}$</td>
<td>(12)</td>
<td>$h_c^{-1/2}$</td>
<td>The factor ξ is a non-dimensional shear lag parameter determined by fitting the above equation to experimental data.</td>
<td>[201]</td>
</tr>
<tr>
<td>Nairn and Kim, 1992</td>
<td>$\sqrt{\frac{G_c}{h_s (h_s + h_c) E_s}} - \epsilon_{rc}^a$</td>
<td>(13)</td>
<td>$h_c^{-1/2}$</td>
<td>Minimization of the complementary energy of the film, assuming that the axial stress in coating and substrate does not depend on the thickness coordinate. C_3 is a geometrical parameter, and $Y(D)$ is a calibration function which depends on crack density.</td>
<td>[195,200]</td>
</tr>
<tr>
<td>Takeda and co-workers, 1998</td>
<td>$\sqrt{\frac{2G_c}{3E_s^{1/2} \sqrt{(1+\nu_c)h_c h_s/E_s}}} - \epsilon_{rc}^a$</td>
<td>(14)</td>
<td>$h_c^{-1/4}$</td>
<td>Assumes that the additional displacement in the substrate due to cracking varies linearly in the thickness direction.</td>
<td>[163]</td>
</tr>
<tr>
<td>Hu and Evans, 1989</td>
<td>$G_c = \left(\frac{E_{onset}}{E_c}\right) \left(\sigma_{onset} + \pi F(\Sigma)\right)$</td>
<td>(15)</td>
<td>$h_c^{-1/3}$</td>
<td>Assumes that interface yield is controlled by a constant shear stress τ, and where $F(\Sigma)$ is an elastic function.</td>
<td>[197]</td>
</tr>
<tr>
<td>Leterrier and Andersons, 2000</td>
<td>$\frac{1-\nu_i^2}{1-\nu_{ic}} \sqrt{\frac{3G_c \tau}{E_s h_c \left[1-\nu_i^2 + \frac{E_c}{E_s} \left(1 - \nu_i^2 \right) \right]}} - \epsilon_{rc}^a \frac{1+\nu_i(1)}{1-\nu_{ic}}$</td>
<td>(16)</td>
<td>$h_c^{-1/3}$</td>
<td>Explicit formulation, based on elementary laminated plate theory, and assuming that interface yield is controlled by a constant shear stress τ.</td>
<td>[165]</td>
</tr>
</tbody>
</table>

$^a \epsilon_{rc}$ represents the coating internal strain.
fragmentation [203]. Hu and Evans solved the problem, assuming that interface yield is controlled by a constant shear stress \(\tau \) [197], through the use of an elastic function \(F(\Sigma) \) [Eq. (15) in Table 3]. The crack onset strain is subsequently derived as function of material parameters \(G_c \) and \(\tau \), from the crack onset stress, \(\sigma_{\text{onset}} = E_c (\varepsilon_{\text{onset}} + \varepsilon_c) \), following intricate resolution, as the real root of Eq. 15. Curve fitting the data in Fig. 14 using the solution of Eq. 15 with adjustable \(G_c \) and \(\tau \) values was carried out, assuming that \(F(\Sigma) = 0.8 \) [197], and the result of the procedure is shown in Fig. 15. For any selected value of \(G_c \), there exists one optimal value of \(\tau \) which fits best the measured crack onset strain values, and vice-versa. Interestingly, as depicted in the Fig. 15, if the strength \(\tau \) of the perfectly plastic interface is taken equal to 50 MPa, a typical value for the von Mises yield shear stress of biaxially stretched PET substrates, as derived from tensile measurements [204–206], then the best \(G_c \) value if found to be equal to approx. 7 J/m\(^2\). In spite of the need of numerical calculation of the function \(F(\Sigma) \), it is worthwhile to point out that such fracture toughness value appears to be a very reasonable estimate for silicon oxide, compared to the fracture toughness of bulk silica, of the order of 10 J/m\(^2\) as mentioned above. In addition, as also shown in Fig. 15, it is evident that neglecting residual strains leads to important overestimation of coating toughness.
Furthering this approach, and to overcome the need of numerical tools, Leterrier et al. derived an explicit solution of the energy balance, based on elementary laminated plate theory [Eq. (16) in Table 3] [165]. The solution is reproduced in Fig. 14, using an interfacial shear strength C_28 equal to 50 MPa. As shown in Fig. 15, the corresponding coating fracture toughness is found to be equal to approx. 3 J/m2. This value corresponds to a Griffith flaw size equal to approximately 300 nm.

