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Abstract

We derive the optimal policy for the dynamic scheduling of a class of deterministic, deteriorating, continuous time and
continuous state two-armed Bandit problems with switching costs. Due to the presence of switching costs, the scheduling
policy exhibits an hysteretic character. Using this exactly solvable class of models, we are able to explicitly observe the
performance of a sub-optimal policy derived from a set of generalized priority indices (generalized Gittins’ indices) first
introduced in a contribution of M. Asawa and D. Teneketzis.
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1 Introduction

In the vast domain of sequential decision problems, the class of Multi-Armed Bandits processes (MABP) does play
a privileged role as it can be solved optimally. The MABP consists in sequentially selecting one among a class of
N parallel payoff projects in order to maximize a global reward on an infinite horizon. After the seminal and pio-
neering work of J.C. Gittins [6], we know that the optimal strategy can be fully characterized by priority indices
(the Gittins’ indices), provided that no setup cost and/or time is incurred when switching from one project to
another. It is however very common to observe in actual situations, that switchings generate costs and often cannot
be instantaneous (for example when preemptive constraints are taken into account).

In presence of switching costs and/or time delays, it is no more possible to characterize an optimal strategy by using
priority indices. A counterexample has been constructed by J. Banks [2] to illustrate this point. In addition, numerical
experiments such as those performed for instance in [7] and [9] show that, in presence of switching costs, the optimal
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strategy exhibits a highly complex structure. While the complete and analytical characterization of the optimal strat-
egy for MABP with switching costs, remains a mathematical challenge, it is not clear that overcoming this difficulty
will be of great benefit for applications. Indeed, optimal strategy imply often complex implementations, a draw-
back that will drive most practitioners to prefer efficient (though sub-optimal) rules which are more easy to use. In
particular, strategies based on generalized priority indices potentially remain, due to there simplicity, very appealing.

How far from optimality can we expect to be when using generalized priority indices in MABP with switching costs?
We will approach this question in the present paper by studying a class of models involving MABP for which it is
possible to exactly determine the optimal strategy by direct calculation. The model we consider belongs to the class of
deteriorating MABP (DMABP), for which the reward is monotonously decreasing. For these DMABP with switching
costs, we show in section 3 that when two arms are considered, the optimal policy exhibits an hysteretic shape. The
hysteresis reflects the intuitive fact that not only the present state but also the history of the process are to be taken
into account in order to decide which is the optimal scheduling. In section 5, we introduce a possible generalization
of the priority indices (along the same lines as those proposed in [2] and [1]) and we compare, for this two-armed
process, the sub-optimal strategy resulting by the use of these indices, with the optimal scheduling previously derived.

2 Multi-Armed Bandit Problem with switching costs - General and Deteriorating case

The Multi-armed Bandit problem (MABP) consists in deriving an optimal scheduling of N parallel projects (i.e.
the arms) in order to maximize a global reward. We shall write X;(¢) € &, j = 1,..., N for the state at time ¢
and X; is the state space of the project j. In the following we will consider continuous time MABP and the state
space will be the real line (i.e. A; = R). The time evolutions X;(¢) follow in general stochastic processes and we
assume the statistical independence of these processes. At any particular time, only one project is engaged, the other
(N —1) disengaged projects remain dynamically “frozen”. The state of the engaged project evolves with time while
the “frozen” projects stay fixed in their positions. The engaged project j gives an instantaneous reward h;(X;(t)).
Disengaged projects bring no reward. We write {¢;, i =0, 1,...}, with0 <t < - <t; <tjp1 < -+, i =1,2,...,
the sequence of ordered switching times occurring when it is decided to stop a project and to engage another one.
We assume that, each time a switching is operated, a fixed switching cost C' > 0 is incurred. Note that C does
neither depend on the project we leave nor on the project we engage. The switching decision at time ¢; is based on
the observation of X;(t), j =1,...,N, Vt <t;.

Let us define the initial conditions: .
X(0) = (X1(0),..., Xn(0)),

(0) = (17 0), ..., 1% (0)),
where IT(t) stand for the indicator function defined by:

1 if project j is engaged at time ¢
I7(t) = under policy T,

0 otherwise.

