

Low Temperature Co-fired Ceramic (LTCC) Structures for Sensor and Fluidic Applications

H. Birol, T. Maeder, C. Jacq & P. Ryser

Ecole Polytechnique Federale de Lausanne

Laboratoire de Production Microtechnique Thick-Film Group

lpmwww.epfl.ch

 To point the significance of LTCC technology for microfluidic sensor applications

 To propose an effective method for 3-D structuration of LTCC

 To demonstrate the fabricated structures using the suggested method

Situation → Use of LTCC technology has widespreaded to fields other than high frequency domain

Issue → The technology can be used effectively for realization of microfluidic devices

Question -> What are the challanges and how to take them?

APPLICATION EXAMPLES

Key component in new Nokia mobile phone architecture integrates diplexer, switching, LC and SAW filters Analysis of LTCC integrates passives and SAW filter packages

3-D Structuration LTCC Technology **Fabricated** of LTCC **Structures** for **Sensor Applications** → Structures obtained

→ Methods → Introduction

→Comparison with other → Sacrificial layer →Advantages methods

→Application of → Challanges → Next steps and Conclusions sacrificial layer

Based on LTCC tapes of various thicknesses which

sinter below 900°C

- are glass ceramics with excellent dielectric properties
- are screen-printed and co/post-fired with thick-film electronic passive components

	COMPONENTS			
Components	SUBSTRATE Tape	PASSIVES		
		Conductor	Resistor	
Function	Dielectric layer	Thick-film paste	Thick-film paste	
Functional group	Dielectric powder	Precious metal, fine size powder	Conductive oxide, fine size powder	
Glass	∠Lowers T _{firing} , ∠increases dielectric strength and density	∠Lowers T _{firing} , ∠increases adhesion to substrate and density	∠Lowers T _{firing} , ∠increases density ∠surrounds conductive powder	
Organics	Binder, solvent, dispersant for appropriate rheology			

Ease of machinability of tapes

Cost effective

High density packaging

Hermeticity of the structures

Mechanical and electrical functions in one system

CHALLANGES

1. Physical Issues

- → differential shrinkage
- → degassing
- → lamination

Birol et. al.

2. Chemical Issues

- → Interaction of components
- → Oxidizing /reducing conditions

Birol et. al.

METHODS FOR 3-D STRUCTURATION OF LTCC

1. Passive Methods

Structuring by addition / removal of LTCC layer

2. Active Methods

Use of sacrificial layer such as carbon-black paste or glass frit

desired effects can be compensated by modification of firing profile and / or atmosphere, etc.

SELECTION OF SACRIFICIAL LAYER

Graphite powder selected since

 \rightarrow burned in oxidizing atmosphere above ca. 600°C, which starts before onset of sintering temperature of LTCC as: C+1/2O₂ \rightarrow CO₂

- →not reactive with LTCC
- → applicable as thick-film

PREPARATION and APPLICATION OF SACRIFICIAL LAYER

Same procedure as in thick-film pastes followed

Product	Function	Specification	Supplier
Graphite	Functional element	1-2μ particle size	Aldrich, 28,286-3
Ethyl cellulose	Binder	control of rheology	Aldrich, 43,383-7
Terpineol	Solvent	slurry viscosity	Fluka, 86480
Acetyl acetone	Dispersant	dispersing additive	Sigma-Aldrich, P775-4

(28:72 ratio of functional elements to organics used)

OUTLINE OF THIS PRESENTATION

3-D Structuration LTCC Technology **Fabricated** of LTCC **Structures** for **Sensor Applications** →Structures obtained → Methods → Introduction → Comparison with other → Sacrificial layer →Advantages methods →Application of → Challanges → Next steps and Conclusions sacrificial layer

3-D STRUCTURES FABRICATED

7 mm membrane, 40 µm thick, 15 µm spacing

COMPARED TO INNER LAYER METHOD

Structuration by inner layer modification

Structuration by sacrificial layer

Complete and homogenous structure

THERMAL SENSORS FABRICATED USING LTCC

Screen printing and post-firing of sensing elements

Completion of the basic sensor

outlet

inlet

 Developing the paste properties for a better control on screen-printing quality

- Improving the lamination technique
- Application of non-destrcutive testing methods e.g.
 ultrasonic microscope, for examing the entire structure
- Measurements with the prototypes

Carbon-black paste is an excellent material as a sacrificial layer

It is easy to produce, inexpensive and effective

LTCC tapes of different thicknesses coupled with the paste increase structuring possibilities

