
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Bachelor of Technology in Electrical Engineering, IIT Kanpur, Inde
de nationalité indienne

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. M. Hasler, président du jury
Prof. K. Aberer, directeur de thèse
Prof. M. A. Shokrollahi, rapporteur

Prof. P. Felber, rapporteur
Prof. E. Aurell, rapporteur

sos: self-organizing substrates

Anwitaman DATTA

THÈSE NO 3615 (2006)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 21 AOûT 2006

à LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Laboratoire de système d'information répartis

SECTION DES SYSTÈMES DE COMMUNICATION

SoS: Self-organizing Substrates
Thèse de doctorat

présentée à
l’Ecole Polytechnique Fédérale de Lausanne

par

Anwitaman Datta

Dedicated to my mother Smt. Sipra Datta,
In loving memory of my father Late Amarnath Datta.

ACKNOWLEDGEMENT

I have learnt more than just computer science from Prof. Karl Aberer, who has been my friend, philosopher
and guide. I will be ever grateful for the independence I have enjoyed in determining the course of my
research, even while he has shepherded me with his wisdom, kindness and patience.

The brain-storming sessions with Dr. Manfred Hauswirth have been crucial at many junctures of my
research and the results therefrom are integral part of this thesis. I thank Roman Schmidt and Renault
John for the collaboration we had in developing the P-Grid system from a conceptual embryo to the actual
functional software, and also for permitting me to include the experimental results based on the deployed
software’s evaluation.

Working with Prof. Wolfgang Nejdl and Prof. Martin Hasler have not only been fun, but also, the results
contributed to this dissertation. I am also thankful to have Prof. Martin Hasler as the president of my thesis
committee.

Prof. Pascal Felber’s experience with peer-to-peer systems has been of great value to the committee.
Prof. Amin Shokrollahi not only facilitated the use of Digital Fountain codes for some of my ongoing work,
but also provided insightful advises during my research, and I am glad to have him in my thesis committee.
Having a physicist with expertise in looking into distributed systems as complex systems has provided the
opportunity to scrutinize my work from diverse perspectives, and I am thankful to Prof. Erik Aurell for his
participation in the committee.

I am thankful to Prof. Ion Stoica for hosting me at UC Berkeley and giving me the time and opportunity
to work with and learn from him.

Chantal Menghini has gone out of her way to make my move to Lausanne and the stay since, comfortable.
The opportunity to work with some other colleagues from LSIR including Fabius, Mohit, Oana, Philippe,
Sarunas and Zoran have been rewarding and learning experiences. I’ll like to thank Jean-Pierre Depertuis,
Philippe Chammartin and Marc-André Lüthi for their superb system administration.

These past years in Switzerland, my life rested on a tripod.
Life in company of friends from LSIR and the extended network (all names not enumerated because of

scalability reasons) has been fun. Sharing my office with Roman, desserts and discussions with Manfred and
Zoran, movies chez Phil’s and barbeques at Karl’s garden; I’ll miss. Friends from India have filled part of the
vacuum of a life away from home, occasionally fulfilling the urge for the taste of Indian food in fun-filled
evenings. Prasenjit’s jokes, Debjani, Usha and Vish’s cooking, travels with Rajesh and Partha, Subhash’s
witticism and trying to ski at Gayathri’s insistence are but few of the many nice memories I’d not mind
reliving.

The experience of living in Lausanne would never have been complete without the company and friend-
ship of Frédérique to enjoy the evenings together, watching movies while not trying cuisines from all over
the world or relishing the excellent cakes she bakes. Je lui suis reconnaissant de sa présence dans ma vie,
toujours - le printemps, l’été, l’automne, l’hiver ... et le printemps. I can not imagine how I would have
finished my thesis without her continuous encouragements and support. Thanks for being there, even when
not here ever since you moved across an ocean and some more!

My family is the third leg, firmly supporting me from India, wherever I have been. If without my mother’s
immense help I would not have finished my under-graduation, without her patience and encouragements,
finishing the PhD. would have been impossible. Without my brother Angshuman’s timely help, I’d have
failed to appear in a crucial examination which set the wheels of my academic life into motion. My de-
parted father’s attempts to instill some concepts from quantum physics when I was barely starting to grasp

III

the structure of atoms among other things has hopefully not gone completely in vain, and memory of his
enthusiasm to pursue knowledge has encouraged me throughout in my pursuit of the same.

Even while I hope to continue to learn new things in life, the time to finish my thesis is also a time to
move forever from being formally a student, and I’ll like to thank some of the teachers I had the privilege to
learn from. My mother being a science and mathematics teacher herself, I had the opportunity to be taught
by her until my secondary school, and my father occasionally exposed me to concepts and ideas (far) beyond
the curriculum. The attempts to reduce my ignorance have since been ably helped by many, some of whom
stand out. I’ll like to particularly thank Prof. Jagdish Prasad, Prof. Vijay A. Singh, Dr. Arup Banerjee, Prof.
R.K. Bansal and Prof. A.K. Chaturvedi, apart of course my thesis advisor Prof. Karl Aberer for influencing
significantly the course of my life.

Living in Switzerland has been great fun, thanks to the opportunity provided by the hospitable people
in general and EPFL in particular. I’ll like to thank them, and the funding agencies for my research. This
thesis was supported (in part) by the National Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322 and was (partly) carried out in the framework of the EPFL Center for
Global Computing and supported by the Swiss National Funding Agency OFES as part of the European
project Evergrow No 001935.

Abstract

Large-scale networked systems often, both by design or chance exhibit self-organizing properties. Un-
derstanding self-organization using tools from cybernetics, particularly modeling them as Markov processes
is a first step towards a formal framework which can be used in (decentralized) systems research and design.
Interesting aspects to look for include the time evolution of a system and to investigate if and when a system
converges to some absorbing states or stabilizes into a dynamic (and stable) equilibrium and how it performs
under such an equilibrium state. Such a formal framework brings in objectivity in systems research, helping
discern facts from artefacts as well as providing tools for quantitative evaluation of such systems.

This thesis introduces such formalism in analyzing and evaluating peer-to-peer (P2P) systems in order
to better understand the dynamics of such systems which in turn helps in better designs.

In particular this thesis develops and studies the fundamental building blocks for a P2P storage system.
In the process the design and evaluation methodology we pursue illustrate the typical methodological ap-
proaches in studying and designing self-organizing systems, and how the analysis methodology influences
the design of the algorithms themselves to meet system design goals (preferably with quantifiable guar-
antees). These goals include efficiency, availability and durability, load-balance, high fault-tolerance and
self-maintenance even in adversarial conditions like arbitrarily skewed and dynamic load and high member-
ship dynamics (churn), apart of-course the specific functionalities that the system is supposed to provide.

The functionalities we study here are some of the fundamental building blocks for various P2P applica-
tions and systems including P2P storage systems, and hence we call them substrates or base infrastructure.
These elemental functionalities include: (i) Reliable and efficient discovery of resources distributed over
the network in a decentralized manner; (ii) Communication among participants in an address independent
manner, i.e., even when peers change their physical addresses; (iii) Availability and persistence of stored
objects in the network, irrespective of availability or departure of individual participants from the system at
any time; and (iv) Freshness of the objects/resources’ (up-to-date replicas).

Internet-scale distributed index structures (often termed as structured overlays) are used for discovery
and access of resources in a decentralized setting. We propose a rapid construction from scratch and main-
tenance of the P-Grid overlay network in a self-organized manner so as to provide efficient search of both
individual keys as well as a whole range of keys, doing so providing good load-balancing characteristics for
diverse kind of arbitrarily skewed loads - storage and replication, query forwarding and query answering
loads. For fast overlay construction we employ recursive partitioning of the key-space so that the resulting
partitions are balanced with respect to storage load and replication. The proper algorithmic parameters for
such partitioning is derived from a transient analysis of the partitioning process which has Markov prop-
erty. Preservation of ordering information in P-Grid such that queries other than exact queries, like range
queries can be efficiently and rather trivially handled makes P-Grid suitable for data-oriented applications.
Fast overlay construction is analogous to building an index on a new set of keys making P-Grid suitable as
the underlying indexing mechanism for peer-to-peer information retrieval applications among other poten-
tial applications which may require frequent indexing of new attributes apart regular updates to an existing
index.

In order to deal with membership dynamics, in particular changing physical address of peers across ses-
sions, the overlay itself is used as a (self-referential) directory service for maintaining the participating peers’
physical addresses across sessions. Exploiting this self-referential directory, a family of overlay maintenance
scheme has been designed with lower communication overhead than other overlay maintenance strategies.
The notion of dynamic equilibrium study for overlays under continuous churn and repairs, modeled as a
Markov process, was introduced in order to evaluate and compare the overlay maintenance schemes.

V

While the self-referential directory was originally invented to realize overlay maintenance schemes with
lower overheads than existing overlay maintenance schemes, the self-referential directory is generic in na-
ture and can be used for various other purposes, e.g., as a decentralized public key infrastructure. Persistence
of peer identity across sessions, in spite of changes in physical address, provides a logical independence of
the overlay network from the underlying physical network. This has many other potential usages, for exam-
ple, efficient maintenance mechanisms for P2P storage systems and P2P trust and reputation management.
We specifically look into the dynamics of maintaining redundancy for storage systems and design a novel
lazy maintenance strategy. This strategy is algorithmically a simple variant of existing maintenance strate-
gies which adapts to the system dynamics. This randomized lazy maintenance strategy thus explores the
cost-performance trade-offs of the storage maintenance operations in a self-organizing manner. We model
the storage system (redundancy), under churn and maintenance, as a Markov process. We perform an equi-
librium study to show that the system operates in a more stable dynamic equilibrium with our strategy than
for the existing maintenance scheme for comparable overheads. Particularly, we show that our maintenance
scheme provides substantial performance gains in terms of maintenance overhead and system’s resilience in
presence of churn and correlated failures.

Finally, we propose a gossip mechanism which works with lower communication overhead than existing
approaches for communication among a relatively large set of unreliable peers without assuming any specific
structure for their mutual connectivity. We use such a communication primitive for propagating replica
updates in P2P systems, facilitating management of mutable content in P2P systems. The peer population
affected by a gossip can be modeled as a Markov process. Studying the transient spread of gossips help in
choosing proper algorithm parameters to reduce communication overhead while guaranteeing coverage of
online peers.

Each of these substrates in themselves were developed to find practical solutions for real problems. Put
together, these can be used in other applications, including a P2P storage system with support for efficient
lookup and inserts, membership dynamics, content mutation and updates, persistence and availability. Many
of the ideas have already been implemented in real systems and several others are in the way to be integrated
into the implementations.

There are two principal contributions of this dissertation. It provides design of the P2P systems which
are useful for end-users as well as other application developers who can build upon these existing systems.
Secondly, it adapts and introduces the methodology of analysis of a system’s time-evolution (tools typically
used in diverse domains including physics and cybernetics) to study the long run behavior of P2P systems,
and uses this methodology to (re-)design appropriate algorithms and evaluate them.

We observed that studying P2P systems from the perspective of complex systems reveals their inner
dynamics and hence ways to exploit such dynamics for suitable or better algorithms. In other words, the
analysis methodology in itself strongly influences and inspires the way we design such systems. We believe
that such an approach of orchestrating self-organization in internet-scale systems, where the algorithms and
the analysis methodology have strong mutual influence will significantly change the way future such systems
are developed and evaluated. We envision that such an approach will particularly serve as an important tool
for the nascent but fast moving P2P systems research and development community.

Keywords: Peer-to-peer (P2P), Randomized algorithms, Self-organization, Markov model.

Version Abrégée

Les systèmes de réseaux à large échelle font souvent montre, par construction ou par hasard, de pro-
priétés d’auto-organisation. Comprendre cette auto-organisation fait appel à des techniques provenant de la
cybernétique, comme leur modélisation en tant que processus markoviens, qui est le premier pas vers un
contexte formel, utilisable dans la conception et la recherche de systèmes (décentralisés). Parmi les aspects
intéressants souhaitables sont compris l’évolution du système en fonction du temps, ainsi qu’étudier si et
quand un système converge vers des états absorbants ou se stabilise en un équilibre dynamique (et stable),
et comment il se comporte dans un tel état d’équilibre. Un tel contexte formel apporte de l’objectivité dans
la recherche en systèmes, aidant ainsi à discerner les faits des artefacts, ainsi qu’à fournir des outils en vue
d’une évaluation quantitative de tels systèmes.

Cette thèse introduit un tel formalisme en analysant des systèmes pair-à-pair (P2P, “Peer-to-Peer”) afin
de mieux comprendre leur dynamisme, ce qui à son tour aide à obtenir une meilleure conception.

En particulier, cette thèse développe et étudie les blocs fondamentaux à la construction de systèmes
P2P. Ce faisant, notre méthodologie d’évaluation et de conception illustre les approches méthodologiques
typiques de l’étude et de la conception de systèmes s’auto-organisant, ainsi que comment la méthodologie
d’analyse influence la conception d’algorithmes afin d’atteindre les objectifs de conceptions de systèmes
(de préférence avec des garanties quantifiables). Ces objectifs comprennent l’efficacité, la disponibilité, et
la durée, l’équilibre des charges, la tolérance aux erreurs, et l’auto-maintenance même lors de conditions
adverses, comme des charges arbitrairement déséquilibrées et dynamiques, un fort dynamisme d’adhésion
(“churn”), ainsi que, clairement, les fonctionalités spéciales que le système est sensé fournir.

Les fonctionalités que nous étudions font partie des blocs fondamentaux de nombreuses applications
P2P ainsi que de systèmes incluant des systèmes de stockage P2P, nous les appelons donc substrat ou infras-
tructure de base. Ces fonctionalités essentielles comprennent: (i) découverte fiable et efficace des resources
distribuées dans le réseau de façon décentralisée; (ii) Communication parmi les pairs indépendamment de
l’adressage, i.e., même lors de changement d’adresse physique; (iii) Disponibilité et persistance des objets
stockés dans le réseau, indépendamment de la disponibilité ou du départ de participants individuels à un
moment donné; et (iv) Fraı̂cheur des objets/resources (copies mises-à-jour).

Les structures d’indexage distribué à l’échelle d’internet (souvent appelées “overlays” structurés) sont
utilisées pour la découverte et l’accès à des resources décentralisées. Nous proposons une construction
rapide (partant de zéro) et une maintenance auto-organisées du réseau P-Grid pour une recherche efficace
des clefs individuelles et d’un ensemble de clefs, fournissant ainsi de bonnes caractéristiques d’équilibre des
charges pour différentes sortes de charges arbitrairement déséquilibrées - stockage et copies, retransmission
de requêtes et charges de réponse aux requêtes. Pour une construction rapide d’overlay, nous utilisons une
partition récursive de l’espace des clefs, afin que les partitions résultantes soient équilibrées par rapport
à la charge de stockage et de copies. Les paramètres algorithmiques propres à de telles partitions sont
dérivés d’une analyse transiente du processus de partition, qui est markovien. La préservation d’un ordre de
l’information dans P-Grid telle que des requêtes autres qu’exactes, comme des requêtes sur des ensembles,
puissent être gérées efficacement et presque trivialement, rend P-Grid adapté aux applications orientées
données (“data-oriented”). La construction rapide d’overlay est analogue à construire un index sur un nouvel
ensemble de clefs, faisant de P-Grid un méchanisme potentiel d’indexage sous-jacent pour des applications
P2P de récupération d’information parmi d’autres applications potentielles demandant un indexage fréquent
de nouveaux attributs, et des mises-à-jour d’un index existant.

Pour gérer la dynamique d’adhésion lors des sessions, en particulier changer l’adresse physique des
pairs, l’overlay lui-même est utilisé comme un service d’annuaire (auto-référentiel) pour maintenir l’adresse
physique des participants. Exploitant cet annuaire auto-référentiel, une famille de schémas pour la mainte-

VII

nance d’overlays est conçue, à coût de communication moindre que les stratégies existantes. La notion
d’étude d’équilibre dynamique, sous “churn” continu et réparation, modelisé comme processus markovien,
est introduite pour évaluer et comparer les schémas de maintenance d’overlays.

Alors qu’il était originalement inventé pour réaliser des schémas de maintenance d’overlays à coût moin-
dre que les schémas existants, l’annuaire auto-référentiel est générique de nature et peut être utilisé pour
différentes autres applications, e.g., comme une infrastructure à clé publique décentralisée. La persistance
de l’identité des clefs lors des sessions, en dépit des changements dans l’adresse physique, fournit une
indépendance logique du réseau overlay par rapport au réseau physique sous-jacent. Cela offre de nom-
breuses autres utilisations, comme des méchanismes efficaces de maintenance pour des systèmes de stock-
age, et un moyen de gérer la confiance et la réputation dans les réseaux P2P. Nous étudions en particulier
la dynamique de maintenance de redondance pour les systèmes de stockage, et avons conçu une nouvelles
stratégie “paresseuse” de maintenance. Celle-ci est algorithmiquement une simple variante de stratégies de
maintenance existantes, qui s’adapte à la dynamique du système. Cette stratégie “paresseuse” randomisée
explore donc les compromis coût-performance des opérations de maintenance nécessaires au stockage d’une
manière auto-organisée. Nous modélisons le système de stockage (redondance), sous “churn” et mainte-
nance, comme un processus markovien. Nous faisons une étude d’équilibre afin de montrer que le système
opère dans un équilibre dynamique plus stable avec notre stratégie qu’avec les schémas de maintenance
existants pour des coûts comparables. En particulier, nous montrons que notre schéma de maintenance four-
nit des gains substantiels de performance en terme de coût de maintenance et de résilience du système en
présence de “churn” et de défaillances corrélées.

