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Abstract

We present an exact solution to a model for two species interacting according

to a non-linear Kolmogorov-type equation with a structure similar to t hat

of prey-predator models. We obtain simple analytical expressions for i ) the

parametric equations of the cycles, ii ) the cycles in the phase space, iii )

the Hamiltonian and the corresponding integrating factor, showing that the

dynamics is globally conservative. We then propose a general method for

constructing similar classes of evolutionary models. As a particular example

we derive the evolutionary equation describing the time dependent behavior of

a two-players, two-strategies asymmetric game.

Keywords: Population dynamics; Exact solution of Kolmogorov equation;

Canonical-dissipative system; Evolutionary games.

AMS 2000 Subject Classi�cation: Primary 82C23

Secondary 37N25;91A05

1. Introduction and main result

Two-species predator-prey systems with population size dependent per capita growth

rates are generically described by a system of ordinary di�erential equations ofthe

Kolmogorov type:

_u(t) :=
d
dt

u(t) = u(t)f
�
u(t); v(t)

�
(1)

_v(t) :=
d
dt

v(t) = v(t)g
�
u(t); v(t)

�
; (2)
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subject to the predator-prey constraint (see e.g., [2] Chapt. 5.8)

f v (u; v) > 0 and gu (u; v) < 0 (3)

where u(t) > 0 and v(t) > 0, at time t � 0, stand for the population sizes (or

concentrations) of the predators and prey respectively. The Lotka-Volterra (L-V) model

which is the most famous illustration of this class is obtained when:

f (u; v) = � k1 + v and g(u; v) = k2 � u (4)

with k1 > 0 and k2 > 0 being two real constants denoting respectively the birth and

death rates of the predators and the prey. Even for an elementary evolution such as

the one given by the L-V model, the explicit time dependent forms of the trajectories

u(t) and v(t) for the system (1-2) are very hard to express analytically. It is the aim of

the present note to discuss a simple, though intrinsically non-linear Kolmogorov-type

model subject to the constraints of eq. (3), for whichu(t) and v(t) can be expressed

in terms of elementary (trigonometric) functions. To the best of our knowledge, this

is so far the only nonlinear Kolmogorov type of equations with a structure similar to

that of prey-predator models, for which the trajectories are explicitly available. We

can summarize our main result in the following

Proposition 1. For (u0; v0) 2 
 := ( 1
2 � 1

2
p

2
; 1

2 + 1
2

p
2
) � (0; 1), the system:

_u(t) = u(t)
�
1 � u(t)

��
2v(t) � 1

�
; (5)

_v(t) = v(t)
�
1 � v(t)

��
1 � 2u(t)

� �
2 +

1
p

v(t) (1 � v(t))

�
(6)

admits the solution:

u(t) =
1
2

�
A sin

�
tp

1+ A 2 + �
�

2
p

1 + A2
; (7)

v(t) =
1
2

�
A cos

�
tp

1+ A 2 + �
�

1 + A2 cos
�

tp
1+ A 2 + �

� 2 ; (8)

whereA 2 (0; 1) and � 2 (0; 2� ) are determined by the initial conditions u(0) = u0 and

v(0) = v0. Moreover the function H de�ned by

H (u; v) =
1 � 2

p
v(1 � v)

2u(1 � u)(1 � 2v)2 ; (9)



An exact solution to a Kolmogorov type model for two interacting populations. 3

is constant and equals1 + A2 along the orbits
�
u(t); v(t)

�
(i.e. H is a constant of

motion).

The per capita growth rates _u=u = f (u; v) and _v=v = g(u; v) of the proposed system

satisfy the conditions of eq. (3) which enables us { according to the classi�cation

in [2] { to interpret (5-6) formally as a predator-prey model. The time dependent

solutions eqs.(7) and (8) and the resulting cycles in theu � v phase plane are sketched

respectively in Fig. 1 and Fig. 2 for several initial conditions.

Figure 1: Sketch of the solutions u(t) and v(t) of the system eqs. (5-6) with � = 0 and

A = 0 :99; 0:5 and 0:1.

Figure 2: Left: Sketch of the Hamiltonian surface H (u; v) = A for 0 < A < 1. Right: Phase

portrait of the eqs. (5-6) with di�erent orbits de�ned by A = 0 :1; 0:2; 0:4; 0:6; 0:8 and 0:9.

They periodically rotate around the rest point ( 1
2 ; 1

2 ) in a clockwise rotation.