The solution of the MABP consists in determining the optimal strategy 7* € II, where II is the set of all admissible
(i.e. non-anticipating) policies which specifies the switching time sequence {tf, ¢ = 0, 1,...} and for each ¢}, it
indicates which project to engage in order to maximize the global reward:

*

N

o0 N
J™(X(0), 17 (0)) :maxE,T{/eﬁt Zhj(Xj(t))I;’(t)—ZC&“(t—ti) dt

mell
0

X(O),f”(O)}, (1)

with E.{ - | X(0),77(0)} being the conditional expectation with respect to the initial conditions X (0) and I7(0),
0 < B is a discounting factor and d™ (¢ — ¢;) is the Dirac mass distribution.



In absence of switching cost (i.e. when C' = 0), the MABP is optimally solved by a priority index policy. This policy
is based on the possibility to assign to each project an index v;(X;(t)) (i.e. Gittins’ index) depending only on the
dynamic X;(¢) and the reward structure h;(x;). In terms of the UJ( i(t)), the optimal strategy reduces to the rule:
At each tzme t engage the project emhzbztmg the largest index value v; (X]( ).

The Gittins’ index of project j can be determined by studying an associated optimal stopping problem (problem
SPj), which consists in determining 7* > 0, that maximizes the global reward J; M(X;(0)) gained by engaging project

4 until time 7, then stop and collect a reward e=#7" M:

TH(X5(0)) = B { [ et e 2 Xj<o>} . @)

Definition (Gittins’ index): The Gittins’ index v;(X;(0)) associated with a position X;(0) of the project j is
defined by (6], [11], (10, [5]):

{fo e Bth; (X (t ))dt}
E{fy et} '

vj(X;(0)) = 3)

Definition (Deteriorating MABP [11]): We say that a MABP is deteriorating, if forall j =1,..., N, JJM (X;()
is decreasing for t increasing. For future use, we shall write DMABP for the class of deteriorating MABP.

Property 1: In [11] the following result are established:

i) A MABP is a DMABP if and only if for all j =1,..., N, h;(X,(t)) is decreasing for ¢ increasing.
ii) The Gittins’ index for DMABP is:
vj(X;(0)) = hj(X;(0)) (4)

3 Optimal hysteretic policy for for a Class of Deterministic Deteriorating DM ABP with switching
cost - the two-armed case.

In presence of switching costs, it is obvious that when comparing two projects with identical dynamics and being in
the same state, to stay on the project currently in use is necessarily more attractive than to switch to the other one
(as no switching cost is incurred). Clearly, the past history of the system affects the decision maker (DM) in selecting
his action. Accordingly, the scheduling policy will generically include an hysteretic buffer which will be determined
by two switching curves.

Let us now focus on the optimal policy for a simple class of two-armed DMABP with switching costs, having the
following properties:

dX;

S0 5 X0) =, 5)
and

hj(z;) :=T;(1 + e %), (6)
Note that:

e The dynamic of the X;(¢), j =1,...,N are deterministic.
e The reward functions hj(x;) are decreasing.
e For any initial condition X;(0), the instantaneous reward h;(X;(t)) fulfills:

Jim hi(X;(8) =T, €R, j=1,2. (7)



o hj(X;(t1)) < hj(X;(t2)), ¥ t2 > t; and then Property 1 i) of section 2 holds. Therefore this problem does belong
to the class of DMABP.

Claim: For a two-armed continuous time, deterministic DMABP with switching costs, for which the dynamical
processes and the reward functions are defined by Eqs.(5) and (6), the optimal policy is characterized by two
non-decreasing switching curves SO;_,5 and SO5_,1. Moreover, given an initial condition, only a finite number of
switching occur under the optimal policy.

Proof of the claim: We report in the appendix the essential steps of the proof. The complete details can be found
in [4].