Finalement, nous proposons un méchanisme de bavardage (gossip), qui fonctionne avec un coût de com-
munication inférieur à ceux existants, pour établir une communication parmi un ensemble relativement
large de pairs non-fiables, sans supposer de structure spécifique sur leur connectivité mutuelle. Nous util-
isons cette primitive de communication pour propager des mises-à-jour de copies dans des systèmes P2P,
rendant plus facile de gérer les contenus changeants. La population de pairs affectée par le bavardage est
modélisée comme un processus markovien. Etudiant la propagation transiente du bavardage aide à choisir
les paramètres de l’algorithme afin de réduire le coût de communication tout en garantissant la couverture
des pairs online. Chacun de ces substrats ont été développés pour trouver des solutions pratiques à des
problèmes réels. Mis ensemble, ceux-ci peuvent être utilisés dans d’autres applications incluant un système
de stockage P2P supportant des recherches et des insertions efficaces, de la dynamique d’adhésion, de la
mutation dans les contenus, des mises-à-jour, de la persistance et de la disponibilité. Plusieurs de ces idées
ont déjà été implémentées dans des systèmes réels.

Cette dissertation a deux principales contributions. Elle fournit une conception de systèmes P2P, qui sont
utiles à des utilisateurs comme à d’autres développeurs, qui peuvent construire d’autres systèmes sur ceux
existants. Elle adapte et introduit la méthodologie d’analyse de l’évolution du temps d’un système (outil
typiquement utilisés en physique et cybernétique) afin d’étudier le comportement à long terme des systèmes
P2P, et utilise cette méthodologie pour (re-)concevoir des algorithmes appropriés et les évaluer.

Nous avons observé qu’étudier les systèmes P2P du point de vue des systèmes complexes révèle leur
dynamique intérieure et donc des moyens d’exploiter celle-ci pour des algorithmes adaptés ou meilleurs.
Autrement dit, la méthodologie d’analyse en elle-même influence fortement et inspire la façon dont nous
concevons de tels systèmes. Nous croyons qu’une telle approche dans l’orchestration de l’auto-organisation
dans les systèmes à l’échelle d’internet, où les algorithmes et les méthodologies d’analyse ont une forte
influence mutuelle, va changer significativement la façon dont de tels systèmes seront développés et évalués
dans le futur. Nous pensons qu’une telle approche va servir d’outil important pour la communauté, naissante
mais déjà grandissante, de recherche et développement dans les systèmes P2P.

Mots-clés: Pair-à-pair (P2P), Algorithmes randomisés, Auto-organisation, Modèle markovien.

Table of Contents

1. Preamble . 1
1.1 The peer-to-peer (P2P) paradigm . 1
1.2 Self-organizing Substrates . 3

1.2.1 Structured overlay networks . 4
1.2.2 Managing peers’ identity and logical mobility . 5
1.2.3 Persistent and available storage . 5
1.2.4 A gossiping primitive . 6

1.3 The philosophy and practice of self-organization . 6
1.3.1 Probabilistic systems . 7
1.3.2 Markov model for self-organization . 7

1.4 Thesis organization and main contributions . 8

Part I. Background

2. Peering into peer-to-peer systems . 15
2.1 Back to the future . 15

2.1.1 Rise of the servers . 16
2.1.2 P2P: A born again networking paradigm . 16

2.2 Overlay networks . 18
2.2.1 Unstructured overlays . 18

2.3 Structured overlays . 19
2.4 A taxonomy of structured overlay topologies . 21

2.4.1 Ring . 21
2.4.2 Tree . 24
2.4.3 Hypercube . 25
2.4.4 Others . 25

2.5 What is stored in structured overlays? Where is it stored? . 27
2.5.1 Index vs. Storage: Separation of concerns . 27
2.5.2 A taxonomy of replication in structured overlays . 28

2.6 Conclusion . 29

Part II. Self-organizing overlay substrate

X Table of Contents

3. The P-Grid overlay network . 33
3.1 Beyond DHTs . 33
3.2 The P-Grid overlay network . 35

3.2.1 Average Search Cost Analysis . 37
3.3 Range queries: Algorithms and complexity . 39

3.3.1 Min-max traversal algorithm . 39
3.3.2 Shower algorithm . 42

3.4 Complementary contemporary contributions . 43
3.4.1 Locality . 43
3.4.2 Look-ahead routing . 44
3.4.3 Abstracting k-ary trees . 45
3.4.4 Iterative vs. Recursive processing of an isolated query . 45

3.5 Conclusion . 45

4. Multi-faceted load-balanced overlay . 47
4.1 Gamuts of load-balancing in structured overlays . 47

4.1.1 Sources of load-skew . 47
4.1.2 Alleviating load-skew . 48

4.2 Need for speed in overlay construction . 50
4.3 Fast construction of load-balanced overlay . 53

4.3.1 Decentralized Partitioning . 55
4.3.2 Adaptive eager partitioning . 56

4.4 Algorithmic issues and heuristics . 59
4.4.1 Initiating the indexing process . 59
4.4.2 Synchronizing and terminating the indexing process . 60
4.4.3 Coalescing partitions (path retraction) . 61
4.4.4 Complexity . 61

4.5 Peers joining a (partially) existing P-Grid network . 62
4.5.1 Local view of the global structure . 63
4.5.2 A new peer joining an existing P-Grid network . 64

4.6 Re-balancing structural replication . 65
4.6.1 Collecting statistical information at a peer . 67
4.6.2 Choosing migration path for a peer . 67
4.6.3 Migrating a peer . 68

4.7 P-Grid as a DHT . 68
4.7.1 Balanced tree construction with controlled replication . 69

4.8 Evaluation results . 69
4.8.1 Parallelized load-balanced overlay construction . 69
4.8.2 New peers joining an existing network . 72
4.8.3 Replication load balancing . 74
4.8.4 Simultaneous balancing of storage and replication load in a dynamic setting 79

4.9 Related work . 80

Table of Contents XI

5. A first-order balancing of query-load . 85
5.1 Introduction . 85
5.2 Route in-degree in randomized overlay topologies . 87
5.3 Replication and search cost . 88
5.4 Optimal query-adaptive replication strategy for structured overlays . 89
5.5 Optimal replica placement . 91
5.6 Results . 92

5.6.1 Balancing in-degree in randomized routing networks . 92
5.6.2 Numerical evaluation: Square-root vs. Proportional replication 93
5.6.3 Simulations: Optimal query-adaptive replication . 95

5.7 Conclusion and future work . 97

6. A self-referential directory . 101
6.1 Introduction . 101

6.1.1 A separation of concern from the underlying physical network . 103
6.1.2 What are some of the other overlays doing? . 104
6.1.3 Motivation for a new approach . 104
6.1.4 Problem statement and overview of the approach . 105

6.2 Self-referential directory service protocols . 108
6.3 Processing queries using self-healing routing: An example . 110
6.4 Self-healing routing algorithm for a query (search) . 113
6.5 Analysis of the algorithms . 114

6.5.1 Models for analyzing the overlay under churn . 114
6.5.2 Analysis of an isolated search/query (static resilience of the overlay) 115
6.5.3 Recursive queries and dynamic equilibrium. 116

6.6 Analytical and simulation results . 118
6.7 Related Work . 121

6.7.1 Identity management . 121
6.7.2 Security issues . 122
6.7.3 Overlay route maintenance . 123
6.7.4 Analysis of overlays under churn . 125

6.8 Conclusions . 127

7. Experimental evaluation on PlanetLab . 129
7.1 PlanetLab as an experiment testbed . 129
7.2 Objectives and scope of the experiments . 130
7.3 Experimental setup for overlay construction by recursive re-partitioning 130

7.3.1 Experimental evaluation . 131
7.4 Experimental setup for evaluation of the range query algorithms . 132

7.4.1 Experimental evaluation . 135
7.5 Conclusion . 140

Part III. Content management in internet-scale systems

XII Table of Contents

8. Efficient redundancy maintenance in storage systems . 145
8.1 Introduction . 145
8.2 Redundancy mechanisms: Replication, Erasures and Digital Fountains 147
8.3 Maintenance strategies . 149
8.4 Markovian time-evolution analysis . 151
8.5 Churn model . 152
8.6 Analysis: Erasure code based redundancy, lazy maintenance . 154

8.6.1 Effect of churn . 155
8.6.2 Lazy Maintenance Strategy-A: Deterministic Procrastination . 155
8.6.3 Lazy Maintenance Strategy-B: Sampling Random Subsets . 156
8.6.4 Correlated failures . 157

8.7 Results . 158
8.7.1 Validation of the analytical model . 158
8.7.2 Static resilience versus steady state analysis . 160
8.7.3 Overheads of lazy maintenance mechanisms . 160
8.7.4 Surviving correlated failures while using lazy repairs . 161
8.7.5 Convergence, uniqueness and stability (of the system) and validity of the model 163

8.8 Ongoing and future work . 165
8.9 Conclusion . 166

9. A push/pull gossiping primitive for unstructured sub-networks . 167
9.1 Introduction . 167
9.2 Motivation and problem statement . 168
9.3 System model . 169
9.4 Analysis . 171

9.4.1 Setup and notation for the analysis . 171
9.4.2 Analysis of the push phase . 173
9.4.3 Analysis of the pull phase . 176
9.4.4 Query (request) . 177

9.5 Analytical results . 177
9.5.1 Impact of the initial online population size . 178
9.5.2 Impact of varying fanout (fr) . 178
9.5.3 Impact of departing peers (σ) . 178
9.5.4 Impact of probability of forwarding (PF (t)) . 178
9.5.5 Scalability . 181
9.5.6 Comparison with simple flooding (like in Gnutella) and variants 181

9.6 Potential optimizations and self-tuning . 183
9.7 Related work . 184

9.7.1 Replication and updates in databases . 184
9.7.2 Group communication and lazy epidemic schemes . 185
9.7.3 Peer-to-peer systems . 186

9.8 Future work . 187
9.9 Conclusions . 187

Part IV. Conclusion

Table of Contents XIII

10. Conclusion . 191
10.1 Interplay of peer-to-peer systems . 191
10.2 We build upon our tools . 193
10.3 Analyzing self-organization . 194

10.3.1 Transient versus steady-state analysis . 194
10.3.2 Mean value versus density (distribution) function . 195

10.4 Future directions . 196
10.5 A blend of systems and theory for peer-to-peer research . 197

A. Decentralized partitioning (further analysis). 213
A.1 Evolution of (probability) distribution function . 213
A.2 Error Analysis . 215

A.2.1 Numerical Simulation of the Markov Model . 216

1. Preamble

“Anything you build on a large scale or with intense passion invites chaos” — Francis Ford Coppola

1.1 The peer-to-peer (P2P) paradigm

The recent years have witnessed a paradigm shift in the usage of the internet, with widespread proliferation

of peer-to-peer technologies for diverse applications and services - including content storage and sharing

(file-sharing, content distribution, backup storage) and communication (voice, anonymous, instant mes-

sages, multicast, internet indirection) to name a few.

But what is the peer-to-peer (P2P) paradigm?

Since the year 1999-2000, when the first incarnation of Napster was beginning to be incinerated with

lawsuits, making the phrase peer-to-peer (P2P) not only well-known but also unfortunately synonymous

to pirate-to-pirate sharing of files violating copyrights, and such a shadowy image further augmented by

propaganda on the potential misuses of anonymized content distribution networks like Freenet [39, 38], a

holistic, precise and unanimously agreed definition of peer-to-peer is yet to be found!

Over the years however, with the advent of many other legitimate business models using peer-to-peer

technology, the perception about the peer-to-peer paradigm has changed positively. Even at what is the

nascence of this born-again1 paradigm of computing, P2P’s potential is being better appreciated as more

than one established industry is forced to rethink their business models - be it the entertainment industry or

the telephony sector.

Peer-to-peer systems are large, networked, distributed systems.

From the application perspective, the P2P paradigm is essentially about utilization of otherwise unuti-

lized resources available from across the world - for the end-users from the end-users. It is about perform-

ing processing, bandwidth, storage or human-resource intensive tasks and value additions - which would

otherwise have had incurred dedicated and expensive infrastructure, were it to be done by central service

providers.

1 The internet was originally designed to specifically facilitate peer-to-peer interactions, as we’ll recapitulate in Section 2.1.

2 1. Preamble

From the systems perspective, the peer-to-peer paradigm is about management of such autonomous

and individually unreliable resources which come together dynamically in order to provide (albeit often

probabilistic) guarantees to meet whichever desired objectives the system is meant to meet, without global

knowledge, central control or dedicated infrastructure.

One most debated topic while defining a peer-to-peer system is whether such a system comprises of

any centralized component or not. Looking at some of the classic peer-to-peer systems like Napster [170]

(for file sharing), Seti@Home [18] (for grid computing), PlanetLab [37] (testbed for distributed systems) or

Skype [160] (for VoIP communication), we see that some part of these systems are centralized - Napster’s

index of files being shared by users, Seti@Home’s management of distribution of task and aggregation of

results, PlanetLab’s management of slices and Skype’s management of user accounts. These components are

purely client-server. On the other hand other components of these systems, like the actual storage and band-

width for file transfer in Napster, computational infrastructure in Seti@Home and PlanetLab, and discovery

of the latest physical address (IP address) and the voice communication among Skype users involve only the

resources from the users themselves. Thus to say, a hybrid architecture with some centralized component

may still have many other functions performed in a peer-to-peer manner.

However centralization (physical or logical) can become a single point of failure or attack (physical

and/or legal), a bottleneck, incur high administrative overhead or be a point of censorship or monopoly or

may simply not scale.

To that end, completely decentralized systems are desirable. A point in case is the advent of the Gnutella

(unstructured overlay) network among others to fill in the vacuum left by Napster’s closure.

The Gnutella story also exposes the other side of the story of decentralization. Gnutella’s originally flat

structure meant that locating resources required flooding the whole network which is bandwidth intensive,

in contrast to a single message exchange that was required in the client/server paradigm used in Napster.

A partial flooding on the other hand results in incomplete results, that is, a resource present in the network

may well not be found (in information retrieval terminology, recall < 1). Super-peer based hierarchical

architectures alleviate the problems to certain extent.

At this point of the story, a nagging question remains - does decentralization help or hinder scaling, and

what about the service guarantees?

Napster provided a centralized index, making resource discovery very efficient and complete, but be-

coming a single point of attack/failure. Gnutella did away with the central server, and at the same time lost

the index, making the resource discovery process both imprecise and expensive and slow.

A third way, a middle path of sorts is however to build a decentralized index (structured overlays).

Structured overlays can facilitate resource discovery completeness efficiently2 based on communication

with only a very small fraction of the peer population - typically logarithmic.

2 Purely in terms of bandwidth efficiency, a centralized system will of-course be more efficient.

1.2 Self-organizing Substrates 3

This example shows that a properly designed decentralized system can indeed scale and provide perfor-

mance guarantees - since with larger number of participants the available resources in the system also grow.

Thus, in this dissertation, we consciously focus on design of completely decentralized systems. In fact a

significant part of this dissertation is dedicated to the design of a structured overlay network. More on the

objectives and contributions of this dissertation will follow later.

Intuitively, nature prefers disorder than order. The fundamental questions to ask about decentralized

systems are - how then do such decentralized systems with desirable properties come into being, and how

do such systems sustain these desirable properties over a prolonged period of time.

Many large-scale systems, even those which have some central components managing it partially, by

design or coincidence - exhibit what can be termed as self-organization and self-maintenance. Such self-

organization allows individual or small units of participants to participate autonomously and act locally

such that a global behavior emerges. Examples as diverse as ant colonies to the internet may be cited as

instances of such self-organization.

We rely heavily on this potential of large scale systems to self-organize and self-maintain, in order to

design what we call self-organizing substrates, that in turn provides some fundamental efficient and reliable

building blocks for other large-scale systems and applications judiciously using (for example to provide

load-balancing) resources spread across the edge of the network, even if the participants are individually

unreliable and autonomous.

Before venturing further and describing the specifics of the substrates/services we endeavor to provide,

a word of admonition regarding the scope of this dissertation is necessary. We consider that participants

of the system (peers/nodes) are cooperative but nonetheless unreliable and autonomous. We consider a

bimodal unreliability - either the participant provides the resources at its disposal, or its away from the

system (offline/crashed). The whole process of self-organization and self-maintenance is then to utilize the

resources available in the system at any time, which varies over time, but with full cooperation of these

online participants.

Issues like trust, incentives, selfish, non-cooperative, or intently malicious participants (launching dis-

tributed denial of service - DDoS - attacks) are not considered in this work. As more and more peer-to-peer

systems and applications proliferate our daily lives, such security concerns and enforcement of cooperation

will become even more critical, and is clearly a big challenge for the P2P research community in general.

These are active research topics, and some of the existing ideas to deal with these problems may be used in

conjunction with the systems designed here. But these security issues are out of the scope of this dissertation.

1.2 Self-organizing Substrates

Most peer-to-peer applications require one or several of the following elemental functionalities: (i) Re-

liable and efficient discovery of resources distributed over the network, (ii) Communication among par-

4 1. Preamble

ticipants (preferably in an address independent manner) even when peers change their physical addresses

(logical mobility), (iii) Availability and persistence of stored objects in the network, irrespective of avail-

ability or departure of individual participants from the system at any given time and (iv) Freshness of the

objects/resources’ (up-to-date replicas).