2. Construction of the model

The proposition is proved by straightforward computation. More instr uctive is the

construction of the model. We start with the equation for the non-linear harmonic
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oscillator introduced in [5]:

_x = y; (10)

_y = � (1 � y2)
x

1 + x2 : (11)

The above system admits the explicit solution

x(t) = A sin(! (A)t + � ) (12)

with ! (A) = 1p
1+ A 2 the initial frequency, and with � the initial phase. Introducing the

transformation _x = y = tanh( z) which con�nes _x to the interval [ � 1; 1] and writing

V 0(x) =
d

dx
V(x) :=

x
1 + x2 ; with V (x) =

1
2

ln(1 + x2); (13)

H(x; z) := ln
�

cosh(z)
�

+ V (x); (14)

eqs. (10-11) transform to the Hamiltonian system

_x = tanh( z) =
@H(x; z)

@z
; (15)

_z = � V 0(x) = �
@H(x; z)

@x
: (16)

The crucial observation is now that besides _x, the variable _z is also con�ned to a

bounded interval. We have _z 2 [inf x V 0(x); supx V 0(x)] = [ � 1
2 ; 1

2 ]. This allows us

to interpret the evolutionary equations for these bounded quantities in population

dynamical terms. Taking derivatives in the above system, we �nd the evolutionary

equations for _x and _z:

•x = (1 � _x2) _z (17)

•z = � _xV 00� V 0� 1(� _z)
�

= �
1
2

_x(1 � 4 _z2)
�
1 +

1
p

1 � 4 _z2

�
: (18)

Shifting the orbits t 7! ( _x(t); _z(t)) into 
 by introducing the new variables

u =
_x + 1

2
; and v = _z +

1
2

; (19)

we �nd that these variables reduce the eqs. (17) and (18) to the predator-prey system

(5-6).
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Remarks. a) In order to �nd the constant of motion H , it is necessary to eliminate the

time variable t in the eqs. (7) and (8). This elimination requires the resolution of the

fourth order equation in A

h�
1 + A2��

2 � 4v
�
u(1 � u)

i 2
+ (

�
1 + A2�

(1 � 2u)2 � A2 = 0 ; (20)

which can easily be solved forA, thanks to the biquadratic character of eq. (20).

b) Using the constant of motion H expressed in eq. (9), the system (5-6) can be

rewritten as

_u(t) = � (u; v)
@H(u; v)

@v
=: F (u; v) (21)

_v(t) = � � (u; v)
@H(u; v)

@u
=: G(u; v) (22)

where the strictly positive function

� (u; v) =
2
�
(1 � 2v)2u(1 � u)

� 2p
v(1 � v)

(1 � 2
p

v(1 � v))2
; (23)

governs velocity change for the trajectories. The function � plays the role of an

integrating factor and satis�es

@
@u

� F (u; v)
� (u; v)

�
+

@
@v

� G(u; v)
� (u; v)

�
= 0 ; (24)

where F (u; v) and G(u; v) are de�ned in eqs. (21) and (22). The orbits of the system

(21-22) therefore coincide with the integration curves of the Hamiltonian system

_x(t) =
@H(x; y)

@y
; (25)

_y(t) = �
@H(x; y)

@x
: (26)

c) Applying the canonical-dissipative extension of Hamiltonian systems to the eqs.

(25) and (26) we can generate limit cycles for our initially conservative system (see

e.g., [1, 4, 6]). Here the term \dissipative" is to be understood in the wide sense (i.e.

with alternating positive and negative nonconservative contributions cancelling over a

complete cycle) and \canonical" means that the dissipative and the conservative parts

of the dynamics are determined by the invariant of motion H . The simplest form for

the H -dependent dissipation around a �xed levelE is a linear choiceH � E . Coupling
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the sign of the dissipation with the dynamics by multiplying with _v and adding the

dissipation to _u, we end up with the most simple canonical-dissipative extension of the

system (5-6):

_x(t) =
@H(x; y)

@y
+ ( H (u; v) � E )

@H(x; y)
@x

;

_y(t) = �
@H(x; y)

@x
: (27)

The resulting limit cycle for E = 1 :16 is sketched in �gure 3.

Figure 3: Sketch of two orbits in the x � y phase-plane de�ned by eqs. (25) and (26).

The convergence of the orbits to the limit-cycle is obtained by a sim ple canonical-dissipative

extension of the Hamiltonian dynamics eqs. (25) and (26).

d) A generalization to other population dynamics systems with bounded state variables

is possible for a large class of potentialsV . The conditions on V are given in eq. (18)

and include { besides the uniform boundedness ofV 0 { the existence of both the inverse

of V 0 and the second derivativeV 00. Taking for example

V (x) = ln
�

cosh(x)
�
; (28)

these two conditions are satis�ed byV 0� 1(x) = arc tanh( x) and V 00
�
V 0� 1(� _z)

�
= 1 � _z2:

The eqs. (17) and (18) transform into

•x = (1 � _x2) _z (29)

•z = � (1 � _z2) _x (30)

which, when shifted into [0; 1]2 by the transformation

u =
_x + 1

2
and v =

_z + 1
2

; (31)
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reduce to the evolutionary equations

_u(t) = u(t) (1 � u(t)) (2v(t) � 1) ; (32)

_v(t) = v(t) (1 � v(t)) (1 � 2u(t)) : (33)

It is worthwhile noting that this type of evolutionary equations is well kno wn in

asymmetric games where two players use their strategies over and over again in order

to maximize their payo�s, and where t 7!
�
u(t); v(t)

�
describes the evolution of the

frequencies of the two possible strategies used by the two players (see e.g., [3]Chapt.

10.4).
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