5.3. Defect-tolerant high-barrier thin films

The reduction of the size of the critical Griffith flaws was at the base of the considerable development in sizing agents, systematically applied to brittle glass filaments such as the ones used as reinforcements in composite materials. These molecules form aggregates of typical dimensions of the order of 150 nm, that penetrate into the nanoscopic cracks, thus increasing the radius of the defect tip [207], as schematically depicted in Fig. 16. Similar phenomena could explain the superior...
performance of polymer/oxide/polymer multilayer systems [208,209], and hybrid polymers with inorganic and organic structural units. These materials comprise organically modified oxides [210], plasma-polymerized HMDSO coatings [211,212], so-called organically modified ceramics (ORMOCER [213]) and organically modified silicates (ORMOSIL [214]). One could also mention the hydrogenated amorphous carbon coatings [215–217], such as those developed by Moser et al. that combine ductility and efficient barrier properties [218–220]. An alternative to develop new types of defect-tolerant high-barrier thin films could be based on theoretical analyses of mechanical contacts, that lead to optimal coatings with gradient in mechanical properties [221]. Such gradient, represented in Fig. 17, could be achieved for instance through a control of the oxygen partial pressure during PECVD deposition from an organosilane precursor vapor, to eventually generate a gradient in carbon composition in the oxide. Further research is obviously required to explore this concept.

Fig. 16. Schematics of the effect of sizing on surface flaws (after Ref. [207]).

Fig. 17. “Optimal” coating structure with gradient in Young’s modulus in case of a polymer substrate, and under mixed (normal and shear) load conditions. Reproduced from Ref. [221] with permission.
6. Adhesion

Besides coating internal stress state and cohesive strength, the interfacial adhesion of the coating/substrate assembly is a key feature. It is controlled, on the one hand, by the type of interactions present at the interface between the oxide and the polymer and, on the other hand, by the level of process-induced internal stresses. The high density of covalent bonds formed during vacuum deposition between oxides and polymer, such as Si–C and Si–O–C reported in Section 2, are expected to lead to very high adhesion levels. The following summarizes the benefits and limitations of the methods used to determine the adhesion between thin oxide films and ductile polymer substrates, with special attention paid to the so-called fragmentation test. The influence of internal stresses on interfacial adhesion is subsequently addressed.

6.1. Adhesion measurements of thin oxide films on polymer substrates

There exist a large variety of methods developed to measure the adhesion between thin films and polymer substrates. The reader is referred to the abundant information on this subject compiled by Mittal and other researchers in the past decades [222–226]. A recent review (in French) of methods to determine the mechanical properties and adhesion of thin films was made by Ignat and co-workers [227]. An important aspect of adhesion testing is the determination of the locus of failure, i.e., whether adhesive failure is the dominant failure mechanism, or cohesive failure of one of the phases has also taken place. Chemical methods to address this issue are discussed by Baun [228], such as the time-of-flight secondary ion mass spectroscopy (ToF-SIMS, used in Ref. [229] in case of SiOx coatings on plasma-treated PET substrates). Three main adhesion test methods are used in the case of thin oxide barrier films on polymer substrates, namely the peel test, the indentation and related scratch techniques, and the tensile or fragmentation test.

In the peel test, the thin coating is peeled from the substrate of well-defined width, at a specified angle, usually 90° or 180°, using a backing material such as ethylene acrylic acid (EAA). This technique, or derivatives, have been largely used to test the adhesion of thin metal films on polymers [57, 60, 113, 230–234] and oxides on polymers [7, 78]. In the case of metal oxide thin films on PET and PVC, Bichler et al. concluded that the peel strength often exceeds the measurement limit, and the thin films cannot be peeled off due to high adhesion levels [53, 71, 72]. Another limitation of the peel test is the introduction of third body, the adhesive backing, in the system, which seriously complicates the determination of absolute value of coating adhesion.