These functionalities are in themselves realized by building full-fledged systems. These are also used

as building blocks to build other P2P systems and functionalities and hence we call these as substrates.

Literally, a substrate means an underlying layer; a substratum. It is not only that other P2P systems need

some of these elemental functionalities to build upon, but also these substrates themselves have mutual

interdependencies.

We will point out some potential uses of these substrates when we study each of them in detail, and we’ll

also point out the interdependencies among these substrates at relevant junctures. We’ll summarize these

dependencies and interdependencies later in Table 10.1.

The principal contribution of this dissertation is to look into the self-organizational aspects of these sub-

strates - dealing with the dynamics of the system arising from membership changes (churn) and judiciously

using the resources (load-balancing) adaptive to the workload.

1.2.1 Structured overlay networks

Structured overlay networks have become a standard technique to provide efficient resource discovery over

the network. A structured overlay is essentially a distributed index structure. Distributed Hash Tables (DHTs)

like Chord [163], Pastry [154] and CAN [140] were some of the earliest structured overlay networks. DHTs

however are not suitable for data-oriented applications (e.g., to do range queries). We propose the con-

struction and maintenance of the P-Grid overlay network in a manner so as to provide efficient search of

both individual keys as well as a whole range of keys [52], and doing so providing good load-balancing

characteristics [6, 8].

In addition, we propose a parallelized mechanism [8] to construct (such load-balanced) overlay networks

- analogous to re/construction of an index in databases - as a departure from the traditional approaches which

looked into a (quasi-)sequential network membership change (churn).

In order to support range queries, it is necessary to retain ordering information while creating the keys to

be indexed. Doing so leads potentially to non-uniform distribution of keys over the key-space. Our overlay

construction mechanism thus deals with unknown and arbitrary such distributions in order to build load-

balanced overlays. Moreover, we can build such an overlay in a rapid manner. Such fast overlay construction

is analogous to (re-)indexing, useful for example to construct a new index based on a new attribute. These

two properties - preservation of ordering information and fast construction of a new index, and doing so in

a load-balanced manner makes P-Grid suitable for more data-oriented applications including using it as the

underlying indexing mechanism for peer-to-peer information retrieval applications.

1.2 Self-organizing Substrates 5

Apart dealing with skewed distribution of keys, we deal with a gamut of other load-balancing issues

encountered in overlay networks - including the determination of an optimal caching scheme (how many

and where to cache for a limited storage capacity) to deal with skews in usage load of individual keys.

1.2.2 Managing peers’ identity and logical mobility

A directory service providing meta-information about peers can be of immense use for various purposes.

This meta-information can be diverse and derived based on diverse ways, ranging from for instance the latest

physical address of peers or some relatively abstract notion like the trustworthiness of peers. The overlay

index itself is essentially a directory. So the overlay can as well be used as a directory service for peers

participating in the overlay itself.

We propose the use of such a self-referential directory [5] using the P-Grid overlay itself in order to

preserve securely (resistant against impersonation attacks) peers’ identity (ID) over multiple sessions over

which peers’ physical addresses (IP) change. Based on such a self-referential directory storing peers’ ID-to-

IP mapping, a family of efficient lazy route repair schemes have also been proposed (Correction on Use and

Correction on Failure) which is efficient and effective for a wide range of churn levels. In fact such repair

is achieved by a small alteration of the greedy routing in the overlay, which makes the routing process to

recursively trigger new queries in the network leading to self-healing. We validate the feasibility of such

a self-healing overlay maintenance mechanism based on a self-referential directory in the context of the

P-Grid network.

1.2.3 Persistent and available storage

Collaborative storage systems spread over the network can be an economical way to store and back-up

data. Such a mechanism is not only cost-effective, eliminating the need of expensive backup tapes or RAID

systems, but also can provide better protection against geographically restricted physical damages like a fire

in a building or a hurricane in a city, in which case, unless the back-up is in a different physical location, it is

of no use. A peer-to-peer storage system can thus cater to diverse kind of end users - from individuals to big

multinational corporations. In P2P storage systems, redundancy is used for persistence and high availability

of content stored in the system irrespective of availability of individual participants. Over time, as the peer

population changes and some members leave the system either temporarily or for ever, it becomes necessary

to maintain a certain level of redundancy. Traditionally, any loss (potentially temporary) of redundancy was

compensated immediately. Such a proactive approach however turns out to be expensive since it does not

exploit the returning peers which bring back the temporarily unavailable content - particularly for large

objects. A recent deterministic lazier approach [25] proposed to trigger repairs when a given threshold of

the redundancy is lost. Such an approach makes redundancy maintenance efficient - but we prove it to be

actually vulnerable - with resistance to only low level of churn, and very little or no resistance against

6 1. Preamble

correlated failures. We provide an alternative randomized lazy repair strategy - which samples a smaller

random subset of the redundantly stored content and replaces immediately the lost redundancy. By making

the size of the random subset adaptive to the current availability of the object - so that not all the losses

are immediately detected - in effect we device a hybrid of the existing proactive and lazy mechanism, and

it performs gracefully in terms of the maintenance cost as well as resilience. In fact, the maintenance cost

of our scheme averaged over time is comparable (and often lower) than the existing deterministic lazy

approach, while our scheme has better resilience against both regular churn as well as correlated failures

(than the deterministic lazy approach). These approaches were analyzed and the results validated for erasure-

code based redundancy, however the underlying principles hold for other redundancy mechanisms, (namely

- pure replication or rateless erasure codes) and hence our maintenance strategy can be used for better

exploration of resilience-maintenance cost trade-offs for redundancy maintenance in storage systems using

any of the redundancy mechanisms.

1.2.4 A gossiping primitive

Redundantly stored content need to be updated. Such update is required to introduce either a new version

of an existing object or to introduce a new object at multiple sites (replicas). Depending on the application

or object popularity, the size of the replica population may be large and even changing - such that a point-

to-point communication directly from the originator of the update to each and every replica may not scale.

Moreover all replicas may not be online when an update operation is performed, and later the originator may

as well go offline. To deal with the challenges of scale and membership dynamics, we proposed a push/pull

based gossip communication primitive to propagate updates within an unstructured (replica) sub-networks.

This update mechanism is integrated in the P-Grid system for overlay replica maintenance. Though de-

signed for update propagation, the gossip mechanism can as well be used for purposes like probabilistic

communication in large dynamic groups.

1.3 The philosophy and practice of self-organization

Both by design or chance, large-scale systems exhibit self-organizational properties. The above mentioned

contributions to algorithms and system design rely on better understanding and in turn exploitation of the

dynamics of self-organization in such large scale systems.

Incidentally, just like “peer-to-peer”, “self-organization” is in-fact an even more difficult to define buzz

word and there are very many subjective interpretations, even as researchers from domains as diverse as

physics, biology/ecology, social science and computer science (cybernetics) study self-organization in di-

verse systems - from the domain alignment in magnets, ant colonies, small-world phenomenon in social or

communication networks to give some well-known examples.

1.3 The philosophy and practice of self-organization 7

Informally speaking, self-organization is about distribution of control (decentralization), where individ-

ual participants act locally and autonomously, based on local stimulus or information, and still global prop-

erties emerge. E.g., preferential attachment [22] leading to power-law connectivity of the internet (routing

infrastructure), world wide web (hyperlink connections), Gnutella network.

One interpretation of self-organization [84] is as follows. “Self-organization is the process of evolution

of a complex system with local interaction of system components only, resulting in system states with certain

observed or intended global properties. A self-organizing process is driven by randomized local variations.

These “fluctuations” or “noise” as they are also called, lead to a continuous perturbation of the system

and allow the system to explore a global state space until it enters into (dynamic) equilibrium states. These

states correspond to the global, emergent structures.”

A mathematical interpretation of the above definition is to study the system as a probabilistic system with

Markov property, and the equilibrium or absorbing state(s) for the corresponding Markov chain provides

then the emergent state of the system. We briefly look into the general framework for modeling and studying

self-organization under this premise.

1.3.1 Probabilistic systems

Traditionally system properties are described in terms of observables. The full description of the properties

of the system - represented by a state vector s determines the state of the system. Typically, the state is time

dependent, and hence can be represented as s(t). A typical example will be from classical physics - that of

the position of a moving object.

Often in a complex system, the exact state of the system can not be known for certain, and instead the

probability distribution of the states - P is definable and is of greater interest. Thus to say, if the system

resides in state si with probability Pi,3 then the probabilistic system’s state can be represented as P =
∑
∀i Pi(si). A typical example will be the outcome of a coin-tossing experiment.

The dynamics of the system is then described by the time evolution of the probability distribution func-

tion P (t).

1.3.2 Markov model for self-organization

Given a set of possible states S, which usually is very large, the evolution of a complex system can be

described deterministically by a function fT : S → S. In practice, the lack of information about the precise

state will make a deterministic description of the system evolution infeasible. Thus a more realistic way to

describe the system’s evolution is by a stochastic process following the Markov property.

3 Using this notation implicitly assumes a discrete state space, though an extension to a continuous space is natural.

8 1. Preamble

For each given state sj we can give the probability that a state si is reached, i.e. Pi(si|sj) = Mji ∈ [0, 1],

where M is the transition matrix of a Markov process. Given the probability distribution of states Pj(sj , t)

at time t it is thus possible to calculate the time evolution of the system as

Pi(si, t + 1) =
∑

i

Mji Pj(sj , t).

The emergent behavior of the self-organizing system correspond to the equilibrium or absorbing states

of the Markov chain, determined by the distribution P =
∑
∀i Pi(si). This distribution should be time-

independent once the system has reached its equilibrium or absorbing states.

This is the principal mathematical framework we will use in this dissertation to study the behavior of

the algorithms, and hence the systems we’ll design. Whenever applicable, the analysis results have been

validated against simulations. We used such a two pronged approach of using both analysis and simulations

because the simulation based validation helped in sanity checking the analytical model, and in turn the

theory helped discern facts from implementation artifacts.

Even though the emphasis has been to develop algorithms based on a fundamental understanding of the

system’s behavior based on appropriate models, we’d like to admit that since our primary objective is to build

practical systems we have not shied away from heuristics either. For what are heuristics in systems design

would be called art (or may be black art) in other trades. We also evaluate the performance of algorithms

and systems built on such heuristics based on simulation experiments.

1.4 Thesis organization and main contributions

This thesis is divided in four parts.

In Part I we provide general background on peer-to-peer systems. Chapter 2 starts with a brief history

of the peer-to-peer paradigm followed by a closer look at structured overlays. Structured overlays are dis-

tributed index structures storing key-value pairs, where the value is the resource (or pointers to the resource)

which is discovered by looking for the key. Thus structured overlays primary role is to support resource

discovery in a decentralized setting. Structured overlays can also be used for substrate for other applica-

tions (e.g., broadcast [58]) and other overlays built on top (e.g., Scribe [34] for multicast trees, GridVine [3]

semantic overlay networks), and is a fundamental building block for many peer-to-peer systems.

In Part II we look into the various aspects of structured overlay network design. While many of the ideas

are general, some others are specific to the P-Grid (www.p-grid.org) system [1, 7, 8]. The ideas are almost

always validated with P-Grid unless otherwise stated.

In Chapter 3 we first introduce the P-Grid structured overlay network. The P-Grid routing network is

motivated by prior works on prefix based routing [132] and scalable distributed data structures (SDDS) [108,

1.4 Thesis organization and main contributions 9

109] and was introduced [1] prior to the commencement of this dissertation. Thus the contributions of this

dissertation start from Section 3.3.

(i) We introduce and analyze the algorithms for performing range queries in P-Grid. In Chapter 4 we

introduce various mechanisms to construct a load-balanced P-Grid network.

(ii) Apart sequential overlay construction, as has been traditionally studied, we propose a mechanism to

construct the overlay rapidly in a highly parallelized manner.

(iii) The overlay construction mechanism ensures (storage) load-balance at each peer even in presence

of skew in the load-distribution (over the key-space). Such load-skews typically occur when lexicographic

ordering is preserved, which is necessary to perform efficient range queries.

(iv) We propose stochastic mechanisms to balance the replication of different keys in the structured

overlay. In contrast to related works, we do not impose a globally predetermined replication factor. Instead

we allow peers to decide on the absolute load they are willing to bear, i.e., absolute amount of resources

they are willing to contribute to the overlay. Based on that the replication (of the index) is adapted to the

available resources in the system.

In Chapter 5 we concentrate on query-load balancing, particularly when different keys are queried with

different frequencies.

(v) We show that replication proportional to the query load not only provides a first-order balancing4

of query-answering load (which is intuitive), but also optimizes the search latency in structured overlays

with logarithmic search-cost. This simultaneous optimization of load-balancing and search cost is not intu-

itive since in various contexts like unstructured overlays [111] and mobile broadcast disks [12], replication

proportional to the square-root of the popularity has been shown to be optimal.

Having dealt with the issues of overlay construction and maintenance to achieve diverse sorts of load-

balance, in Chapter 6 we focus on the maintenance of the overlay under churn, particularly focusing on the

issue of peers’ logical mobility (change of physical/IP address).

(vi) We propose a self-referential directory. The self-referential directory in itself is general purpose.

(vii) We propose a family of self-healing routing mechanism, which uses the self-referential directory in

order to discover peers’ latest ID-to-IP mappings when such mappings change.

Incidentally Skype [160] claims to have achieved the same functionalities independently in a super-peer

architecture, and asserts that having outsourced this critical and resource gobbling activity to the users, they

4 If there is skew in the distribution of load (query load in this case), different peers are likely to be subjected to different load.
By first-order balancing we mean that the load is redistributed such that each peer is likely to get the same load - i.e., have
a random uniform distribution of load among the peers. This in itself however does not automatically mean that in reality
each peer will have exactly the same load - because of statistical variation. To reduce such statistical variation, second-order
balancing mechanisms are also required in practice to improve the quality of load-balancing. By second-order balancing we
mean mechanisms to reduce the variation as is observed based on solely first-order balancing.

10 1. Preamble

could improve their quality of service. This also exemplifies the practical problems we try to solve in this

dissertation.

(viii) We adapt tools from cybernetics to model the dynamics of continuous loss of and repairs of routing

information to determine the system’s performance. Given a fixed rate of churn (membership dynamics), the

overall system operates at a dynamic equilibrium. In the context of peer-to-peer systems, we thus introduce

the concept of dynamic equilibrium, which extends the previous analytical tools to understand the system

behavior under churn. These previous tools included the notion of static resilience (how the system behaves

before any repairs) [75] and half-life (lower bound on repair costs to reach a fully consistent state) [106].

The notion of dynamic equilibrium is necessary - since it explicitly models the fact that the system will

never arrive at a fully consistent state, and instead operate at the equilibrium state. This also leads way to

determine the maintenance cost for any specific maintenance mechanism and the system’s performance and

resilience when the specific maintenance mechanism is used.

In Chapter 7 we provide experiment results based on deployment of the actual Java based P-Grid soft-

ware in the PlanetLab testbed. The implementation of the software is a larger collaborative effort, and these

experimental results are included primarily in order to validate the theory. The P-Grid implementation exclu-

sively (but not exhaustively) uses algorithms developed in this thesis, and some of the more recent algorithms

proposed here are still in the pipeline to be integrated and/or benchmarked.

In Part III we look into some aspects of content and storage management in peer-to-peer systems.

Chapter 8 looks into the dynamics of peer-to-peer storage systems under churn.

(ix) We demonstrate the general applicability of using the notion of dynamic equilibrium (earlier devel-

oped to model the behavior of the overlay network) in peer-to-peer settings by studying storage systems

under churn.

(x) We propose a simple randomized lazy redundancy maintenance algorithm, which can better explore

the cost-resilience tradeoffs and has both lower overhead and better resilience (against churn as well as

correlated failures) than existing lazy maintenance mechanism [25] for storage systems.

In Chapter 9 we propose a generic gossip based communication primitive for unstructured subnetworks.

(xi) We introduce a push/pull gossiping primitive. This mechanism was originally devised to propa-

gate update messages among replica sub-groups efficiently and effectively even in presence of churn. The

mechanism is efficient since it reduces duplicate messages and effective since it reaches all online replicas

(probabilistically).

We conclude in Chapter 10 (Part IV). There we look at the interdependence of the substrates themselves,

as well as how some other P2P systems are using some of these building blocks.

This dissertation comprises of ideas developed over the last few years which have seen vigorous activ-

ity in the peer-to-peer research community. There have thus come about alternative, and sometimes better

mechanisms to deal with certain problems. New results, small or big, keeps pouring in almost daily. We try,

1.4 Thesis organization and main contributions 11

to the best of our knowledge, to provide and put in context our work with not only what existed prior to our

contributions but also to what have come about since.

We have particularly tried to design systems that function efficiently for a wide range of environment in

a self-adaptive manner avoiding the need for manual configurations and predetermined hard-coded global

parameters - which can be serious impediments to deploy and manage the systems in diverse and changing

environments. To that end, the analysis of these systems as complex systems has not only helped in revealing

the dynamics of such large-scale systems (post-design analysis), but also to exploit the same in order to

design improved and adaptive algorithms.