4 Explicit derivation of the switching curves

From the fact that the optimal switching curve SO;_,2, [respectively SOs_,1], are non-decreasing and that the op-
timal policy involves only a finite number of switchings, it necessarily exists two values A; and A,, such that for
any initial condition (X;(0) > A1, X»(0),2) [respectively (X1(0), X2(0) > A,,1)], the optimal policy commands to
engage the project 2 [respectively the project 1], forever (i.e. the optimal switching curves exhibit the qualitative
shape sketched in Fig.1a). We can calculate these values as follows:
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Fig. 1. a) Typical shape of the optimal policy. b) The dashed lines are the optimal trajectories for three different initial
conditions A, B and C.

Starting at the initial condition (oo, A2, 1), [respectively (A1, 00,2)], it is equivalent to either engage the project 1
[respectively the project 2] forever, or to switch initially from project 1 to 2, [respectively from project 2 to 1] and
then to engage it forever (i.e. the initial conditions (oo, Ay, 1), [respectively (A;, oo, 2)], is on the switching curve).
Accordingly, we can write:

UOOO =Bty (X1 (1)) dt | X1(0) = oo} e [/Ooo e=Bthy(Xs(8)) dt | Xs(0) = Ay (8)



which determines A,. In Eq.(8), we have used the notation [ - | X;(¢) = ;] to indicate that the project i is in state
z; at time t. To simplify the exposition, we assume first that both projects have identical dynamics and reward
characteristics (i.e. we consider symmetric DMABP). In this case, the Fig. 1a) is symmetric and A; = As.

The non-decreasing property of the switching curves enables to determine them recursively. To see this, write f(x1)
[respectively g(z1)] for the function which describes SO;_,5 [respectively SO5-,1]. Define the sequences of points
(up,u1,...) and (vg,vy,...) as: (see Fig. 2)

uo =4 v = As,
up =g " (42) v =[f""(4)
up =g '(v1)  vr=fH(w)

up =g H(vg—1) ve = (ug—1).

Remark: For symmetric two-armed DMABP g(x1) = f*(21).

A%

SOy, = g(71)

Uz U2 U1 Ug = A1 Xl
Fig. 2. The optimal switching curves S§O2_1 and SO1».

Iteration 1), calculation of SO,_,; in the interval [u;, A;]:

Assume that the DM is initially engaged on project 2, and that the initial positions are u; < X;(0) = z; < 4; and
X»(0) = Ay (see Fig. 2). Following the optimal policy, the DM switches only once, when the state of the system
reaches the position (X (t) = 1, X2(t) = Z2,2) (i.e. (z1,T2) lies on SO5_,1, see Fig. 2). Therefore the optimal
reward for the initial condition (z1, As,2) fulfills:

JO(.’E1,A2, 2; 52) — I:IOT(EQ) 6_5th2(X2(t)) dt | XQ(O) = A2:| +
(9)
e ATE) (—C + [ [T e Pthy (X1 (1) dt | X1(0) = 2] dt)

where 7(Z2) is the time at which the process Xo(7(Z2)) = Z2. By optimality, the value of Z3 must fulfill:

0
a—Q_ZQJO(xl’AQ’Q;:EQ) = 0.
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Fig. 3. The optimal switching curves S§O2_1 and SO1».

For the symmetric DMABP, we directly get the switching curve SO;_,5 on the interval [A4;, co] by symmetry. Now
we can calculate the position of the switching curve SOs_,1 on the interval [us,u1] as follows:

Iteration 2), calculation of SO-_,; in the interval [us,u;]:

Assume that project 2 is initially engaged and that the initial positions are us < X1(0) = z1 < u; and X2(0) = v;.
Following the optimal policy, the DM will switch exactly twice, first in the interval [us,u1], when the state of the
system reaches the position (X;(t) = z1, X2(t) = Z2,2) and a second times in the interval [4;, co] when the state of
the system reaches the position (X;(t) = Z1, X2(t) = Z2,1) (Note that SO;_,5 for & € [u1, A1] has been calculated
previously, see Fig.3). Therefore the optimal reward for (z1,v1,2) is:

JO(z1,v1,2;Z9) = ([foﬁ(@) e™Pthy(Xs(t)) dt

X,(0) = vl] dt+
e=Bmi(@2) ( = O+ [ P (Xa (1) dt | Xa(ni(22)) = 1] dt+ (10)

=B(ri(#2)+72(31)) ( —C+ [f0°° e B hy (X (1)) di ‘ X (11 (Z2) + (1)) = @} dt)) ,

where 71 (Z2) is the time at which the process Xo(71(Z2)) = Z2 (i-e. is on SOs,1) and 72(F1) is the time at which the
process X1(m2(Z1)) = Z1 (i.e. is on SO;_,2). Here again, by definition of the switching curve, the value of Z» must
fulfill: 5

—JO(x1,v1,2;%2) = 0.