In the scratch test, developed by Weaver and co-workers (e.g. Ref. [235]), a stylus is drawn across the coating under increasing vertical load [32, 236–239]. The critical load at coating failure is often taken as a semi-quantitative measure of adhesion [5, 67–69, 240]. A related technique, the nanoindentation, was developed for the specific purpose of thin films characterization [241]. Novel developments of the scratch test based on scanning force microscope techniques have been reported [242]. The models developed to analyze the critical normal force (see review of Bull, Rickerby, et al. [32, 239]) do not seem appropriate in the case of soft and ductile polymer substrates. Indeed,
the main drawback of the scratch test is, again, the introduction of a third body, the stylus, in the system, which yields a complex triaxial stress field in the polymer substrate, resulting from the ploughing effort of the indenter. If the test is unable to provide an absolute value of coating adhesion [243], it is nevertheless very useful for comparative purposes and coating optimization. Progress in numerical analyses of the stress field and in standardization methods should improve further the usefulness of the scratch test [244,245].

The fragmentation test proved its relevance in the case of a variety of thin brittle films on ductile metal [197,199,246–250] and polymer substrates [10,137,251–255], particularly PET [78,105,125,163,164,187,256–266]. In this technique, the evolution of crack patterns in the brittle coating is monitored as a function of the tensile load applied to the substrate. In-situ optical [190] or scanning electron microscopy [254,267,268] are usually employed for the detection of cracks. An acoustic emission technique was also reported, but was limited to films of thickness larger than 500 nm [269]. In the fragmentation test, the adhesion, usually represented by the interfacial shear strength (IFSS), is related to the density of coating cracks, measured in the saturation stage of the fragmentation process, i.e., when no more cracks are formed as the strain is increased. A variant of the test, applied to prenotched coatings, was proposed by Dillard et al. [270]. The fragmentation test was used to determine the effects of changes in surface energy of the substrate (e.g. Fig. 13) [78,105,114], of coating thickness [163,164,259], and of temperature [125,263] on coating adhesion. The fragmentation test usually operates in uniaxial tension; the application of equibiaxial tension was further investigated to provide additional information regarding coating failure mechanisms [165,271,272].

Correlations were reported between the IFSS values determined from fragmentation and scratch tests [243], and, more specifically between the crack density at fragmentation saturation, and the critical normal force measured during scratching, as shown in Fig. 18 [229]. This is a solid indication that both techniques detect an intrinsic property of the coating/substrate assembly, usually considered to be either the interfacial toughness, or the interfacial shear strength (IFSS), that will be detailed in the next Section.

Other tests include acoustic microscopy, particularly suited for defect detection [93,94], pull-off methods [273,274], laser spallation [275], and blister tests [276–278], the latter three being hardly applicable in case of thin, flexible polymer substrates.

6.2. The three stages of coating fragmentation

The phenomenology of coating fragmentation comprises three main stages [137], shown in Fig. 19. In the first stage, termed random cracking, crack interaction is negligible, therefore the rate of crack generation is governed solely by the coating strength distribution and the crack location is determined by the defect distribution in the coating (Fig. 19A). The stress state in a coating fragment is equal to the equivalent far field stress, except along some critical distance from the edges, where stress relaxes to zero. The second fragmentation stage, mid-point cracking, corresponds to crack spacing becoming small with respect to twice the critical length...
Fig. 19B. As a result, the maximum stress in a fragment cannot reach the unperturbed far-field level, which leads to a marked reduction of the fragmentation rate. The first two stages are in fact intimately correlated, as was demonstrated by Handge et al. [279]. Transverse buckling failure of coating fragments is often observed during this second stage, due to lateral contraction of the substrate resulting from Poisson’s ratio effects [83,280–282] (Fig. 19B). The third and final stage begins with the delamination of the coating, and the fragmentation rate virtually stops (Fig. 19C). The same three stages occur in case of equibiaxial loading, with, however, important differences with respect to the uniaxial case. Whereas transverse buckling is absent in the 2D geometry, dynamic fracture processes were reported, that lead to a considerable broadening of the fragment size distribution [272]. This phenomena is illustrated in Fig. 20, with crack patterns in thin SiO$_x$ coatings on PP and PET substrates under equibiaxial tension. The unique features of the 2D fragmentation, particularly the broad distribution of fragment areas compared to the 1D case, relate to the presence of high stresses in the stress recovery zone, as briefly explained in the figure. A detailed insight into this topic is beyond the scope of the present work, and the reader is referred to previous studies on relevant phenomena, observed in various materials at a broad range of length scales [283,284].