For instance, the algorithms developed for both overlay route maintenance as well as redundancy mainte-

nance in storage system have inherent adaptivity to the environment, such that the maintenance cost grace-

fully increases with increased dynamicity, and is marginal in a stable environment, unlike other existing

approaches which heavily rely on global predetermined parameters in their design, and often incurs a con-

stant cost irrespective of the dynamics. Philosophically similar adaptivity may be observed in various other

aspects of various other algorithms we develop. For example, for simultaneous load-balancing of storage

and replication, our system automatically adapts the replication factor depending on available resources

available in the whole system, based on the storage space each peer is willing to devote (which is easier

to determine locally) in comparison to other overlays which rely on a globally predetermined replication

factor hard-coded in the algorithms and the software. Likewise, for gossip based update propagation, the

algorithm we propose has in-built mechanism to avoid duplicate messages, and can potentially be further

modified to incorporate adaptivity to the environment. We have explored the potential of such adaptivity to

reduce communication overheads even though we have not currently exploited such potential for the gossip

scheme.

Finally, we’d like to reemphasize that even though this dissertation looks more into the design issues,

the algorithms proposed here has led to a fully functional implementation of the P-Grid overlay network

in Java (www.p-grid.org). A storage system exploiting specific properties of Digital Fountain erasure codes

is also being implemented. The P-Grid overlay is in turn being used as an underlying primitive for various

other applications like peer-to-peer information retrieval [30], peer data management systems and semantic

overlays [3].

Part I

Background

13

2. Peering into peer-to-peer systems

“Interdependence is and ought to be as much the ideal of man as self-sufficiency. Man is a social being.” —

Mohandas K. Gandhi

2.1 Back to the future

The essential philosophy of peer-to-peer (P2P) systems is to exploit resources available at participating

members (peers) of the system.

In effect its a mechanism to enable the collaboration of and use of otherwise unused resources available

at the individual end-users at the edge of the internet - rather than relying on dedicated service providers and

infrastructures.

The resources at the edge can be physical resources like storage, computation or bandwidth, human

resources or content or information/knowledge at these edge points of the network.

To emphasize the human factor which we won’t study any further in this thesis - we would like to give

a few examples, which are inherently peer-to-peer in nature, even if not always explicitly recognized as

such. Open-source software projects essentially use human resource in a peer-to-peer manner, as does the

collaboratively written and maintained encyclopedia Wikipedia [171], even if these projects are maintained

at central servers. Another instance is the PGP [66] decentralized public key infrastructure, where the social

network is mapped into a web-of-trust to certify public keys.

The term peer-to-peer became popularized by music file-sharing networks, particularly by early birds

Napster [170] and Gnutella [71], however the peer-to-peer paradigm has a much longer history in the world

of computing, well summarized in “A revisionist history of peer-to-peer” [57].

Even before the file-sharing networks made peer-to-peer a commonly understood phrase, since the times

when the internet was first conceived (ARPANET), the internet was designed to enable isolated and diverse

computer networks across the U.S. to interact among themselves in a peer-to-peer fashion, so to say, without

hierarchy or special roles for any specific participant. Similarly, many applications like FTP or Telnet use two

computers as server and client, however any computer can play the role of both - essentially demonstrating

the symmetric (peer-to-peer) relationship of the computers in the system. This role symmetry of individual

peers acting as both a client and a server led to the notion of servents. Usenet’s server synchronization used

16 2. Peering into peer-to-peer systems

a peer-to-peer gossiping scheme. Similar gossip/epidemic schemes for synchronizing autonomously repli-

cated databases [54] have also been used in the database community. The DNS, organized hierarchically,

uses delegation to scale, enabling numerous autonomous participants to come together and form the internet

as we know it today. Finally, the routing infrastructure of the internet itself works in a peer-to-peer fashion,

where different ISPs establish peering relationship to each other to forward the packets between diverse

destinations and sources.

2.1.1 Rise of the servers

With the proliferation of personal computers hooked to the internet with slow modem connections, the

dominant applications on the internet during the dot-com boom in the late 90s comprised of web-browsing,

email & chat and e-commerce portals - relatively few service providers using dedicated infrastructure to cater

to a huge number of users connected through poor connections with their relatively resource constrained

personal computers. Such a usage pattern also meant that the internet infrastructure subsequently moulded

itself accordingly - as can be seen from the asymmetry of upload/download connections most ISPs provide

to this date, among other things. Moreover security aspects, and the sheer need to scale to the number of end

users with a limited addressing space (which led assignment of temporary physical addresses) all meant that

end-users directly communicating among each other was neither feasible, and mostly undesirable. Dynamic

assignment of IP addresses, NATs and firewalls proliferated, to deal with the rapid expansion of the internet’s

userbase. Autonomous clients connecting to well-provisioned and well-maintained servers came to be the

usage pattern.

This first phase of mass-commoditization of the internet thus saw a dominance of the client-server model,

with relatively few servers catering to a large number of clients. Such a client/server usage model has many

advantages, and will definitely play an important role in the future of the internet. Nonetheless, there are

diverse application scenarios which require a peer-to-peer paradigm of user interactions.

2.1.2 P2P: A born again networking paradigm

Several things happened around the end of the last millenium so that the potential of peer-to-peer computing

and networking paradigm was (re-)discovered. It is thus very likely that the future will see both client-

server as well as peer-to-peer and hybrid architectures playing significant role, depending on application

and resource requirements.

Moore’s law caught up with the user-base of the internet. Users had larger disk-spaces, and improving

internet connectivity often with a flat pricing. Users had local collection of music files thanks to the mature

MPEG-1 Audio Layer 3 (MP3) compression technique. And may be, without advocating for piracy, but

just as an explanation, one can argue that the monopoly of the music industry meant that audio CDs were

exorbitantly priced. Almost all the ingredients for the next revolution were there - to democratize the internet

2.1 Back to the future 17

- where users could access resources in general, and music files in particular, stored by fellow users over the

internet. The missing link was an effective way to find the available resources.

Finding resources and information spread across the internet is a non-trivial problem1. Napster served the

niche market of discovering music (MP3) files spread across the internet in users’ hard-disks by providing a

server which would collect information and index the files stored by the clients. All Napster users could then

search this central index to locate the file they were seeking. So far, every thing followed the client/server

model.

However, bandwidth (and also storage) being precious resources, the server did not participate in the

actual file transfer. Instead the file transfers were done directly by and between the end users. Thus we see in

what has now come to be known as a first generation P2P technology how the server avoided the bandwidth

and storage intensive tasks by exploiting the end user resources.

P2P was born again as a networking and computing paradigm.2 Internet was back to the future, where

it’d see the bulk of its traffic [61, 128] for applications using the communication mechanism for which

the internet was originally conceived - computers at the edge of the network directly communicating and

collaborating with each other.

Ironically, peer-to-peer came to the fore because of the buzz that followed the Napster system, which

used the client-server model to solve the difficult problem of resource discovery over the internet.

Since those early days, there have been numerous developments. Among other things, decentralized and

sophisticated mechanisms for resource discovery have been developed, which forms a cornerstone for almost

all other peer-to-peer applications. In the remaining of this chapter we’ll review the existing techniques based

on overlay networks for decentralized resource discovery.

In Section 2.2 we’ll introduce the concept of overlays and how an unstructured overlay can be used

for resource discovery. Indexing is a well-known technique used for efficient and accurate search. In Sec-

tion 2.3 we explain how structured overlays provide a decentralized index structure, and how such an index is

searched based on query routing/forwarding. We take a closer look at some of the most significant structured

overlay topologies in Section 2.4. In Section 2.5 we discuss what information is stored in the overlay index

structures, and the general principles of placement of redundant information in structured overlays either

for fault-tolerance, load-balancing or optimization of search cost. We conclude the chapter in Section 2.6

mentioning some other applications of overlays and peer-to-peer systems.

1 This also explains the dominance of search-engines in the world wide web!
2 Even before the Napster phenomenon, many projects like grid computing (e.g. Seti@Home [18]) were already using end user

resources. Napster and successor Gnutella captured the hearts and minds of people, as well as academia and industry, as can be
seen from the proliferation of the phrase (even when sometimes it is used more as a marketing gimmick).

18 2. Peering into peer-to-peer systems

2.2 Overlay networks

An overlay network is a type of computer network which is built on top of another network. Nodes in the

overlay can be thought of as being connected by virtual or logical links, each of which corresponds to a

path, perhaps through many physical links, in the underlying network.3

The concept of overlays is generic. Both application specific overlay networks can be built, as well as

generic substrate supporting diverse applications can be built. Moreover, overlays can be layered - one kind

of overlay built on top of another. An overlay network is thus an application layer internet which disentangles

the underlying (physical) layer from the applications and supports programmability and customization to

meet and optimize specific functionalities.

We describe next what are called unstructured and structured overlays which are primarily used for

resource discovery in a wide area network. Refer to [150] for a detailed survey on search methods in peer-

to-peer networks. The same overlay networks are often used as a substrate for different communication

primitives as well.

2.2.1 Unstructured overlays

In unstructured overlays, any peer can potentially be responsible for one and all resources. The Gnutella [71]

network is such an example. As discussed earlier, Gnutella replaced the first-generation P2P system Napster

which used a centralized index. The so called second generation (2G) P2P systems like Gnutella avoided

such a centralization by completely discarding the use of an index. Instead, in Gnutella, peers would simply

broadcast/flood the network with queries [162]. Because of small-world clustering characteristics of the

nodes [149, 164], Gnutella like networks support fairly effective search of resources, particularly for the

abundantly replicated ones.

The emergence of the small-world clustering characteristics in Gnutella like systems is a result of self-

organization based on mechanisms like preferential attachment [22], however the search process itself in this

network is only a distributed algorithm. This example gives a nice example of how self-organization can help

the scaling of such systems, as well as the three fundamental ingredients of overlay networks which were

not clearly distinguished in the early days of overlay network study or design.

Three orthogonal ingredients which together make any overlay work are the following (i) the association

of resources to peers, (ii) the interconnection (topology) among the peers and (iii) the routing process.

This separation of concerns has time and again been exploited by future overlay network designers. In

the context of unstructured overlays this is illustrated by the various steps of development the unstructured

overlay networks have witnessed over the course of the last five years.

In an unstructured overlay network, originally queries were routed by flooding the network [162]. To

reduce the query traffic, new ways of searching have been proposed, including random walkers [111],
3 From the Wikipedia.

2.3 Structured overlays 19

percolation based search [156] and use of bloom filters [104]. In these approaches the routing process is

changed.

Alternatively, the association of resources to peers can also be changed in an unstructured network in

order to facilitate better search, and it has been shown that replicating the resource at random peers propor-

tional to the square-root of the resources’ popularity in conjunction with random walkers based search is

optimal [111] in terms of reducing search cost and latency.

Finally, changing the topology itself can also help. Hierarchical (super/ultra-peers) topologies are used

in many of the deployed file-sharing networks including the current version of Gnutella network. Local dy-

namic topology adaptations to spontaneously create semantic communities, so that most queries can be an-

swered locally within such a subnetwork has been studied in [36]. Another topology adaptation mechanism

builds a square-root topology [41] where the node degrees for each peer adapts proportional to the square-

root of the number of queries (popularity) for the resources it stores. All these examples show how changing

one or several of the ingredients that together make-up the overlay network - placement of resources, con-

nectivity among peers and routing mechanism, one can improve performance, i.e., reduce search latency,

increase recall or reduce messaging costs for search.

Research on unstructured overlays is still very active, but this is of only peripheral interest to us. Instead

we’ll focus on what have come to be known as structured overlays.

2.3 Structured overlays

In recent years the concept of structured overlays4 has attracted a lot of attention because of its potential

to become a generic substrate for internet scale applications - used for applications as diverse as locating

resources in a wide area network in a decentralized manner, address independent and robust and flexible

(group) communication - e.g., application layer multicast and internet indirection infrastructure and content

distribution network to name a few.

The basic function of the structured overlay is to act as a decentralized index. To that end, for each

resource, a globally unique identifier (called the key) is generated using some function suitable to the ap-

plications that are supposed to use the index. The codomain (loosely speaking, range) of this function is

called the key-space. For example, the key-space may be the unit interval [0, 1] or an unit circle [0, 1), so

that the keys can be any real number between 0 and 1. The key-value pair is stored at peers responsible for

the particular key. Efficient search of this key helps the applications to access the resource itself.

4 Super-peer based topologies are often referred to as 2.5G (and by some as third generation - 3G) P2P technologies, while
structured overlays are often considered as the third generation peer-to-peer technology by others. Despite such nomenclature of
generations, there are wide range of other peer-to-peer systems and applications than overlays, and hence such a nomenclature
using generations of P2P technologies is an artefact of considering P2P and file-sharing to be synonymous, which is not at all
true!

20 2. Peering into peer-to-peer systems

Since the primary purpose of the structured overlay is to discover resources, the value corresponding to

the key may well be a (set of) pointer(s) to the actual resource. See Section 2.5.1 for more details on this

separation of concerns of storage and discovery. To retrieve an object a query to search the object is routed

to the responsible peer by forwarding it through intermediate peers, hence we will interchangeably use the

words: “retrieve” “query” and “search”; and “route” and “forward”.

Definition 1. Structured overlay networks comprise of the three following principal ingredients:

(i) Partitioning of the key-space (say an interval or circle representing the real number between the range

[0, 1]) among peers, so that each peer is responsible for a specific key space partition. By being responsible,

we mean that a peer responsible for a particular key-space partition should have all the resources (or

pointers) which are mapped into keys which are in the respective key-space partition.5

(ii) A graph embedding/topology among these partitions (or peers) which ensures full connectivity of the

partitions, desirably even under churn (peer membership dynamics), so that any partition can be reached

from any partition to any other - reliably and preferably, efficiently.

(iii) A routing algorithm which enables the traversal of messages (query forwarding), in order to complete

specific search requests (for keys).

A special class of structured overlays are the distributed hash tables (DHTs), where the keys are gener-

ated from the resources (name or content) using uniform hashing, e.g., SHA-1 (Secure Hash Algorithm [91]).

A structured overlay network thus needs to meet two goals to be functionally correct:

(i) Correctness of routing: Starting from any peer, it should be possible to reach the correct peer(s) which

are responsible for a specific resource (key).

(ii) Correctness and completeness of keys-to-peers binding: Any and all peers responsible for a particular

key-space partition should have all the corresponding keys/values.

Correctness of routing in structured overlays is achieved by maintaining the peers’ routing tables cor-

rectly and using a proper routing algorithm. Correctness and completeness of binding is achieved by moving

the corresponding keys (content) as and when the partition a particular peer is responsible for changes, and

synchronizing the content among replica peers.

Various applications can use transparently the (dynamic) binding between peers and their corresponding

key-space partitions as provided by the overlay for resource discovery and communication purposes in a

wide area network.

One of the most important and distinguishing aspect of structured overlays is the peers’ interconnection

- the topology/geometry of the network.
5 It is also possible that keys are not strictly associated with a specific peer and instead has a looser coupling. For example, in

Freenet [39, 38], this association of keys to peers can be thought to be in a best effort fashion, such that instead of choosing the
peer which is globally the closest to a key, the locally closest peer is delegated the responsibility of the key. Such a relatively loose
coupling in Freenet was because its main objective was anonymous content distribution. Such systems are called semi-structured
overlays.

2.4 A taxonomy of structured overlay topologies 21

How this topology is established in a dynamic setting, and whether it achieves some other properties (like

- proximity and low stretch exploiting information from the underlying networking layer, load-balancing,

security against various attacks, etcetera.) and how the invariants of the topology maintained over time in

presence of membership dynamics and attacks are some of the most interesting questions that have been

investigated in the P2P research community in these last years.

The graph obtained from these interconnections can be studied for its diameter - determining the worst

case latency subject to use of an optimal routing mechanism, cut set - to determine its resilience, degree

distribution - for determining some aspects of load-balancing and topology maintenance cost incurred by

peers, to name a few implications of the topology. These properties include, among others, fundamental

tradeoffs between routing table size and network diameter [173].

2.4 A taxonomy of structured overlay topologies

Next we briefly look into some of the important topologies. These are not necessarily the optimal topolo-

gies in the sense of achieving the smallest routing table size (constant, e.g., de Bruijn networks [93, 124])

or smallest diameter (constant, e.g., Kelips [77] and OneHop [76]), however have proven to be practical

because of their overall characteristics. These systems have typically moderately small average routing

table sizes which provide good resilience at reasonable maintenance cost, small diameter, good degree-

distribution (congestion-free/load-balanced) and flexibility to deal with different kind of workloads, and last

but not the least, they are also relatively simple. The complexity of the topology can play an important role

in a peer-to-peer setting, where the topology invariants need to be established and maintained without global

knowledge and coordination in presence of potentially high membership dynamics.

2.4.1 Ring

The ring based topology was pioneered in the context of overlays in the Chord [163] network. Chord uses

SHA-1 based consistent hashing to generate an m-bit identifier for each peer p, which is mapped onto a

circular identifier space (key-space).

Irrespective of how the peers’ identifiers are generated in a ring based topology, what is essential is that

the peer identifiers are distinct. Similarly, unique keys are generated corresponding to each resource. Each

key on the key-space is mapped to the peer with the least identifier greater or equal to the key, and this peer

is called the key’s successor. Thus to say, this peer is responsible for the corresponding resource.

What is relevant for our study is how keys from the key-space are associated with some peer(s) and how

the peers are interconnected (in a ring) and communicate among themselves.

A ring network is (1) weakly stable if, for all nodes p, we have predecessor(successor(p)) = p;

(2) strongly stable if, in addition, there exists no peer s on the identifier space where p < s < q where

successor(p) = q; and (3) loopy if it is weakly but not strongly stable.