N ($1 U1 $2)
The switching curve SO1_,2 on the interval [u;, A;] is again given by symmetry. Iteratively, we clearly can calculate
the complete curve SOq_5.



Remark: For non-symmetric two-armed DMABP, the above procedure can be generalized straightforwardly. Indeed,
the symetry assumption is not requiered to iterate the construction of SOy, .

4.1 Eaxplicitly solved example - Deteriorating and deterministic MABP

To illustrate our method, let us calculate explicitly the recursion for the deterministic two-armed symmetric DMABP
for which the dynamical processes and the reward functions are defined in Eqs.(5) and (6) with:

In this case, Eq.(8) reduces to:
o0 o
/ e—ﬁtr(l +e—a(01t+oo))dt — —C+/ e—BtF(l +e—a(02t+A2))dt’
0 0

from which we obtain:

PR (<RS0

Eq.(9) reduces to:

7(Z2) _ oo
JO(x1,A2,2,T9) = (/ e P (1 4 emol2ttA2)) gt 4 o=F7(22) (—C + / e (1 + e_o‘(olt"‘”“))dt) ,
0 0

with
To — Ao

62

7(72) =

Eqs.(10) reduces to:

JO(z1,v1,2,32) = (fon(h) e B (1 4 e~ a(02t+vi))gry

6*571(f2) < . C + fo’rz(fl) e—ﬁtr(l + efoz(01t+:t1))dt + e*ﬁ(‘l’l(f2)+’r2(fl)) (_C + fooo eiﬁt]_—‘(]_ —+ eia(02t+i2))dt) ),

with B
T2 — V1

6>

T1 —T1

and TQ(i‘l) = 01

T1(Z2) =

These equations are transcendant for general values of a,3,0;, i = 1,2. When a = 8 = 6; = 65 = 1, an explicit
solution can however be found. It reads:

2C
A1:A2:—ln[?],
Uy =0 = —1 @
1=71 = n i
u—v——ln[i}
2T T — /33T
Ty =—In e‘h_g
e 2  T)°



Hence the switching curves for positive initial conditions (X;(0), X2(0)) € Ry x Ry read as:

( .
o0 if £y > Aq,
—lnlie;l —%] ifu1§x1 <A1,
SO0y, =
x 2
_1 2(F—e IC) f <
n [Fewl(2r+2ewlc+\/r2+14r0e11+Q2e221 Wtz S @1 <,
\
and
(—In [2 (e’“” + %)] if z1 > Aq,
SO1,,=¢ —In [2F+2C6 1;—re£1+lﬁrce 1] if up <@y < Ay
L

The above results are drawn in Fig. 4.

5 Generalized Index heuristic (GIH) and suboptimal hysteresis

Clearly, the hysteretic type optimal scheduling which results from the presence of switching costs, precludes a naive
generalization of the Gittins’ index policy. By following the idea first exposed in [2] and [1], let us introduce a set of
two indices for each project, namely:

e a continuation index ve¢;(X;(0)),
¢ a switching index vs;(X;(0)).

This duplication of indices enables to construct a generalized priority index heuristics (GIH) which takes into account
information regarding the history of the system and hence does exhibit an hysteretic shape topologically similar to
the optimal solution. In terms of vc;(X;(0)) and vs;(X;(0)) a N-armed MABP will be sub-optimally solved by the
policy:

Generalized index heuristics (GIH): For a project j initially engaged, the GIH read as: “Continue to engage
project j as long as vej(X;(t)) > vsip(Xi(), ¥V k # j. If vej(X;(t)) falls below the switching index of another
project, then switch to the project having the largest switching index.”