6.3. Analysis of the fragmentation test

Models and simulations of fiber or coating cracking during straining have been reported in several studies, most of which consider the evolution of crack spacing as a function of applied strain. In their earlier work, Grosskreutz and McNeil [285] introduced a stress relaxation mechanism at the coating/substrate interface, in which
the stress decay was inversely proportional to the radial distance from the crack [193]. The authors, neglecting the important effect of coating thickness, derived the relation
\[
\ln\left(\frac{\varepsilon}{\varepsilon_0}\right) = \frac{4g}{d} \left(1 - \frac{d}{d_0}\right)
\]
where \(g\) is a constant which reflects the form of the interfacial shear stress, \(\varepsilon_0\) is the crack onset strain, \(\varepsilon\) is the actual strain, \(d_0\) is the crack spacing at strain \(\varepsilon_0\), and \(d\) is the crack spacing at strain \(\varepsilon\). The relevant literature is summarized in the study of Wojciechowski and Mendolia [252,253], who propose an explicit dependence of crack density on coating thickness, however based on the strong assumption of constant substrate modulus. A further semi-empirical development,
Fig. 20. Fragmentation patterns of a 100 nm thick evaporated SiO$_x$ coating on PP under 1.6% equibiaxial strain (a), and 53 nm thick evaporated SiO$_x$ coating on PET under 4.5% equibiaxial strain (b), and schematics of the stress field in the vicinity of an existing crack, under uniaxial loading (c) and equibiaxial loading (d).
based on Weibull statistics, was developed by Mezin et al. and reported by Ignat and co-workers [250,286] in the form of a stretched exponential function of the strain. These various analytical treatments are compared in Fig. 21 with experimental data of the fragmentation of a 100 nm thick SiO$_x$ coating on PET. More sophisticated simulations of the fragmentation process based on statistical treatments of the rupture process were carried out, following stress [287–291] or fracture mechanics [195,292] approaches.

The pure geometry of the fragmentation test, together with the absence of third body interactions, allows for a good control of the stress state in the material during its elongation, similar to the classic single fiber fragmentation test originally described by Fraser et al. [293]. The single fiber composite test has become one of the key methods to study failure mechanisms in fiber-reinforced composites, and most of the theoretical treatments of the fragmentation test can be found in the corresponding literature (e.g. refs. [294–296]). In both coating/substrate and fiber/matrix geometry, modeling the load transfer at the interface is a typical shear-lag analysis [297]. The two central features in this analysis are, on the one hand, the critical stress transfer length [298], also related to so-called ineffective length [293], recovery length [299], shielded or exclusion zone [291], and, on the other hand, the statistical nature of the coating or fiber failure [300], for which Weibull statistics was found appropriate [301].
The classical stress transfer approach of Kelly and Tyson [298] assumes a perfectly plastic behavior of the coating/substrate interface, i.e., a constant IFSS. In spite of its simplicity, the assumption of a constant IFSS in the exclusion zone is very robust [295]. This results from the fact that the stress in the brittle coating is much larger than the typical IFSS values, so that the size of the exclusion zone is proportional to the coating stress. In that sense, calculated IFSS value from fragmentation data reflects some effective shear property of the interfacial region. For ductile polymer substrates, a constant IFSS assumption is often preferable to alternative elastic models due to the plastic flow of the polymer in the strain range of coating fragmentation. Based on this approach, the resolution of the mechanical equilibrium of an infinitesimal coating element adhering onto a substrate under uniaxial tension leads to the following stress transfer equation [197]:

\[\tau = 2h_c \sigma_{\text{max}}(l_c)/l_c \]

(17)

where \(h_c \) is the coating thickness, \(\sigma_{\text{max}} \) its size-dependent tensile strength, characteristic of its defect-controlled cohesion, and \(l_c \) is the critical stress transfer length defined as the minimum coating length in which the maximum allowable coating stress (\(\sigma_{\text{max}} \)) is achieved. The length \(l_c \) is not a measurable quantity, and was related using a stochastic failure approach to the average fragment length at saturation, \(\bar{l}_{\text{sat}} \), that is, the average length when an increase in strain does not lead to further fragmentation of the coating: \(\bar{l}_{\text{sat}} = 0.67 \ l_c \) [257]. Important to point out that, since internal stresses are not explicitly accounted for, the IFSS defined in Eq. (17) represents an apparent, or effective, strength, that is, a value of practical adhesion, and not an intrinsic property of the coating/substrate system. The same goes for the coating tensile strength \(\sigma_{\text{max}} \).