22 2. Peering into peer-to-peer systems

Condition (2) that there exists no peer s on the identifier space where p < s < q if p and q know each

other as mutual successor and predecessor determines the correctness of the ring structure. Figure 2.1(a)

shows one such consistent ring structure (peer’s position in the ring and its routing table). The order-1

successor known also just as “successor” of each peer is the peer closest (clock-wise) on the key-space.

If at any time such a s joins the system, the successor and predecessor information needs to be corrected

at each of p, q and s. Maintaining the ring is basically to maintain the correctness of successors for all peers

- this in turn provides the functional correctness of the overlay - i.e., successor peer for any identifier key

can be reached from any other peer in the system (by traversing the ring). For redundancy, fs consecutive

successors of each peer are typically maintained, so that the ring invariant is violated only when any fs con-

secutive peers in the identifier space all depart the system before a ring maintenance mechanism - Chord’s

self-stabilization algorithm - can amend for the changes.

In addition to the successor/predecessor information, each peer maintains routing information to some

other distant peers in order to reduce the communication cost and latency.

It is the way these long ranges are chosen which differ in many ring topology networks and has no critical

impact on the functional correctness of the overlay. Distance in such ring based topologies is generally

measured in terms of the absolute difference of the two concerned points on the key-space, but other metrics

can as well be used. For the real topology, devoid of the artificial distance metrics, the long ranges are

essentially to halve the number of peers (the “true” distance on a ring traversed sequentially) between the

current peer and the destination peer [69].

Explicitly or implicitly, most variants of the ring topology exploit this fact and reduce the distance ge-

ometrically - either deterministically or probabilistically. The original Chord proposal advocated the deter-

ministic use of the successor of the identifier (p + 2k−1) modulo 2m as an order-k successor of peer p or a

finger table entry. Many other variants for choosing the long range links exist - e.g., randomized choice from

the interval [p+2k−1, p+2k) or exploiting small-world [98] topology [119, 26, 69, 105], or emulating Skip-

Graphs [20, 83]. Other systems follow the same topology but uses different maintenance mechanisms [16].

The maintenance of the ring (strong stability) is critical for functional correctness of the routing process

in ring based topologies. The ring invariant is typically violated when new peers join the network, or existing

ones leave it. If such events occur simultaneously at disjoint parts of the ring, the ring invariant can easily be

reestablished using local interactions among the affected peers. The self-stabilization mechanisms proposed

in the original Chord proposal [163] exhaustively deals with the maintenance of the ring, and all other ring

based topologies rely on similar mechanisms. It has been shown that the ring topology has better static

resilience6 than other topologies because of the greater flexibility to choose both routing table entries to

instantiate the overlay, as well as to choose from multiple routes to forward a query at run time.

6 Static resilience will be formally defined in Section 8.4.

2.4 A taxonomy of structured overlay topologies 23

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15

1,2,3: 6
4: 12

Routing table entries
k : order k-successor
(deterministic chord) 1,2: 8

3: 12
4: 1

1,2,3: 12
4: 1

1,2,3: 1
4: 6

N1

(a) A consistent ring (Chord) network

001 010
110 111

000 011 100 101

A B C D E F G H
001 010

110 111
000 011 100 101

A B C D E F G H

(b) A tree based (P-Grid) network. The actual graph has no
hierarchy and is shown in Figure 2.2.

010

000

011

001

111

101

110

100
A

C D

B

H

F E

G
010

000

011

001

111

101

110

100
A

C D

B

H

F E

G

(c) A hypercube (CAN) network

A

B

C

D

E

F

G

H
000

001

010

011

100

101

110

111

(d) A de Bruijn network

Fig. 2.1. Some structured overlay topologies

24 2. Peering into peer-to-peer systems

2.4.2 Tree

Arguably the earliest approach to locate objects in a distributed environment - the PRR [132, 133] scheme

used a tree structure where searches were forwarded based on longest prefix matching. Tapestry [175],

Pastry [154] (also uses the ring as a fall-back mechanism) and P-Grid [1] shown in Figure 2.1(b) among

others [11, 116] uses similar prefix resolution in order to forward search operations, and has the tree topol-

ogy. The leaf-nodes of the tree represent the key-space partitions (peers). The (maximum) distance between

these partitions when the query is resolved based on prefix is then the height of the common subtree. Kadem-

lia [120] resembles the tree structure and peers have the same routing choices as other tree-based networks.

Despite having the same topology, Kademlia routing uses the XOR distance between the peer identifiers

(essentially the binary string representing the node’s path in the tree) instead of resolving common prefix.

Note that this also exemplifies the essential orthogonality of the topology itself from the routing strategy

- the same graph connectivity can be explored based on different routing schemes, and thus defined as

separate ingredients of a structured overlay network in Definition 1.

A

B

C

D

E

F

G

H

Fig. 2.2. The actual P-Grid connectivity graph does not have any hierarchy. The routes are randomly chosen from complimentary
sub-trees of Figure 2.1(b). The basic P-Grid graph is directional, however since each link establishment and maintenance cost is the
same, and from the symmetry of the routing choices, the actual P-Grid uses bidirectional routes.

For each level in a tree topology there are several choices to select routing table entries. However, it is

essential for each peer to maintain at least one usable link for each possible level - which means that a tree

based topology has a relatively lower static-resilience [75] than a ring based topology.

Since the structured overlay (P-Grid) network we exhaustively study in this thesis is tree-structured, we’ll

delve into further details of the tree structure later in Part II.

2.4 A taxonomy of structured overlay topologies 25

2.4.3 Hypercube

One of its kind, CAN [140] views the key-space as a d-dimensional Cartesian coordinate space d-torus. In

Figure 2.1(c) a simple 2 dimensional CAN network is shown. Each partition is some distinct zone of this

d-dimensional space, and maintains links to all the neighboring zones. In this example CAN network, a

peer in zone D(011) maintains routes to C(010), B(001) and H(111). The binary string representation of

the zones for this toy-example has been used to facilitate comparison with some other networks which use

binary strings to identify peers/partitions. Keys are mapped to a point in the space, and routing is greedy -

trying to reduce distance in any possible dimension. Hence, for our example of CAN network if D has to

search the key 000, it can forward it to either of C or B to approach closer to the destination in one of the

two possible dimensions. Thus peers have flexibility in choosing routes, however the choice of routing table

entries is restricted to the immediate neighbors, which is undesirable for the resilience of the network under

membership dynamics [75].

2.4.4 Others

Constant hop overlays. Latency in discovering resources is a critical metric. From the latency perspective,

discovering the desired resource in a single hop will be ideal.

OneHop [76] maintains the full system state, i.e., information about all peers in order to provide single

hop look-up. Kelips [77] uses O(
√

N) states to provide O(1) 2-hop latency. Beehive [137] uses aggressive

caching of the content itself on a Pastry overlay in order to provide O(1) lookup.

Apart Kelips which scales to moderate network sizes, the other proposals, despite scalability claims don’t

really scale.

Caching [137] to provide constant lookup is definitely both bandwidth and storage intensive for various

kinds of workloads, and is not practical.

Maintenance of full state [76] may be very expensive in terms of bandwidth consumption. The Accor-

dion [105] system proposes a nice and practical mechanism where the size of the routing state at each peer is

decided autonomously based on its local bandwidth budget. If all peers have high enough bandwidth budget

to maintain full state, Accordion achieves constant hop lookups.

Constant degree networks. Node degrees in a routing network reflects the amount of system state infor-

mation each peer needs to maintain. This becomes critical particularly if the system is dynamic, because

the more systems states a peer has, more the maintenance cost. The first structured overlays, like Chord,

P-Grid, Pastry (and CAN) used logarithmic routing table sizes to achieve logarithmic latency. However, a

simple back of the envelope calculation tells us that a constant degree per node should be sufficient to have

logarithmic diameter graphs, and hence, with proper routing algorithm achieve logarithmic latency.

26 2. Peering into peer-to-peer systems

CAN [140] has a constant routing table size. In a d-dimensional space CAN has 2d neighbors. However

search cost in CAN scales according to O(N1/d), and logarithmic search cost is achieved only when d =

(log2N)/2.

One of the earliest constant degree logarithmic latency overlay proposed was the Viceroy [113] overlay

which emulates a Butterfly graph. Apart from being a fairly complex topology which makes it hard to realize

in a highly dynamic system without global knowledge, the constants involved in the log(N) routing is large.

Several overlays inspired by de Bruijn graphs [93, 124] also achieve logarithmic diameter with constant

node degree. de Bruijn graph based networks have lower diameter than Butterfly networks.

Nonetheless, constant degree networks have poor or no flexibility of choosing alternative routing table

entries nor redundant routes from one peer to another - and thus have poor resilience [75] against systems’

dynamics.

Such constant degree networks, apart from being fragile against network dynamics, also lack the flex-

ibility to accommodate heavily skewed load-distributions, as has been shown for de Bruijn networks [49].

Early DHT proposals ignored the possibility of skewed load-distributions, but increasingly the realization

has dawned that it is necessary to deal with skewed load-distributions in order to support non-exact (com-

plex) queries like range queries [26, 52, 63] and similarity queries [95].

Symphony [119] (and Accordion [105], which extends the ideas in Symphony) realizes a Kleinberg [98]

style small-world using constant number of long-range links in order to achieve poly-logarithmic latency.

Mercury [26] heuristically exploits similar small-world routes for skewed-load distributions [69].

As an aside, without getting into the details of de Bruijn graph, we show in Figure 2.1(d) how the

same key-space partitions which were interconnected according to the tree topology (Figure 2.1(b)) and the

hypercube topology (Figure 2.1(c)) can also be connected in yet another different topology. This exemplifies

how the key-space partitioning and the interconnection between these partitions are essentially orthogonal

issues, and thus defined as separate ingredients of a structured overlay network in Definition 1.

Hierarchical structured overlays. Often in distributed systems, hierarchy has been used for scalability.

Implicit [72] or explicit [64, 122] hierarchy to exploit heterogeneity and delegate some peers to manage

larger key-space partitions than a homogeneous model where each peer is treated to have same physical

resources can significantly improve performance in terms of search latency. Other variants of hierarchy

may involve a super-peer architecture where relatively stable peers participate in the structured overlay,

while peers which are more unreliable do not participate in the indexing process (which is what the overlay

is essentially about), and instead act more as parasites. Such free-riding may actually be beneficial for

all participants as well as the system as a whole in terms of resource utilization since it will reduce the

membership dynamics and the associated maintenance cost of the structured overlay. Prudent decision on

how to realize such hierarchical or hybrid systems is still an interesting and outstanding problem in the area.

2.5 What is stored in structured overlays? Where is it stored? 27

2.5 What is stored in structured overlays? Where is it stored?

2.5.1 Index vs. Storage: Separation of concerns

A structured overlay is essentially an indexing mechanism to discover resources in a distributed system in

a decentralized manner. So the overlay in principle will store a (set of) pointer(s) to the actual resource.

This resource may be any object (files) or service or information. However, traditionally many systems [46,

153] also store the actual object at the overlay replicas responsible for the corresponding key. We’d like to

emphasize the separation of concerns of discovery and storage.

Under this notion of separation of concerns, placement of the resources at the peers responsible to index

the corresponding keys becomes a special case of resource placement strategy.

There are several advantages of such a separation of concerns, since it gives users/applications control

over the placement of the actual resources. Following is a non-exclusive list of such advantages:

(i) Access control: Owner of a resource may like to impose certain access controls over the resource, or

even simply gather information about its usage pattern.

(ii) Locality: The resource may be placed based on the locality with respect to the end users in order to

enhance performance. For instance, if a particular resource is frequently accessed from within an organiza-

tional domain, it is desirable to keep a local copy of the resource.

(iii) Priority based redundancy: The application or end users can determine which resource needs to be

stored with what redundancy - so as to achieve resource dependent fault-tolerance and availability.

(iv) Accountability and freedom of choice: Users have the choice to store (and share) only resources that

they want to share. In the context of file-sharing networks, this may be important both because users will

like to store only files they are interested in, and the users are also accountable for the content they share.

Moreover, the greatest amount of bandwidth and storage will be consumed by the actual resources, and

hence such a freedom of choice to end users gives an automatic mechanism to balance load over the system.

(v) Multi-key access: Disentangling the index from the storage also means, one can build multiple indices

for different attributes, say for performing more sophisticated multi-attribute searches [26, 65].

There is however a caveat. Using the overlay just as an index is cost effective in terms of bandwidth and

storage only if the storage due to location-pointers is significantly less than the storage due to the resource

itself [168].

At this juncture, it is also interesting to point out that depending on how the actual resources are stored

in the system, there are two different notions of replicas. There are overlay replicas to provide redundancy

to the index. The structural replicas in P-Grid, or a predefined number of adjacent peers in a ring fall into

this category. There is also replication of the resource itself (managed by the applications). Hence it’ll be

28 2. Peering into peer-to-peer systems

necessary to update both kinds of replicas - replicas of the overlay as well as replicas of the resources

themselves.

2.5.2 A taxonomy of replication in structured overlays

Following the principle of separation of concerns between indexing and storage, the replication of the actual

resource will be done at the application layer. However, in order to enhance fault-tolerance, balance load and

deal with hot-spots as well as reduce search latency, the indexed information in the overlay is also replicated.

We can distinguish six general replication strategies in structured overlays:

Structural replication: In this replication scheme, multiple peers can be responsible for the same key

space partition. This strategy can be seen as exploiting multiple identical non-replicated overlay networks

superimposed on each other, where the routing choices are made randomly (or based on other considerations

like proximity) from several choices of peers belonging to the same key space partitions. Such replication

is called zone overloading in CAN [140] or simply replication of the tree leaves in P-Grid [8]. Symmetric

replication [67] is a generalization of structural replication, where multiple peers are responsible for same

set of key-space partitions.

Uniform structural replication for any topology is optimal with respect to search latency (and cost)7.

However, such a placement strategy ceases to be optimal if different items are replicated with different

frequency, and as a consequence, structural replication is not a suitable placement strategy for query-adaptive

replication in general.

Constrained replication at peers with closest ID: In this scheme, keys are replicated at a globally fixed

number of immediate successors of the peer responsible for a key for fault tolerance. This is the strategy

that has typically been used in Chord based CFS [46] and the Chord variant DKS(n,f,k) [16]. All queries

are typically routed to the primary replica, i.e., the one peer originally responsible for the key being queried,

while other peers act purely as back up for fault tolerance. Because of this routing behavior, the search

process does not exploit the wider availability of the resource for reducing the search cost or distribute

query load. On the other hand, an advantage of this replica placement strategy is that updates are easy to

perform, since all replicas can be deterministically located and there is a natural choice of a primary replica8.

Replication along the query path: Replication can be done along the path used by a previous query.

This strategy, apart from yielding increased redundancy, fault tolerance and adaptivity to queries, has the

additional benefit that future queries can potentially be answered based on the cached information resulting

in improved search performance. This is the strategy used in semi-structured networks like Freenet [39].

The drawbacks of this scheme are that, it does not completely exploit the structure of the network, so while
7 By uniform we mean that each partition, and hence each item is equally replicated. The replica placement optimality criterion

will be discussed in Section 5.3.
8 Even if pointers instead of actual content is stored and replicated, these pointers may need to be updated, possibly with informa-

tion on new copies of the actual content.

2.6 Conclusion 29

the query performance improves, it is not necessarily optimal. Additionally, since the scheme is inherently

heuristic and non-deterministic, the replicas can not be located in the network efficiently and exhaustively,

and hence replication along query path conflicts with effective updates of replicas.

Caching at querying peers: This strategy neither exploits the structure of the overlay at all to reduce

search cost or distribute load, nor are replicas easily locatable for updates. A peer repeating a query however

can find the resource locally.

Replication at least loaded peers: A recent load adaptive replication proposal (LAR [73]) places repli-

cas purely based on peer load information gathered using sampling mechanisms, and can potentially create

replicas at any nodes in the system. This requires modification of original DHT routing, leading to a different

and more complex routing mechanism, based on disseminated information about replicas. This replication

scheme fails to exploit the properties of the original structure of the network to reduce search cost and also

loses the deterministic nature of the replica location in the network, which makes updates difficult. That

apart, such a load-balancing strategy does not have a separation of concerns between routing structure and

query-load balancing and loses the simplicity and efficiency of routing in structured overlays.

Optimal placement strategy: In general, different topologies will require different placement strate-

gies, in order to optimize expected search cost. An interesting observation is that structural replication is

an optimal placement strategy independent of the topology involved, provided every item is equally repli-

cated. However, query-adaptive replication implies different items are replicated differently, needing differ-

ent placement strategies. Later (Chapter 5) we’ll explore optimal query-adaptive replica placement strategies

for some important classes of overlay networks including generic tree structured overlay network [11] which

subsumes Hypercubes and de Bruijn networks, and other tree abstracted networks like P-Grid, Pastry and

XOR topology based Kademlia.

2.6 Conclusion

Apart overlays for resource discovery which are also used as a substrate for various other communication

mechanisms, there also exist overlay networks built for specific purposes like the Virtual Private Network

(VPN) overlay, peer-to-peer VoIP voice communication [160], anonymous communication [55] and content

distribution networks [62] to name a few.

Besides resource discovery, sharing and dissemination, and communication primitives, there are various

other applications of peer-to-peer systems, including storage systems [25, 80, 145, 103] and backup sys-

tems [42], distributing computational task [18, 37], peer-to-peer information retrieval [165] and peer data

management systems [3, 81] based on semantic overlays [44] among others.