5.1 Construction of the continuation and the switching indices

To construct the indices on which the GIH is based, we first introduce a special two-armed MABP (denoted by
problem P; in the following) which is equivalent to the stoping problem SP; introduced in section 2. In problem
P;, the first arm is the project j itself and the second arm (here denoted as project 7) follows the frozen dynamics
X7 (t) =&, Vt € Ry.. When engaged, this second arm yields a systematic reward hy(£) = M. Assume that initially
project j is engaged and note that once the optimal policy commands to switch from the project j to the T, it is
never optimal to reengage project j. Indeed, if at time ¢y, it is optimal to engage project T, so it is for all times ¢ > ¢,
as the global evolution is frozen. This observation establishes the equivalence between the SP; and P; problems.

Write 75]- for the problem Pj, in which a switching cost C' > 0 is added. Using the problem 75]-, we now define:



Definition (Continuation index vc;(z)): The function vc;(z) is the continuation index of project j if and only
if the curve

S ={(2,9) € | vej(a) =ws7(y) }
is the optimal switching curve for problem 75j when the DM is initially engaged on j. The index vsy(y) is the

switching index of the frozen project 7 given in the lemma 2 below.

Definition (Switching index vs;(z)): The function vs;(x) is the switching index of project j if and only if the
curve

511~ ) € st om0

is the optimal switching curve for problem 73]- when the DM is initially engaged on 7. The index ver(y) is the
continuation index of the trivial project 7 given in the lemma 2 below.

5.2  Derivation of the continuation and the switching index

Lemma 2: The continuation and the switching indices for the trivial project T read as:

ver(€) = M

and
vsT(§) = M — CB.

Proof: Consider a two-armed MABP with both arms having the frozen dynamics as defined for the project 7.
Suppose that the first arm (arm 7;) generates a systematic reward of M; and that the second arm (arm 73)
generates a systematic reward of Ms. Then the optimal policy if the DM is initially engaged on arm 7; is to continue
forever on this arm if and only if M; > M, — C3, otherwise to switch to arm 73 and stay on it forever. This policy
is achieved when the priority indices ver; (€) and vst; (€), I = 1,2 are defined as:

ver; (§) = M,

and
vs;(§) = My — CB.

Theorem 3: The continuation index ve;(X;(to)) read as:
B{Jy ety (X (1) dt}

BT e

vej(Xj(to)) =

with 7% the optimal stopping time.

Proof: The optimal reward J]M’C(Xj (to)) for the problem P; when the DM is initially engaged on arm j read as:

*

70 =B{ [T et eorer [t 1)

where 7* is the time at which it is optimal to engage arm 7. For an initial condition (X;(to),&) on the switching
curve S;,7 and when the DM is initially engaged on project j, it is optimal to immediately switch to arm 7 and
then to stay on it forever. This yields a reward:

J(X;(t) = —C +/ Me Pdt. (12)
0



Using Eq.(12) into Eq.(11) implies:

—C+/ Me—ﬁtdt:E{/ e—ﬁfhj(Xj(t))dt—e—BT*ch/ Me—ﬁtdt}. (13)
0 0 T*

On the other hand, for an initial condition on S;_,7, the continuation index value of arm j equals the switching
index value of arm 7, namely:
vej(Xj(to)) = vst(§) = M — CB, (14)

with M being the solution of Eq.(13), namely:

E{ [y e oth;(X;(t) dt + C(1 - e77")}

M= - (15)
E{f] 5t}
Introducing Eq.(15) into Eq.(14) we obtain:
EL [T e Bth;(X;(t)) dt
0 TASLY
vej(X;(to)) = = (16)
B{Jy st}
which ends the proof.
O
Theorem 4: The switching index vs;(X;(to)) read as:
E { T e Bthy (X;(t) dt — C(1 + e_BT*)}
vs;j(X;j(to)) = (17)

E { e e—ﬁt}
with 7* the optimal stopping time.