6.4. Weibull analysis of coating tensile strength

The tensile strength \(\sigma_{\text{max}} \) of brittle materials is defect controlled and exhibits size-dependent effects, which can be accounted for by the Weibull weakest-link model [301,302]. In case only one population of defects (e.g., volume defects) control the strength of the material, the Weibull model is written as a two-parameter equation:

\[\sigma_{\text{max}}(l) = \sigma_0 (l/l_0)^{-1/m} \Gamma(1 + 1/m) \]

(18)

where \(l_0 \) is a normalization factor, chosen equal to 1 \(\mu \text{m} \), \(\Gamma \) is the gamma function, and \(\sigma_0 \) and \(m \) are the Weibull scale and shape factors, respectively. For thin coatings, these two factors are usually derived from a linear approximation of the initial part of the fragmentation diagram, where the average fragment size is reported as a function of applied strain, in logarithmic coordinates [125]. Weakest link models used to describe the strength of brittle materials easily account for the internal stress \(\sigma_i \) as an additional model parameter. Nonetheless, this approach is hardly applicable to nanosized coatings, for which too few experimental data are available in practice in the strain range of interest, to derive the internal stress with reasonable accuracy.
As a consequence, in the presence of internal stresses, the value of σ_{max} derived from the two-parameter Weibull model [Eq. (18)] represents an apparent strength.

6.5. Role of internal stresses on interfacial shear strength and coating tensile strength

Internal stresses were reported to change to a considerable extent the hardness, coefficient of friction, and practical adhesion of ITO coatings on glass [303], as also the IFSS of SiO$_x$ coatings on PET [169]. The relaxation of internal stresses upon coating delamination further contributes to the energy release rate [138], thus it is essential to include these in the analysis of the fragmentation test. The axial stress resulting from tensile loading of the substrate add to the initial axial internal stress in the oxide layer. Upon fragmentation, the average coating stress relaxes, as the average stress in the fragments decreases when their size decreases. Since at fragmentation saturation $l_{\text{sat}} = 0.67 \ l_c$, and with the assumption of constant shear stress, one eventually obtains a linear dependence between the apparent IFSS τ, (sum of an intrinsic term, τ^*, and an internal stress term, τ_i) and coating internal stress, σ_i [169]:

![Graph showing the comparison between the apparent SiO$_x$/PET interfacial shear strength and the theoretical prediction versus coating internal compressive stress.](image-url)
\[\tau = \tau^* + \tau_i = 2 \frac{h_c}{l_c} \left(\sigma_{\text{max}}^*(l_c) - 0.67 \sigma_i \right) / l_c \]

where the term \(\sigma_{\text{max}}^*(l_c) \) represents the intrinsic tensile strength of the coating at critical length, which can be determined from the values of apparent strength \(\sigma_{\text{max}}(l_c) \) and of internal stress \(\sigma_i \): \(\sigma_{\text{max}}^*(l_c) = \sigma_{\text{max}}(l_c) + 0.67 \sigma_i \). Any change in internal stress level, \(\Delta \sigma_i \), will result in a proportional change in apparent IFSS, \(\Delta \tau = -(1.34 \frac{h_c}{l_c}) \cdot \Delta \sigma_i \), as shown in Fig. 22 for SiO\(_x\) coatings formed by reactive PVD on PET [169]. The extrapolation of the data to zero internal stress gives a value of intrinsic IFSS equal to 73 MPa. This very high value is intermediate between the Von Mises yield stress in shear of the PET substrate, equal to 55 MPa [204], and its shear strength, equal to approximately 150 MPa, which thus demonstrates the strain hardening ability of the interfacial region [125,259]. It also reflects the high density of covalent bonds mentioned in Section 2. IFSS values comparable to the bulk shear strength of the polymer substrate were also found for PECVD coatings on low density polyethylene [254] and polyamide 12 [29]. Clearly, there is no need to improve interfacial adhesion of oxide thin films on polymer substrates, because then, cohesive failure of the underlying polymer substrate will take place [114].