To conclude, we’d like to point out that the use of the peer-to-peer paradigm is not necessarily restricted

to use in a completely open internet setting. Such a paradigm may well be used within a single organization

30 2. Peering into peer-to-peer systems

or a group of relatively trusted organizations or within a close knit social community - which want to

autonomously pool and use their collective available resources.

For instance, a geographically spread organization may use its organization’s desktop PCs to realize

a cost-effective back-up solution which will even survive physical destruction of one location, and in a

more cost-effective manner than the use of hardware backup (e.g., tapes) since a peer-to-peer solution will

eliminate both the material cost as well as reduce administrative overheads.

One can also find peer-to-peer systems resulting from collaboration of established organizations to pool

their resources together, under a single administrative supervision, e.g., PlanetLab [37].

Depending on the deployment setting, there may be huge differences in the environment’s characteristics

- in terms of dynamics in the system, resource constraints and heterogeneity of the participants to name

some of the most dominant factors. It is thus desirable to design systems which can be universally deployed

without a priori assumptions on the environment characteristics, and still adapt to the specific environment

to provide the desired functionalities reliably and efficiency, making judicious use of available resources

without the need to manually configure and optimize the system parameters.

In fact, some of the self-organizational substrates we develop focus particularly on how to not only

provide resilience against a wide degree of dynamicity, but also do so in an adaptive manner so that the

mechanisms are efficient. By adaptive we mean that we design mechanisms which neither need a priori over

provisioning nor render the systems vulnerable against increased dynamics. By efficient we mean that in

a stable environment (e.g., when there are no membership changes), the maintenance cost will be minimal

while the cost will gracefully increase with the increase in systems dynamics. Such maintenance principles

are observed both for maintenance of structured overlays (Chapter 6) as well as maintenance of redundancy

in storage systems (Chapter 8).

Part II

Self-organizing overlay substrate

31

3. The P-Grid overlay network

“One day Alice came to a fork in the road and saw a Cheshire cat in a tree. Which road do I take? she asked.

Where do you want to go? was his response. I don’t know, Alice answered. Then, said the cat, it doesn’t

matter.” — Lewis Carroll, Alice’s Adventures in Wonderland

3.1 Beyond DHTs

In the early days of structured overlay network research, where the overlays were designed primarily with

network oriented applications in mind, a simple data structure, hash table, provided both the efficiency

in locating a peer responsible for a specific key (exact queries), as well as provided good load-balancing

among peers using uniform hashing, thus creating an uniform load-distribution over the key-space. However

these distributed hash tables (DHT) as they have come to be known as are not well suited for data-centric

applications which involve complex queries (e.g., range queries).

It is worthwhile to point out that even for exact key queries, DHTs typically need O(log(N)) commu-

nication (messages and latency) among peers in a population of N peers, in contrast to the hash table data

structure which provides constant time look-up of a specific key. Thus, the primary advantage of constant

time lookup in memory using a hash table is not valid when this hash table is distributed at multiple sites.

Given the logarithmic search cost in terms of number of participants in typical DHTs, it is thus natural to ask

if we can implement a more appropriate data structure in a distributed manner, which has logarithmic search

cost anyway (and retaining its logarithmic search cost, making it comparable in performance to DHTs), but

provides a better indexing, by maintaining a sorted data-structure.

We propose a data-structure, P-Grid, which abstracts a trie (prefix tree) which has similar efficiency

as DHTs when it comes to exact key search. Using an order-preserving hashing to generate binary keys

from natural language keywords, P-Grid supports complex queries like range queries also. Using order-

preserving hashing however leads to skewed load-distribution over the key-space. Thus the key-space needs

to be partitioned in different granularity depending on load in order to have load-balancing among the

partitions, and hence the peers. Figure 3.1 shows a simple example of such a load-dependent partitioning

and a P-Grid routing network for such a partitioning of the key-space.

Next, in Section 3.2 we provide a formal description of the P-Grid data-structure [1] along with a re-

capitulation of the proof [2] that locating a specific key requires on an average O(log(|Π|)) in terms of

34 3. The P-Grid overlay network

0 1

R
ecu

rsive
P

artition
in

g
R

ecu
rsive

P
artition

in
g

Load distribution

1 : 2
01 : 3

1 00*

1 : 6
01 : 8

7 00*

1 : 6
00 : 1
011: 8

5 010*

1 : 2
00 : 7
011: 3

4 010*

1 : 2
00 : 1
010: 5

8 011*

1 : 6
00 : 1
010: 4

3 011*

0 : 3

6 1*

0 : 1

2 1*

010 011

0 1

00 01

ID peer identifier

00* data keys
Trie abstraction

for prefix routing
1 : 2 routing table entry

Replica sub-network

1 : 2
01 : 3

1 00*

1 : 6
01 : 8

7 00*

1 : 6
01 : 8

7 00*

1 : 6
00 : 1
011: 8

5 010*

1 : 6
00 : 1
011: 8

5 010*

1 : 2
00 : 7
011: 3

4 010*

1 : 2
00 : 7
011: 3

4 010*

1 : 2
00 : 1
010: 5

8 011*

1 : 2
00 : 1
010: 5

8 011*

1 : 6
00 : 1
010: 4

3 011*

0 : 3

6 1*

0 : 1

2 1*

0 : 1

2 1*

010 011

0 1

00 01

ID peer identifier

00* data keys
Trie abstraction

for prefix routing
1 : 2 routing table entry

Replica sub-network

Fig. 3.1. P-Grid structure: Key-space is partitioned in a granularity adaptive to load-skew. In this example peers p1 and p7 are
structural replicas for the partition for prefix 00. Peer p1 has reference to peer p2 for prefix 1, and to peer p3 for prefix 01. Peer p7

stores the same keys as peer p1 (replicas), however they can and do have different routing table entries. In practice, for each level,
each peer will also maintain multiple references primarily in order to have some fault-tolerance. Thus peer p1 would also refer to
some of p3, p5 or p8 for the prefix 01.

the total number of key-space partitions |Π|, irrespective of the granularity of these partitions. That is to

say, even if the trie-structure abstracted by P-Grid is unbalanced, searches stay efficient under the premise

that communication cost is the dominant and deciding factor in large-scale distributed access structures. In

Section 3.3 we describe two range query algorithms that can be used on the P-Grid overlay.

In Section 3.4 we list some contemporary complimentary ides which can be incorporated in P-Grid to

enhance performance before concluding in Section 3.5.

In this chapter, we assume that the P-Grid network already exists. Subsequently, in Chapter 4 we’ll

provide details of how such a load-balanced P-Grid network is formed in a decentralized manner and in

Chapter 6 we’ll show how such an overlay network can be sustained over time even in presence of member-

ship dynamics.

3.2 The P-Grid overlay network 35

3.2 The P-Grid overlay network

P-Grid divides the key-space in mutually exclusive partitions so that the partitions may be represented as a

prefix-free set Π ⊆ {0, 1}∗. Stored data items are identified by keys in K ⊆ {0, 1}∗. We assume that all

keys have length that is at least the maximal length of the elements in Π , i.e.,

min
k∈K

|k| ≥ max
π∈Π

|π| = πmax

Each key belongs uniquely to one partition because of the fact that the partitions are mutually exclusive,

that is, different elements in Π are not in a prefix relationship, and thus define a radix-exchange trie.

π, π′ ∈ Π ⇒ π 6⊆ π′ ∧ π′ 6⊆ π

where π ⊆ π′ denotes the prefix relationship. These partitions also exhaust the key-space, so to say, the

key-space is completely covered by these partitions so that each key belongs to one and only one (because

of exclusivity) partition.

In P-Grid each peer p ∈ P is associated with a leaf of the binary tree, and each leaf has at least one

peer associated to itself. Each leaf corresponds to a binary string π ∈ Π , also called the key-space partition.

Thus each peer p is associated with a path π(p). For search, the peer stores for each prefix π(p, l) of π(p) of

length l a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l), where π is the binary string π

with the last bit inverted. This means that at each level of the tree the peer has references to some other peers

that do not pertain to the peer’s subtree at that level which enables the implementation of prefix routing for

efficient search. The whole routing table at peer p is then represented as ρ(p). Moreover, the actual instance

of the P-Grid is determined by the randomized choices made at each peer for each level out of a much larger

combination of choices. The cost for storing the references and the associated maintenance cost scale as they

are bounded by the depth of the underlying binary tree. This also bounds the search time and communication

cost.

Each peer stores a set of data items δ(p). For d ∈ δ(p) the binary key κ(d) is calculated using an order-

preserving hash function. κ(d) has π(p) as prefix but it is not excluded that temporarily also other data

items are stored at a peer, that is, the set δ(p, π(p)) of data items whose key matches π(p) can be a proper

subset of δ(p). Moreover, for fault-tolerance, query load-balancing and hot-spot handling, multiple peers

are associated with the same key-space partition (structural replication). <(κ) represents the set of peers

replicating the object corresponding to key κ. Peers additionally also maintain references to peers with the

same path, i.e., their replicas <(π(p)), and use epidemic algorithms to maintain replica consistency.

P-Grid’s hash function maps application keys to binary strings. In the reference implementation we

assume application keys to be strings for simplicity, but in fact any data type can be used. The hash function

is order-reserving, i.e., it satisfies the following property for two input strings s1 and s2:

36 3. The P-Grid overlay network

s1 ⊆ s2 ⇒ κ(s1) ⊆ κ(s2)

where ⊆ means is-prefix-of.

P-Grid not only supports the two basic operations of DHTs: Retrieve(key) for searching a certain key

and retrieving the associated data item and Insert(key, value) for storing new data items, but also range

queries for any given rangeR. DHTs often use Get()/Put() instead of Retrieve()/Insert(), but that is purely a

syntactical difference [147].

Retrieve(key) is of complexity O(log |Π|), measured in messages required for resolving a search request,

in a balanced tree, i.e., all paths associated with peers are of equal length. Skewed data distributions may

imbalance the tree, so that it may seem that search cost may become non-logarithmic in the number of

messages. However, as we’ll prove next, due to the randomized choice of routing references from the com-

plimentary sub-tree, the expected search cost remains logarithmic (0.5 log |Π|), independently of how the

P-Grid is structured. The intuition why this works is that in search operations keys are not resolved bit-wise

but in larger blocks thus the search costs remain logarithmic in terms of messages. This is important as

P-Grid uses order-preserving hashing to compute keys which may lead to non-uniform key distributions.

The search uses greedy routing and is shown in distributed Algorithm 1. p in the algorithm denotes the

peer that currently processes the request. The Insert operation uses the same routing mechanism to locate a

peer responsible for the key to be inserted.

Algorithm 1 Search in P-Grid: Retrieve(κ, p)
1: if π(p) ⊆ κ i.e., p ∈ <(κ) then
2: return(d ∈ δ(p)|κ(d) = κ);
3: else
4: determine l such that π(κ, l) = π(p, l);
5: p′ = randomly selected element from ρ(p, l);
6: Retrieve(κ, p′);
7: end if

Since routing cost is basically the cost of traversal within the key-space partitions, without loss of gen-

erality, to determine the routing cost we’ll assume that there is one and only one peer associated with each

partition, and only one random routing entry at each level of each peer. The additional redundancy based

on structural replication provides scopes for optimizations which we overlook in the following proof. Un-

der this premise a peer and its key-space partition are equivalent, and we’ll use them synonymously, i.e.,

p ≡ π(p) ≡ π in Section 3.2.1 for the following proof. We’ll however distinguish peers from partitions in

rest of this thesis unless otherwise stated.

3.2 The P-Grid overlay network 37

3.2.1 Average Search Cost Analysis

Definition 2. A random instance of a P-Grid P ∈ PΠ is a mapping determined by the random and mutually

independent routing choices at each peer (partition) for each level, ρP
Π(π, l) : Π → Π .

Definition 3. The length of a specific κ ∈ Π is given as |κ|. We define Πκ
j ⊆ Π s.t. x ∈ Πκ

j ⇔ π(x, j) =

π(κ, j).

We define Πκ
j− ⊆ Π s.t. x ∈ Πκ

j− ⇔ π(x, j) = π(κ, j).

We represent the cardinalities as follows: |Πκ
j | = nκ

j for j ≥ 0 and |Πκ
j− | = nκ

j− for j > 0.

Note that nκ
0 = |Π|, nκ

dκ
= 1, nκ

j− = nκ
j−1 − nκ

j for j > 0, and
∑l

j=1 nκ
j− = |Π| − nκ

l .

The definition of P-Grid does not exclude the case where the depth of the trie is up to linear in |Π|.
Therefore searches can require a linear number of messages in the worst case which would make the access

structure non-scalable. In the following we show that the expected average search cost is however logarith-

mic irrespective of the specific way Π the key space is partitioned.

Definition 4. The search cost of a search in a random instance of P-Grid P ∈ PΠ for a data key κ ∈ Π

starting at π ∈ Π is the number of invocations of the function Retrieve(κ, π). We denote this cost by σπ
P (κ).

Theorem 1. The expected search cost E[σπ
P (κ)] for the search of a specific key κ ∈ Π using a P-Grid

P ∈ PΠ , that is randomly selected among all possible P-Grids PΠ for a specific key-space partitioning Π ,

starting at a randomly selected peer (partition) π ∈ Π is less than log(|Π|).

Proof (adapted from [2]): Since the choice of routes ρP
Π(π, l) ∈ Πκ

l− are independent, the set of all

possible P-Grids can be given as the product:

PΠ =
⊗

(Πκ
1− , ..., Πκ

|π|−)

The references ρP
Π(π, l) are selected with uniform probability from Πκ

l− . Let Xπ
l be a uniformly distributed

random variable over Πκ
l− . We use the random variable Y to represent the joint occurrence representing the

choice of a random P-Grid out of PΠ , which has the following joint probability distribution:

Y =
⊗

(Xπ
1 , ..., Xπ

|π|)

Next we determine the probability distribution of the search cost on a P-Grid which itself is chosen according

to the distribution Y . This cost depends on the length of the common prefix of the peer’s key at which the

search starts and the searched key κ. We denote the probability distribution for a given search key κ from a

peer depending on the value of the common prefix length l, l > 0 as σ
Xπ

l
Y (κ).

If we define Xπ
0 as a uniformly distributed random variable over Π , then σ

Xπ
0

Y (κ) denotes the probability

distribution of the cost of searches starting at a randomly selected peer. We distinguish the different classes

38 3. The P-Grid overlay network

of peers that can be reached depending on the number of matching bits of the common prefix of the search

key and the peer identifier. For π ∈ Πκ
j− the expected search cost of the remaining search is E[σ

Xπ
j

Y (κ)]

since it starts at a randomly selected element ρ(π, j) ∈ Πκ
j determined by ρP

Π(π, l). Thus we obtain:

E[σXπ
0

Y (κ)] =
|κ|∑

j=1

Pr[π ∈ Πκ
j−]E[σ

Xπ
j

Y (κ)]

=
|κ|∑

j=1

|Πκ
j− |
|Π| E[σ

Xπ
j

Y (κ)] =
nκ

j−

|Π|E[σ
Xπ

j

Y (κ)] (3.1)

We obtain the above equation 3.1 under the assumption that query begins at a random peer chosen

uniformly, and search is routed to a peer (out of the potential peers) chosen uniformly randomly at each

step.

We proceed analogously for determining E[σXπ
l

Y (κ)] within the relevant sub-partition of the key-space.

A search starting at a randomly selected element from Πκ
l− for 0 < l < |κ| is computed as:

E[σXπ
l

Y (κ)] = 1 +
|κ|∑

j=l+1

Pr[π ∈ Πκ
j−]E[σ

Xπ
j

Y (κ)]

= 1 +
|κ|∑

j=l+1

|Πκ
j− |

|Πκ
l |

E[σ
Xπ

j

Y (κ)] (3.2)

We add 1 to the expected search cost to account for the message used to reach the referenced peer.

Since Πκ
l− = Πκ

l−1 \Πκ
l we have for j > 0 (as stated earlier):

nκ
j− = nκ

j−1 − nκ
j (3.3)

From equations 3.1, 3.2 and 3.3 we obtain(in the following we use the shorter notation Eκ
l to represent

E[σXπ
l

Y (κ)]):

Eκ
l = 1 +

|κ|∑

j=l+1

nκ
j−1 − nκ

j

nκ
l

Eκ
j , 0 ≤ l < |κ| (3.4)

Calculating nκ
l Eκ

l − nκ
l+1E

κ
l+1 = (nκ

l − nκ
l+1) + (nκ

l − nκ
l+1)E

κ
l+1 we obtain the following recurrence

relationship for Eκ
l :

Eκ
l =

nκ
l − nκ

l+1

nκ
l

+ Eκ
l+1

We have Eκ
|κ| = 1. Therefore we have for the expected search cost

3.3 Range queries: Algorithms and complexity 39

Eκ
0 =

|κ|−1∑

j=0

nκ
j − nκ

j+1

nκ
j

=
|κ|−1∑

j=0

∫ nκ
j

nκ
j+1

1
nκ

j

dx

≤
|κ|−1∑

j=0

∫ nκ
j

nκ
j+1

1
x

dx =
∫ nκ

0

nκ
|κ|

1
x

dx =
∫ |Π|

1

1
x

dx = log(|Π|)

— q.e.d.

Theorem 2. The probability that a search in a P-Grid P ∈ PΠ for a key κ ∈ Π starting at a randomly

selected peer π ∈ Π does not succeed after k steps is smaller than log(|Π|)k−1

(k−1)! .