Proof: Proceed along the same lines as in the proof of Theorem 3.
Remarks:

e Our present definitions of vs;(z) and vc;(z) are slightly different to those used in [1]. Our definitions are those
which directly follow from the associated stopping problems used to construct the Gittins’ indices (see [3] for more
details).

e Note that the continuation index ve;(X;(to)) is equivalent to the Gittins’ index vg;(X;(to)) (i.e. Eq.(16) is equiv-
alent to Eq.(3)). In particular for DMABP, we have ve;(z) = h;j(z) (see Eq.(4)).

e When C = 0, we consistently have that vs;(X;(t0)) = vc;(X;(t0)) = vg;(X;(to)).

5.8 Explicitly solved example - Deteriorating and deterministic two-armed MABP

For the explicit DMABP given by Eqs.(5) and (6), the optimal stopping time 7* for problem P; when the DM is
initially engaged on project 7T, read as:

(0 if M >T(1+e %) +CB

*x mga+1n[7F+C§_M] . —xoQ

= - T+ CB < M<T(1+e%) +CB - (18)
| o it M <T +CpB

10



To calculate the switching index vs;(X;(0)) we solve Eq.(17) where 7* is given by Eq.(18) and with the identification:

M = vs;(X;(0)).

This equation is generally transcendant. For the special case a = f = 6; = 62 = 1, a closed form solution exists and

reads as:

vsi(zo) =T(1+e ™) +C —2VTCe 7, (19)

Using this expression, we can explicitly characterize the switching curve resulting from the GIH for our symmetric
two-armed DMABP. We indeed have:

and

S142 = {(Cﬂl,xg) €ER | vei(zy) = u32(ac2)} =

Si1_9 = {(.’E1,.’E2) € R? | To = —2In |:€_ITl + \/%_C:‘} (20)

So_y1 = {(1’1,1’2) eR? | vey(zy) = 1/81(1132)} =

T9 = —2In [e_mTl - \/%] if 21 < —21In [%C]
Sy1 =% (z1,12) € R

+00 otherwise

A X

O

N

ptimal Policy

6
Gittins heuristic
4
1

2

» » » » >

2 4 6 8 X1

Fig. 4. Optimal policy and the GIH for the parameter value: a=p=6;=1T=2,C=0.1.

We plot simultaneously, in Fig. 4, the optimal hysteretic policy Eqs.(20) and (21) and the GIH. This picture, clearly
shows that the optimal policy has a wider hysteretic gap. This behaviour is in agreement with the result expressed
by Lemma 2.7 in [1].

Remarks:

e The claim and its demonstration can be generalized for DMABP when the dynamic of the project is given by
random walks with no downward jumps (see [8] for the details).
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e The sub-optimality of the GIH can be observed by the explicit calculation of the discounted reward obtained under
a special initial condition. For example, chose I' = 2, C = 1.1, « = = 6; = 65 = 1, and the initial conditions
(X1(0) = 0, X2(0) = 0,1). With these values, the GIH commands to engage project 1 until the system reaches the

position (—21In [1 — \/%} ,0), then to switch to project 2 and engage it forever. This scheduling yields a global

reward of 2,988. Instead, the optimal policy commands to engage project 1 for ever and yields a global reward of
3.

e For large values of 3, the reward gained in the close future is dominant. Hence, when £ is large enough, the reward
realized after the first switching tends to be negligible and the GIH is expected to bring results closer to the
optimal one. We observe this fact for the class of symmetric bandit given by Eq.(6) by calculating numerically the
value Ay = A; and comparing it with the optimal one. Both values indeed converge as 3 is increased. A numerical
example is given in the following table where we calculate A for C = 0.1,6; = a = 1, I' = 2 and for three different

values of 8
ﬁ A2 GIH A2 optimal
1 2.996 2.302
5 1.386 1.203
10 | 0.571 0.597

Acknowledgment: We thank H. Kaspi for extensive and very stimulating communications and the referees con-
structive comments.

A Appendix

The proof of the claim lies on the three following propositions:
Proposition 1: For any given initial condition, the optimal policy commands to switch only a finite number of times.

Proposition 2: The optimal policy is characterized by two switching curves SO, and SOs_,; which can be
respectively described by two functions, §: z1 — g(x1) and & : zo — F(x2).

Proposition 3: The optimal switching curves SO;_,2 and SO5_,; are non-decreasing.
As the aim of this paper is to focus on a soluble example, we give here only the sketch of the proof.

