

Integrated Microfluidic Devices Based on Low-Temperature Co-Fired Ceramic (LTCC) Technology

- T. Maeder¹², H. Birol¹, C. Jacq¹ & P. Ryser¹
 - 1) Laboratoire de Production Microtechnique, EPFL, CH-1015 Lausanne, lpmwww.epfl.ch
 - 2) Sensile Technologies SA, PSE–A, CH–1015 Lausanne, www.sensile.com

What is LTCC?

- LTCC stands for « Low-Temperature Co-fired Ceramic ».
- The ceramic is a silicate material + Al₂O₃ with outstanding chemical and thermal stability.

How is it made?

- LTCC comes as unfired « green » sheet (tape) of various thicknesses (ceramic powder with polymer binder).
- Each sheet is shaped & screen-printed.
- Finally, the sheets are pressed & fired together.

Application examples

Bluetooth-Module @ 2,45 GHz Ericsson

Zulauf

Pumpkammer

PZT-Schicht Membran

Kammerboden Zulauf

LTCC

EPCOS FRONT END MODULE

- Key component in new Nokia mobile phone architecture
- Integrates diplexer, switching, LC and SAW filters
- Analysis of LTCC integrates passives and SAW filter packages

LTCC materials system

	COMPONENTS			
	SUBSTRATE	PASSIVES		
Components	Таре	Conductor	Resistor	
Function	Dielectric layer	Thick-film paste	Thick-film paste	
Functional group	Dielectric powder	Precious metal, fine size powder	Conductive oxide, fine size powder	
Glass	∠Lowers T _{firing} , ∠increases dielectric strength and density	∠Lowers T _{firing} , ∠increases adhesion to substrate and density	∠Lowers T _{firing} , ∠increases density ∠surrounds conductive powder	
Organics	Binder, solvent, dispersant for appropriate rheology			

Processing route

Processing - advantages

 $T_{\text{firing}} < 900^{\circ}\text{C} \implies \text{permits use of low resistance electrodes}$

High density packaging

3-D structuration

Hermetic structures

Reliable mechanical, thermal and electrical performance

High volume – low cost fabrication possibility

3-D structuration of LTCC

Classical thick-film technology

- Microreactor for calorimetric studies
- Microfluidics by classical thick-film technology
- Alumina & sealing glass (seen through glass underside)
- 3-D fluidics difficult
- Difficult to integrate new functions

Simple structure - LTCC mixer

Physical issues during firing

- Evolution of gases during debinding
- Lamination issues (thickness of layers)
- Differential sintering shrinkage

Chemical issues during firing

Birol et. al.

Hsi et. al.

- Interdiffusion of layers (esp. glass)
- Reducing / oxidising conditions

Processing of fluidic structures

- Features
 - Vias
 - Channels
 - Membranes
 - Bridges
- Two techniques
 - 1) Cutting out
 - 2) Sacrificial layer

Cutting vs. sacrificial layer

Sacrificia

- Gap size: sacrificial max ca. 50 μm
- Complexity: cutting vs. screen-printing
- Edge quality: cut = edge issues

Cutting: distortion of green sheet

- LTCC sheet weak
- Strong risk of clogging

- LTCC sheet stronger
- Less risk of clogging
 - Sheet 1 (top)
 - Sheet 2 (bottom)
- ⇒ Avoid long, narrow & windy cuts!

Complex mixer by cutting

Mengeaud, EPFL 2002

« Explicit » via using dedicated intermediate layer

« Implicit » via between overlapping channels

Via alignment tolerance issues

bottom

- Tolerances 50...100 µm
- Plasticity of LTCC green sheet
- Compensation needed
- Creation of parasitic dead volumes

Membranes by sacrificial layer

- 3-D structuration using sacrificial C layer
- 7 mm membrane, 40 μm thick, 10 μm spacing

Membranes by sacrificial layer

- 7 mm membrane, 40 μm thick, 15 μm spacing
- Includes sensing & reference resistors

Membranes by sacrificial layer

• 15 mm membrane, 40 μ m thick, 15 μ m spacing

LTCC vs. alumina

Material	LTCC	Al ₂ O ₃
Available thicknesses [mm]	0.04	0.171.5
Strength [MPa]	320	600
Young's modulus [GPa]	150	320
Thermal conductivity [W/m/K]	3	25
Thermal resistance [K/W]	8300	240
Rupture strain [ppm]	2100	1900
Flexural sensitivity [N -1. m-1]	100	0.6

⇒ LTCC outstanding for:

- Thermal sensors
- Force & pressure sensors for small ranges

Heated gas sensor

Heated gas sensor - structure

thermal insulation :
thin membrane or sensitive layer
bridge

heat conductor : Ag surface

stability: frame heater: Pt meander

Heated gas sensor - conduction

LTCC Conductivity	3 W/m/K
Ag conductivity	430 W/m/K
LTCC sheet conductance @ 100 µm	0.3 mW/K
Ag sheet conductance @ 10 µm	4.3 mW/K
LTCC conductive loss @ 400°C, 3:1	40 mW

- LTCC allows creation of "hot spots"
- Chemical devices
- Sensors for gas, flow, etc.

Anemometric flow sensor

Gongora-Rubio et al., 2001

Electrochemical microreactor

Mengeaud et al., 2001

- Proven base material with wide application range automotive & mobile communications
- Very good thermal & chemical stability
- Easy prototyping and fabrication of 3-D fluidic & electric circuits
- Functionalisation by appropriate films
- Integration of several functions into one device possible - "Lego" design
- Rapidly growing "cookbook"...