The above theorem essentially means that the probability of a query not resolved after any given number

of hops reduces very fast. This has critical implications on search performance in the P-Grid network since it

essentially means that with high probability the worst case scenarios (search cost comparable to the P-Grid’s

depth) don’t happen. The proof for the theorem can be found in [2].

3.3 Range queries: Algorithms and complexity

As described in the previous sections, P-Grid uses an order-preserving hash function. Thus the resulting P-

Grid tree, apart from topologically abstracting a binary tree, also realizes a trie-index for the keys. This may

lead to skewed data distributions despite which P-Grid can still guarantee logarithmic search complexity,

as shown above. Order-preserving hash functions enable prefix queries and thus range queries of arbitrary

granularity can be processed efficiently as well in P-Grid.We will discuss two algorithms: which we call

the min-max traversal algorithm sequentially traverses all the partitions (one peer each from each partition)

which cover the range’s minimal and maximal key values, and the shower algorithm which parallelizes the

execution of range queries.

We use the notation ΠR to represent the set of partitions which cover the contiguous range R in the

key-space. We use πRmin and πRmax to represent the partitions at the periphery of this range, accounting

for the keys in the lower and upper bounds of the range. We represent these keys themselves as κRmin and

κRmax respectively.

3.3.1 Min-max traversal algorithm

Range queries can be processed sequentially by starting from a peer holding data items belonging to one

bound of the range and forwarding the query to a peer responsible for the next partition of the key space,

until a peer responsible for the other bound of the range is encountered. We call this strategy is of traversing

from min-max traversal. The underlying data structure itself does not always have the information about

40 3. The P-Grid overlay network

peers belonging to the next neighboring key space partitions. However, such routes can be established either

during the construction of the P-Grid overlay structure (algorithmically trivial), or at run-time using the

existing routing information at the peers. Algorithm 2 shows the min-max traversal algorithm in pseudo-

code, along with an illustration of how the algorithm works for a toy-example in Figure 3.2(a).

First peer A initiates the range query by querying P-Grid for the lower bound of the range which is peer

C in this example. Steps (1) and (2) denote standard P-Grid routing and in step (3) the result is returned

to peer A, i.e., peer C. Then in step (4) peer A sends the range query request to peer C and peer C sends

its data pertaining to the interval to peer A (in the implementation steps (3), (4), and (5) are actually done

in one step). Concurrently the range query is forwarded to peer D using the “next” pointer. Peer D checks

whether it is in the queried range, and if yes, peer D sends its data pertaining to the interval to peer A, and

concurrently forwards the range query to peer E which repeats the same operations as peer D except that it

does not forward the query to another peer as it has checked that it is a peer responsible for the other bound

of the queried range.

Algorithm 2 Sequential range queries: minmax(R, p)
1: if π(p) ⊆ R then
2: return(d ∈ δ(p)|κ(d) ∈ R);
3: determine a peer p′ such that p′ is responsible for the next key space partition;
4: minmax(R, p′); {Forwarded to p′}
5: end if

For simplifying the analysis1 we assume that the algorithm starts at the lower bound of the range at a

peer p such that π(p) = πRmin . It is assumed that the neighbor links are cached at each peer during the

construction of the trie (this is also algorithmically trivial). In the complexity analysis of this algorithm we

can assume storage load-balancing (which is achieved stochastically by the P-Grid base system) and that

on average there exist M data items per key space partition. Then, if there is a range query for the range

R, such that there are D data items in the given range, search cost and latency using min-max traversal

(assuming “next” links have been established during construction) is O(log |Π|)+ |ΠR|− 1, where |ΠR| is

the number of partitions over which the whole range is stored in P-Grid. The search cost and latency using

min-max traversal is dependent on the size of the answer set D for the range query, but independent of the

size of the range R of the query. This is because |ΠR| has an expected value of D/M, and in particular,

using Markov’s inequality, Pr[|ΠR| ≥ cD/M] ≤ 1
c for any positive c thus giving already a weak bound

on the deviation. We do not consider the trivial case D ≤ M as this would only affect 1 or 2 peers and

concentrate on the more general case of D > M.

1 The routing of the query to the lower bound is not shown here, but is algorithmically trivial in P-Grid. Moreover, such sequential
traversal on two directions instead of one, from any partition in ΠR is just a simple adaptation of the algorithm shown here.

3.3 Range queries: Algorithms and complexity 41

(a) Min-max traversal

(b) Shower

Fig. 3.2. Range query algorithms illustrated for a query for the range R = [0101, 100]

42 3. The P-Grid overlay network

As already mentioned, establishing and maintaining “next” pointers in P-Grid is algorithmically trivial

and most other DHTs proactively maintain it as well. Without them, an additional overhead upper-bounded

by |ΠR|O(log |Π|) will be incurred.

3.3.2 Shower algorithm

The other variant for processing range queries is to do them concurrently. Here, the range query is first

forwarded to an arbitrary peer responsible for any of the key space partitions within the range, and then

the query is forwarded to the other partitions in the interval using this peer’s routing table. The process

is recursive, and since the query is split in multiple queries which appear to trickle down to all the key-

space partitions in the range, we call it the shower algorithm. The intuition of the algorithm is shown in

Figure 3.2(b), while Algorithm 3 gives the pseudo code.

The essential idea is to create multiple range queries for smaller, non-intersecting ranges, i.e., with dif-

ferent prefixes as in steps 9-12 in Algorithm 3, and forwarding the query to some peer from the routing table,

which is closer to each of the ranges. Thus, in Figure 3.2(b) for a range query [0101, 100] peer A whose path

is 000 forwards two range queries, one to the subtree with prefix 1 (peer C in the example), and another to

the subtree with prefix 01 (peer B in the example). This is then continued recursively.

In the course of query forwarding, it is possible that the query is forwarded to a peer responsible for keys

outside the range. However, it is guaranteed that this peer will forward the range query back to a (new) key-

space partition within the range. This is so because the P-Grid routing ensures that no key space partition

will get duplicates of the range queries.

Algorithm 3 Parallel range queries: shower(R, lcurrent, p)
1: if π(p) ⊆ R then
2: return(d ∈ δ(p)|κ(d) ∈ R);
3: end if
4: determine ll such that π(κRmin , ll) = π(p, ll);
5: determine lh such that π(κRmax , lh) = π(p, lh);
6: lmin = max(lcurrent, min(ll, lh));
7: lmax = max(ll, lh);
8: if lcurrent < lmax then
9: for l = lmin to lmax do

10: p′ = randomly selected element from ρ(p, l);
11: shower(R, l + 1, p′); {Forwarded to p′}
12: end for
13: end if

The search cost (in terms of messages) of this variant is lower bounded by O(x) + |ΠR| − 1 where x is

the expected cost of reaching the subtree which contains the peers from the range being queried. The first

3.4 Complementary contemporary contributions 43

part of the shower algorithm just tries to reach any such peer, using the normal P-Grid routing. Note that

even after that, some of the branches of the shower may be directed to peers outside the range but every

message created in the range sub-space reaches a different leaf node (since the sub-spaces are exclusive).

However, since these partitions outside the range still need to share the common prefix for some subtree

within the range, there can’t be more than 2 times the actual number of partitions which fall within the range.

This gives one possible upper bound of 2|ΠR|.
If the tree is rather balanced, then a depth based upper bound is stricter that 2|ΠR|. The total key-space

partitions which are in the same subtree (even if not in the range) can’t be larger than 2Depth−x) since that’s

the scope of the shower, where Depth is the maximum path length of any partition in the range. This number

can however be rather large in a skewed tree.

Thus the upper bound of the number of messages for processing a range query based on the shower

algorithm is O(x) + min(2|ΠR|, 2Depth−x).

Thus the complexity of the shower algorithm is again dependent only on the size of the answer setD for

the range query, but independent of the size of the range R of the query.

The upper bound for latency is O(x) + O(Depth − x). In particular, unlike in the sequential variant,

the latency of the parallelized shower algorithm is independent of the number of data items in the range R,

but depends on the distribution of the data items (which determines the Depth). Note that the issuer of the

query will start getting responses for part of the range with a minimum latency of O(x), since it will already

encounter some peer responsible for part of the range.

The expected value of x is 0.5 log (nM/D). The intuition for the value of x is that, if we increase the

average memory of each logical partition toD instead ofM, there will be n
D/M key space partitions in total,

otherwise retaining the routing network’s properties, and since first the query needs to reach any arbitrary

peer within the range, this translates into reaching this virtual partition of average sizeD, and hence x is the

expected search cost in this new network, which has the same topological properties, but fewer (nM/D)

partitions.

3.4 Complementary contemporary contributions

There are numerous complimentary work which the P-Grid system can use for performance improvements.

We briefly explain how exactly these ideas can be integrated in the P-Grid system. However this thesis does

not deal with these issues.

3.4.1 Locality

Structured overlay networks provide transparency from the underlying network, and are typically optimized

to provide low number of overlay hops. However, in order to improve end-to-end latency and reduce the

44 3. The P-Grid overlay network

overall resource usage of the underlying network it is desirable to take into account physical proximity of

peers in the underlying network [60, 75]. There are various ways such peer proximity may be used. The

routing table entries themselves may be chosen based on proximity. This is known as proximity neighbor

selection (PNS). It has been shown [75] that using PNS significantly improves end-to-end latency. P-Grid

uses randomized routing entries from the whole set of peers from a complimentary sub-tree at each level,

and there are multiple peers (structural replication) at each leaf-node of the tree. Thus incorporating PNS in

P-Grid is straightforward.

Once the routing table is chosen, the choice of next-hop when routing to a particular destination may

depend on the physical proximity of the immediate neighbors. Such a scheme is called proximity route

selection (PRS). Such an assumption may be misplaced because even if the next immediate hop is chosen

to be closer, without global knowledge, it may still lead to longer latencies in consequent hops, so that the

improvements using PRS or PRS along with PNS are marginal [75]. Moreover such a choice of routes will

not take into account more critical aspects like congestion in the system. Nonetheless, its worthwhile to

point out that because of structural replication and multiple routing entries per level at each peer, PRS can

also be incorporated in P-Grid, contrary to the claims in [75] that tree-topologies can’t use PRS.

3.4.2 Look-ahead routing

Apart modifications in P-Grid’s routing mechanism for proximity route selection or congestion control, it

is also possible to use a variant of look-ahead [118] routing. The basic idea behind look-ahead routing is

to maintain soft-state information about the routing table entries of a peer’s routing table entries. Thus,

instead of greedily forwarding a query to the routing table entry based on its proximity to the target, look-

ahead forwards the query to the peer which would in the next hop lead the query closest to the target. It

has been shown that in some randomized networks, using look-ahead is asymptotically optimal, requiring

Θ(logn/loglogn) hops in contrast to greedy routing mechanism which requires Ω(logn) hops with high

probability. Such a look-ahead based routing is an optimization technique, and occasional inaccuracies in

the soft-state only results in longer than optimal number of hops, but the correctness of the routing process is

not affected, and overall provides performance benefits over purely greedy routing. Even though the effects

of look-ahead on routing in a key-space partitioned in a skewed manner (unbalanced tree) has not been

studied, such a look-ahead based routing can be used heuristically in P-Grid to choose the specific routing

entree out of the redundant ones at any level in order to reduce overlay hops and thus improve latency. This

mechanism is essentially an alternative to the PRS scheme, where the proximity is being chosen on the

logical key-space.

3.5 Conclusion 45

3.4.3 Abstracting k-ary trees

A more systematic mechanism that can be employed is to choose the redundant routing information in a

clever way. The P-Grid structure uses r redundant entrees in each level to alleviate the poorer static resilience

of tree topologies. These r entries need not be completely randomized, and instead can be such that a k-ary

(k ≤ r) tree is mapped onto the binary one. Thus, if a peer with path 0∗ needs to choose four or more

redundant routing entries for prefix 1, it can as well choose entries with prefixes 100, 101, 110 and 111.

In-fact some other contemporary overlays with tree-topology like Pastry uses such a k-ary tree structure in

order to reduce the search latency measured in terms of overlay hops.

3.4.4 Iterative vs. Recursive processing of an isolated query

Queries in structured overlays may be resolved in two manners. It may be processed iteratively. In this case

the originator of the query contacts sequentially a series of nodes (referred by the previous node) in order to

reach the peer which actually stores the key being searched. A variant, which is more commonly used, and

we also use in P-Grid is the recursive processing of a query. In this case, the originator of the query forwards

the query to an entry in its own routing table, and then this peer forwards the query directly to an entry in its

routing table, and the process recurs until the query arrives at a peer which is responsible for the queried key.

This peer can either directly reply back to the query originator, or the reply may also traverse the reverse

path as the query in the network. A direct reply to the query originator has several advantages like lower

latency and lower load (the answer set can be huge), and is the approach used in the P-Grid implementation.

For the purpose of disambiguation, we’ll like to point out here that we’ll introduce the notion of recursive

queries for a self-referential directory in Chapter 6, which is completely different from recursive processing

of a single isolated query.

3.5 Conclusion

In this chapter we introduced an overlay network - P-Grid - which supports efficient search of individual

keys as well as range of keys. In the following chapters of this part of the dissertation, we’ll delve into

further details of how to construct and maintain the P-Grid overlay network so that diverse kinds of load in

the system are balanced.

Later, we’ll show how to realize a self-referential directory service using P-Grid, and use such a self-

referential directory to device a family of efficient route maintenance algorithms to maintain the overlay

itself under churn (membership dynamics).

Recent results show some additional resilience properties of the P-Grid network structure, which are not

discussed in this thesis. In particular, we show that originally distinct (either because of network partitions or

because they were constructed separately) P-Grid networks merge into a single network gracefully in [48].

46 3. The P-Grid overlay network

The current java based P-Grid implementation uses exclusively (but not exhaustively) algorithms pro-

posed in this dissertation, and we’ll also report on some initial experiences and experiments done with the

implementation on PlanetLab.

4. Multi-faceted load-balanced overlay

“Life is like riding a bicycle. To keep your balance you must keep moving.” — Albert Einstein

4.1 Gamuts of load-balancing in structured overlays

Peer-to-peer systems in general and overlay networks in particular are instances of large-scale distributed

systems. Load-balancing in distributed systems in order to judiciously and fairly use the available physical

resources is both desirable and even critical. In structured overlays, there’s a multitude of aspects with

respect to which the peers need to achieve load-balancing. Moreover the available resources as well as the

demand of resources in a structured overlay is often very skewed, and thus the load-balancing mechanisms

need to account for such skew apart from dealing with the usual vagaries of the peer-to-peer environment -

very large (internet)-scale, lack of global knowledge and dynamicity.

4.1.1 Sources of load-skew

Load skew in a structured overlay network can arise mainly because of the following reasons:

Non-uniform key distribution: Keys may be distributed non-uniformly over the key-space. This is the case

particularly when keys are generated using a function other than uniform hashing function (in contrast

to DHTs). The simplest case when non-uniform key distributions are observed is when lexicographic

ordering is preserved in order to support range-queries.

Non-uniform key usage: Access to different keys can be different. In some applications this may even vary

by orders of magnitude. For instance, in data-oriented applications, often relative frequency of queries

for keys have Zipf distribution.

Routing hotspots: Overlay networks resolve queries (perform resource discovery) using query forwarding.

Also, communication primitives using structured overlay networks - e.g., application layer multicast

- exploit the structural properties of the overlay and uses message forwarding. These messages are

forwarded based on the local information at each peer (their routing tables). It may so happen - by

chance or design, depending on how the local choices are made by individual peers, that most messages

are routed through a small subset of peers, thus overloading these peers. Such overloading of some

48 4. Multi-faceted load-balanced overlay

peers makes the system inefficient - both because the overloaded peers will become point of failures and

bottleneck due to congestion, as well as because other peers’ available resources stay untapped.

Participant heterogeneity: Individual peers have different physical resources that it has or is willing to de-

vote to the system - like storage space, bandwidth and computational power.

Balls into bins effect: Suppose that m balls are thrown into n bins sequentially by choosing the bins in-

dependently and uniformly at random for each ball. This will mean that each bin on an average will

have the same number of balls. This model has been intensively studied since it provides the basic ab-

straction for studying online load-balancing. We refer to such a balancing as a first-order load-balance.

The variance in the number of balls per bin is still high [135]. We refer to such high statistical noise

observed when load is uniformly randomly allocated as the “balls into bins” effect. It is necessary to

employ some second-order mechanisms to reduce the statistical noise. By second-order balancing we

mean mechanisms to reduce the variation as is observed based on solely first-order balancing. A simple

and popular way of achieving such a second order load-balancing uses multiple choices. Thus multiple

bins (say k) are chosen at random, and the least filled bin among these k bins is assigned the next ball.

Power of two choices [121] is a special case of using such multiple choices.

4.1.2 Alleviating load-skew

Resource-surplus physical nodes can participate in the system as proportionally multiple virtual peers. The

virtual peers are then considered to comprise of a homogeneous peer population. The rest of this work is

under such a premise, and focusses on alleviating the effects of non-uniform key distribution and usage on

peers physical resources like storage and bandwidth (implicitly also computation) by using the available

resources judiciously. Given the flexibility that peers have in P-Grid in choosing the key-space they are

supposed to be responsible for, virtual peers can be used such that the virtual peers running on the same

physical machine cluster together in a contiguous portion of the key-space. The issue of peer heterogeneity

is excluded in the rest of this dissertation, and we focus on the other aspects of load-balancing - assuming a

homogeneous set of collaborative peers.