Sketch of the proof of proposition 1:
The space of initial conditions (w1, 72,1) € R? x {1,2}, where i € {1,2} corresponds to the project initially engaged,
can be splitted into two disjoint subsets:

a) A set (z1,x2,7) € A such that when starting on A, the optimal policy commands to engage the project i forever.
b) Its complementary set A’ = {]R2 x {1, 2}} \ A

Let us define the cumulate sojourn times 77 and 75 respectively spent on projects 1 and 2, under the optimal policy.
As we consider infinite time horizon problems, we have that T} + 15 = oco. By definition, for any initial condition
(z1,%2,1) € A, the sojourn times Ty and T» necessarily fulfill one of the following alternatives:

i) Ty = oo and Ty = oo,

il) Ty < oo and Ty = o0,
iii) 71 = oo and Ts < oc.
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e It is possible to show that, for an initial condition (z1,z9,i) € A’, if alternative i) holds then, it exists a finite
time T' < oo, such that:
(X1(T), Xo(T),i(T)) € A

This rules out the possible occurrence of alternative ¢) for the optimal policy.

e We can prove that the alternatives ii) and i) both imply that 3 T' < co after which, the optimal policy does not
command to switch anymore. To complete the proof, we use the property: “Any policy that switches an infinite
number of times on a finite horizon incurs an infinite cost, which cannot be possibly optimal .”

Sketch of the proof of proposition 2:

Introduce the following definitions:

e Ol = {(ml,xz, 1) € R? x {1,2} ‘ the optimal policy commands to switch immediately from project 1 to 2 and
then commands to switch exactly n times }, n=0,1,2,... (Fig. A.1).

o (2 = {(xl,x2,2) € R? x {1,2} ‘ the optimal policy commands to switch immediately from project 2 to 1 and

then commands to switch exactly n times }, n=0,1,2,... (Fig. A.1).

e Write i for the project initially engaged and % for the disengaged project.

A%

SOy 1= T(x2)

Q 0 O 9

Fig. A.1. Two different policy starting at initial condition (z1,z2,1).

To prove proposition 2, we can construct the two functions §(x1) and Z(z2) first on Qf, i = 1,2, then iteratively on
2y, n=1,2,... as follows:

By calculating the difference of the global reward expected when one among the two following alternative policies is
used:

e Switch initially from project 4 to project 4 and then continue optimally. ~
e Continue to engage project i during a time 7 > 0, then switch from project ¢ to project i and finally continue
optimally.

We can show that:
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a) If the point (z1,z2,1) belongs to QL. Then, 3 §(z1) such that,
Vz €] — oo, §i(71)], we have (21,2,1) € QL.

Moreover, V(z1, z',1) with 2’ > §(z1), we have (z1,2,1) ¢ QL.

b) If the point (z1,72,2) belongs to Q2. Then, 3 #(z2) such that,
Vz €] — o0, #(z2)], we have (zy,2,2) € Q2.

Moreover, V(z1, 2',2) with 2’ > #(z2), we have (x1,2',2) ¢ Q2.
The assertion a) and b) directly lead to the existence of the function §(z;) and Z(z2).

Sketch of the proof of Proposition 3:

Remember that only the engaged project brings a reward and that the disengaged one remains dynamically frozen
and does not bring any reward. Assume that starting at A = (z1, 2, 1), the optimal policy commands to immediately
switch from project 1 to 2. That is to say, when starting at A, the expected reward given by engaging the project 1,
is less attractive that the expected reward given by engaging the project 2.

With h;(x) i = 1,2 decreasing (see Eq.6)), it follows that the expected reward given by engaging project 1, prior
to any switch, at B = (z!,z2,1) with 2} > x; is smaller than the expected reward given by engaging project 1
at A = (x1,x2,1). On the other hand, as x> is common to both A and B, the expected reward given by engaging
project 2, prior to any switch, is identical for both A and B. Hence, if the decision is to switch from project 1 to 2
at position A, the same switching decision has to be taken when starting at position B.

Remark: In section 5.3, we plot in Fig. 4 the optimal switching curves for our class of DMABP. The increasing
property of the switching curves can be seen explicitly.
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