Fig. 23. Effect of coating thickness on oxygen transmission rate (OTR [24,164,304], open squares; the dotted line is a fit to the data) and crack onset strain (filled dots, experimental [164,259]; line, theoretical derivation [165]), for PVD SiO\(_x\) coatings on 12 \(\mu \)m PET.
6.6. Optimal coating thickness

Fig. 23 represents the coating thickness dependence of the oxygen transmission rate (OTR) and crack onset strain and IFSS, in the case of evaporated SiO$_x$/PET films. The OTR drops from 120 cc/day/m2 for uncoated, 12 µm thick PET, to an optimal value equal to 2±1 cc/day/m2 when the coating thickness is increased in the range from approximately 50 to 100 nm, after which it starts to gradually increase [24,164,304]. By contrast, the coating crack onset strain, related to its cohesive strength, continuously decreases with increasing coating thickness, at least up to 300 nm [164,259]. In the same range, the IFSS is approximately constant, and therefore is not a limiting factor [259]. Thus, the optimal coating thickness is the minimum thickness, which provides the lower OTR. For this type of oxide, the optimal coating thickness is of the order of 50 nm.

7. Conclusions

The cohesion and adhesion of metal oxide thin films on polymer substrates used as gas-barrier systems have been reviewed, with attention paid to deposition-induced defects and internal stresses. Experimental and theoretical analyses of these factors lead to three main conclusions.

- Vapor deposition processes of oxides on polymers lead to the formation of an interfacial region of thickness in the nanometer range, characterized by a high density of Metal–O–C and Metal–C bonds, and an organosilicon phase with Si–CH$_x$ bonds in case of PECVD. This region, and the underlying ductile polymer substrate, exhibits strain hardening ability, and results in very high levels of interfacial shear strength, intermediate between the shear yield stress and the shear strength of the bulk polymer substrate. Therefore, there is no need to improve interfacial adhesion of oxide thin films on polymer substrates.

- The oxide coating contains nanoscopic defects and microscopic flaws. The former are characteristic of the frozen-in structure of the oxide, and control both the permeability of oxygen and the cohesion of the oxide material. The latter comprise pin-holes and roughness-induced defects, resulting from the presence of additives in the superficial layers of the substrate. These microscopic flaws do not severely affect the barrier performance of the coating. However, they act as crack initiation sites, and thus significantly affect the mechanical resistance of the coating. New types of defect-tolerant high-barrier thin films, based on organic-inorganic hybrids, or on a gradient in carbon composition, or using sizing agents similar to those used to improve the strength of glass filaments, are promising developments.

- Compressive internal stresses are generated in the coating during deposition. These are beneficial (i) to the barrier performance of the coated polymer, (ii) to the coating tensile strength and, (iii) to the coating/substrate adhesion.
Novel approaches to control the internal stress level, such as that based on the application of a tensile load on the substrate during coating deposition, should be emphasized in future studies.

Accounting for these various factors enables to define an optimal coating thickness, which combines low oxygen permeation and high cohesion, without sacrificing the quality of interfacial adhesion.

Acknowledgements

The author acknowledges the Swiss National Science Foundation (projects #2100-037427.93 and #20-55579.98) and the Swiss Priority Program for Materials Research (project #3.2B) for financial support. Tetra Pak R&D, Plasma Technology is gratefully acknowledged for financial support and active collaboration, which includes fruitful discussions with Dr. P. Fayet. He wishes to thank Dr. J. Andersons of the Institute of Polymer Mechanics, Latvian Academy of Sciences, and Prof. A. Blumen and his group of the Theoretical Polymer Physics Laboratory, University of Freiburg, for enthusiastic research interactions.

References

of the surface of poly(styrene), poly(bisphenol-A-carbonate) and poly(ethylene terephthalate) as observed by soft X-ray absorption spectroscopy (NEXAFS). Polymer 1998;39:3001.

[192] Inglis CE. Stresses in a plate due to the presence of cracks and sharp corners. Trans Inst Naval Arch 1913;55:219.