Natural language names for resources often have non-uniform distributions. Distributed Hash Tables

used uniform hashing in order to generate uniform distribution of keys to be stored in the overlay. Doing so

realized a first-order balancing of load. Various mechanisms have since been proposed to achieve second-

order load-balancing in DHTs, including using power of two choices [32, 72, 94, 117, 138, 163]. Uniform

hashing however destroys (lexicographic) locality information. Complex queries, like range queries need

such information. Preserving lexicographic ordering information leads to non-uniform distribution of keys

over the key-space, and several recent approaches try to achieve first-order load-balancing despite such a

skew [6, 20, 26, 63].

4.1 Gamuts of load-balancing in structured overlays 49

In order to deal with non-uniform distribution of keys over the key-space, P-Grid partitions the key space

in a granularity adapted to the local density of keys, so that the number of keys in each resulting partition do

not vary much from that in other partitions [4, 6, 8].

In P-Grid each of the key-space partitions is replicated among multiple peers (structural replication).

The number of peers replicating each key-space partition is determined dynamically [4, 6, 8] to judiciously

use the total storage capacity of the peer population. This is in contrast to most other approaches, where

replication is determined by a globally predetermined and hard-coded replication factor and lacks adaptivity

either to exploit extra available resources or to deal with scarcity of resources.

If keys have different usage frequency, we deal with such non-uniform key usage by caching the keys.

To that end, in Chapter 5 we determine the optimal number of caches for any key - depending on its relative

usage with respect to other keys - and the optimal placement of the cache exploiting the structural properties

of the overlay network, assuming that the system’s total storage capacity is limited.

We also heuristically use standard multiple choice based variance reduction techniques to balance the

in-degree at each peer in randomized routing networks (like P-Grid or other overlays based on small world

routing [98]), which is necessary to avoid routing hotspots and balance the routing traffic in the overlay.

In Chapter 3 we had introduced a distributed data-structure (P-Grid), which can provide load-balancing

and efficient queries in presence of non-uniform key distribution. In this chapter we will study how we can

construct and maintain such a load-balanced overlay network. In the next chapter we will study balancing

query-load in such a storage-load balanced overlay.

The rest of this chapter is organized as follows.

Most existing overlay construction mechanisms assume - either explicitly or implicitly - that the network

population changes incrementally. There are compelling reasons to construct a new structured overlay net-

work among an existing and large population of peers. We motivate the need for fast overlay construction

in Section 4.2. We introduce our approach of fast load-balanced overlay construction in a parallelized man-

ner in Section 4.3. In Section 4.4 we provide some heuristics necessary to use the fast overlay construction

algorithm in practice. Apart parallelized overlay construction, we still need to accommodate newly arriving

peer in an already evolved P-Grid network. We provide details to deal with sequential peer joins/leaves in

Section 4.5. The sequential approach incorporates multiple choice based variance (of replication factor) re-

duction techniques. However, the parallelized overlay construction only achieves a first-order balancing of

replication factor. In Section 4.6 we provide details of a background process for a second-order balancing

used in P-Grid in order to reduce the replication factor variance. We show in Section 4.7 how the P-Grid

overlay can also be used as a DHT. We conduct simulations to validate and evaluate the performance of our

algorithms, and provide the results in Section 4.8. Differences with existing load-balancing techniques is

discussed in the related works Section 4.9.

50 4. Multi-faceted load-balanced overlay

Later in Chapter 7 we also report on our experiences and experiments with a real implementation on the

PlanetLab testbed.

At this juncture we’ll like to briefly point out that, even though we have primarily been modeling the

system based on storage load, the load over the key-space is essentially abstract and could have been because

of anything else as well, like computational load - where small tasks are assigned to specific keys. So our

load-balanced indexing scheme is more generally applicable.

4.2 Need for speed in overlay construction

In standard database systems it is common practice to regularly (re-)index attributes to meet changing re-

quirements and optimize search performance. Recently, structured peer-to-peer overlay networks are in-

creasingly being used as an access structure for highly distributed data-oriented applications, such as re-

lational query processing, metadata search or information retrieval [10, 125]. Structured overlays’ use was

motivated by the presence of certain features that are supported by their design such as scalability, decentral-

ized maintenance, and robustness under network churn. Compared to unstructured overlay networks which

are also being proposed for these applications [81, 100], structured overlay networks additionally exhibit

much lower bandwidth consumption for search as well as guarantee completeness1 for search results.

The standard maintenance model for peer-to-peer overlay networks assumes a dynamic group of peers

forming a network where peers can join and leave, essentially in a sequential manner. In addition proactive

or reactive maintenance schemes are used to repair inconsistencies resulting from node and network failures

or to re-balance load in order to react to data updates. These approaches to maintenance, that have been

extensively studied in the literature, correspond essentially to updating database index structures in reaction

to updates.

In contrast to this, almost no results exist on how to efficiently construct a large overlay network from

scratch, i.e., how to bootstrap a new, large-scale, structured overlay network in a practical way within rea-

sonable time. This is understandable insofar as most of the work on overlay networks was done under the

assumption of providing an efficient resource location scheme using an application-specific, yet fairly stable,

resource identifier space (e.g., file names for file sharing).

With the increasing adoption of structured overlay network technology for data-oriented applications

this assumption no longer holds. Resources are identified by dynamically changing predicates and different

overlay networks can be used simultaneously, each of them supporting a specific addressing need. We can

illustrate these requirements by a typical application case of peer-to-peer information retrieval.

1 In terms of information retrieval terminology, recall = 1.

4.2 Need for speed in overlay construction 51

The standard application of structured overlay networks in peer-to-peer information retrieval is the im-

plementation of a distributed inverted file structure for efficient keyword based search. In this scenario,

several situations occur, in which the overlay network has to be constructed from scratch:

– A set of documents that is distributed among (a potentially very large number) of peers is identified

as holding information pertaining to a common topic. To support efficient retrieval for this specific

document collection, a dedicated overlay network implementing inverted file access may have to be set

up.

– A new indexing method, for example, a new text extraction function for identifying semantically relevant

keywords or phrases, is being used to search a set of semantically related documents distributed among

a large set of peers. Since the index keys change as a result of changing the indexing method a new

overlay network needs to be constructed to support efficient access.

– Due to updates to a distributed document collection an existing distributed inverted file has become

obsolete. This may either result from not maintaining the inverted file during document updates or due

to changing characteristics of the global vocabulary and thus changing the indexing strategy (e.g., term

selection based on inverse document frequency). Thus a complete reconstruction of the overlay network

is required.

– Due to catastrophic network failures the standard maintenance mechanisms no longer can reconstruct a

consistent overlay network. Thus the overlay networks needs to be constructed from scratch. Of course,

this scenario applies generally in any application, but becomes more probable when multiple overlay

networks are deployed in parallel.

In principle a (re-)construction of an overlay network in any of these scenarios can be achieved by the

standard maintenance model of sequential node joins and leaves. Most existing proposals for structured

overlay networks [117, 154, 163] do not offer a completely parallel construction process involving all peers

simultaneously. They assume a model of joins of peers in an essentially sequential process. However, this

approach encounters two serious problems:

– The peer community will have to decide on a serialization of the process, e.g., electing a peer to initiate

the process. Thus the peer community has to solve a leader election problem, which might turn out to

be unsolvable for very large peer populations without making strong assumptions on coordination or

limiting peer autonomy.

– Since the process is performed essentially in a serialized manner, it incurs a substantial latency. In

particular it does not take any advantage of potential parallelization, which would be a natural approach.

In principle some systems like Pastry [154] would support concurrent construction as they take an op-

timistic approach in which concurrent node joins are possible as long as there are no conflicts. Similarly,

in ring based topologies (like Chord), the most critical part for the overlay’s functional correctness is to

maintain the ring itself. Thus if there are simultaneous peer joins at disjoint portions of the ring (involving

52 4. Multi-faceted load-balanced overlay

neighborhood changes of disjoint set of peers), such membership changes can be taken care of by a self-

stabilization mechanism as described in the original proposition of Chord [163], or future refinements of the

same [16].

However, this assumes that there already exists a large overlay, so that conflicts are rather unlikely. In an

early stage of bootstrapping and with large number of peers joining concurrently, conflicts will however be

very likely. Thus this type of strategy is not applicable to the problem we are addressing.

In this chapter we will address the problem how a structured overlay network can be constructed ef-

ficiently from scratch, a problem that the research community has only recently identified and started to

address [6, 19, 92]. Our approach is a generic mechanism to autonomously partition a key-space in a com-

pletely parallel manner. The approach can potentially be used for constructing other structured overlays with

fixed key space partitioning [17].

In data-oriented applications there exists an additional constraint to parallelized overlay construction -

balancing load despite the skew in key distribution. We want to build an index structure which preserves

the (lexicographic) locality of resources. Canonical methods of uniform hashing of keys to remove skew

in the key distribution as used in DHTs are no more applicable. This has led to substantial research on

including load balancing features into overlay networks [6, 63, 117]. The overlay construction approach

needs to balance such skews in key-distribution over the key-space. During the overlay construction process

we will address two types of load balancing problems simultaneously - the balancing of storage load among

peers under skewed key distributions (i.e., number of keys per partition is balanced) and the balancing of

the number of replica peers across key space partitions. The first problem is important to balance workload

among peers and is solved by adapting the overlay network structure to the key distribution. The second

one is important to guarantee approximately uniform availability of keys in unreliable networks where peers

have potentially low availability. This is similar to a classical “balls into bins” scenario, where the key-space

partitions are the bins and the peers (replicas) the balls. The extra twist, why existing solutions for balls

into bins problems can’t however be directly used is that the number of bins (key-space partitions) itself is

dynamic.

Our overlay construction approach is based on a key-space bisection process through a completely de-

centralized, parallel, and randomized algorithm for assigning peers to key space partitions in proportion to

the key distributions of the partitions. By recursively applying key-space bisections, peers can incrementally

construct the overlay network while maintaining load balance. We will introduce our approach in the con-

text of the P-Grid overlay network structure, though the essential elements of the approach are applicable

to overlay networks using fixed key space partitioning schemes, such as CAN [140] or Pastry [154]. We

demonstrate the theoretical correctness of the basic key-space bisection process by analysis and simulation.

The feasibility of building a complete system matching the theoretically predicted behavior has been vali-

4.3 Fast construction of load-balanced overlay 53

dated with experimental results obtained from a full-fledged implementation deployed on the PlanetLab [37]

infrastructure, and reported in Chapter 7.

4.3 Fast construction of load-balanced overlay

The process of constructing an overlay network from scratch should require low latency, i.e., be highly

parallel and require minimal bandwidth consumption. At the same time ideally the following load balancing

criteria should be achieved:

1. The partitioning of the search space should be such that each partition holds a maximal data load of

dmax, e.g., measured as the number of keys present in the partition. We will call dmax also the maximal

storage load in the following. 2 This allows the peers to describe the absolute (storage) load they are

willing to contribute to the overlay. This is in contrast to existing approaches [32] where storage load is

measured relative to other peers load. Using an absolute notion of load at peers means that the system

as a whole adapts the average replication factor dynamically, based on the total storage capacity of the

system and the total number of unique keys to be stored.

2. Each resulting partition should be associated with a constant number of peers nmin, such that the avail-

ability of the different data keys is approximately the same. We will call nmin also the minimal replica-

tion factor in the following.

With perfect load balancing these properties can be achieved if dtotnmin = dmaxn, where dtot is the total

number of data keys and n is the number of peers. Algorithm 4 shows a globally coordinated partitioning

algorithm Partition that attempts to achieve these load balancing goals by best effort while bisecting the

key space. A typical overlay network that will ideally evolve for a skewed load-distribution had been shown

in Figure 3.1.

The algorithm works as follows. Assume n peers are associated with one key space partition containing

d data keys and two sub-partitions p0 and p1 containing d0 respectively d1 data keys, such that d = d0 + d1.

To achieve load balance criterion 1, a fraction of n di
d of peers should be associated with partition pi for

i = 0, 1. In case n di
d < nmin at least nmin peers should be associated with pi to achieve load balance

criterion 2. Partition recursively applies this bisection step to the key space.

Even with global knowledge and coordination, for various reasons, this algorithm can achieve the

load balancing goals only approximately. Provided the number of data keys is large enough, i.e., dtot >

dmaxn/nmin, the number of peers associated with a partition will be between nmin and 2nmin − 1, instead

of constant nmin. For very skewed data distributions it may happen that very small partitions contain a

large fraction of the data keys, and bisection “disperses” many peers to underloaded partitions even before

reaching such partitions. These are fundamental problems of any bisection approach. However, for practical

2 In fact its roughly the average load each peer is willing to have. The actual maximum load at peers can be 2dmax.

54 4. Multi-faceted load-balanced overlay

Algorithm 4 Partition(p, n, d)
1: if d ≥ 2dmax and n ≥ 2nmin then
2: if n min(d0,d1)

d
≥ nmin then

3: n0 = n d0
d

n; n1 = n d1
d

4: Partition(p0, n0, d0); Partition(p1, n1, d1)
5: else
6: if d0 < d1 then
7: n0 = nmin; n1 = n− n0

8: Partition(p0, n0, d0); Partition(p1, n1, d1)
9: else

10: {analogous}
11: end if
12: end if
13: end if

data distributions and large peer populations these problems are more theoretical in nature and Partition

achieves good load balancing properties provided nmin and dmax are chosen properly.

We will use in the following Partition as an algorithm that defines what we consider as an optimal

partitioning of the search space among peers and a resulting optimal overlay network - that is, our baseline

case. Since in a peer-to-peer system no global coordination exists, the problem we intend to solve is to

achieve the partitioning generated by Partition by a decentralized process approximately. We will measure

the quality of a solution by determining the deviation from the baseline case.

In a decentralized process peers do not have precise information on the number of peers and keys present

in a partition and cannot know which decision the other peers in a partition take with respect to associating

themselves with a sub-partition. The only available information is on the set of locally stored data keys and

information gathered from local interactions with other peers.

The decentralized process we design is based on random peer encounters and a set of basic local interac-

tions. The random encounters can be initiated by performing random walks on a pre-existing unstructured

overlay network. The possible interactions peers can perform in their encounters can be classified in three

categories - repartition, replicate or refer. These are shown in Figure 4.1.

If peers belong to the same partition they can either repartition the present partition (a divide-and-

conquer strategy) or replicate the data keys they currently hold. If they do not belong to the same partition,

they can refer each other to other peers using their routing table entries and thus route to a peer that belongs

to the same partition.

If peers from the same partition meet, they may decide to repartition in case the current partition con-

tains a sufficient number of data keys to justify a further split, i.e., the partition is overloaded (corresponding

to line 1 in Partition). They can coordinate locally their decision. In addition, peers keep a reference to the

peer encountered after a split, and thus incrementally construct their routing tables.

4.3 Fast construction of load-balanced overlay 55

*

1

000,010,100

*

3

101,001

Random
interaction

1: 3

1

000,010,001

0: 1

3

101,100

Possibility 1:
Exchange content, Split the key space,
and update routing table

1: 3
01: 2

1

0001,0011

1: 5
01:2

6

0000

Random
interaction

1: 5
01: 2

6

0000,0001,
0011

Possibility 2:
Become replicas, and reconsile content
Should also have a partial list of replicas
(not shown here) for reconciling content
later, using, e.g. anti-entropy algorithm.

1: 3
01: 2

1

0000,0001,
0011

Peers from same partition (or one’s path is the prefix of ot her) meet

1: 3
01: 2

1

0: 2

4Random
interaction

Interact with 3

Possibility 3:
Peers can update their routing table
entries (to add redundancy and
randomization), apart from recommending
the peers to meet some other peers (with
better match of path). This induces the
random interactions.

Peers from different partitions meet

Routing table

p id

Index data (only part of the prefix is shown)

(can have multiple entries for each level)

Divide & Conquer Replicate Refer

Simple autonomous actions give an evolving routing network

Legend

*

1

000,010,100

*

1

000,010,100

*

3

101,001

*

3

101,001

Random
interaction

1: 3

1

000,010,001

1: 3

1

000,010,001

0: 1

3

101,100

0: 1

3

101,100

Possibility 1:
Exchange content, Split the key space,
and update routing table

1: 3
01: 2

1

0001,0011

1: 3
01: 2

1

0001,0011

1: 5
01:2

6

0000

1: 5
01:2

6

0000

Random
interaction

1: 5
01: 2

6

0000,0001,
0011

1: 5
01: 2

6

0000,0001,
0011

Possibility 2:
Become replicas, and reconsile content
Should also have a partial list of replicas
(not shown here) for reconciling content
later, using, e.g. anti-entropy algorithm.

1: 3
01: 2

1

0000,0001,
0011

1: 3
01: 2

1

0000,0001,
0011

Peers from same partition (or one’s path is the prefix of ot her) meet

1: 3
01: 2

1

1: 3
01: 2

1

0: 2

4

0: 2

4Random
interaction

Interact with 3

Possibility 3:
Peers can update their routing table
entries (to add redundancy and
randomization), apart from recommending
the peers to meet some other peers (with
better match of path). This induces the
random interactions.

Peers from different partitions meet

Routing table

p id

Index data

Routing table

p id

Index data (only part of the prefix is shown)

(can have multiple entries for each level)

Divide & Conquer Replicate Refer

Simple autonomous actions give an evolving routing network

Legend

Fig. 4.1. Network evolution based on pairwise peer interactions

We can thus reduce the problem of load-balanced overlay network construction to the problem of decen-

tralized partitioning of one key space partition. The problem is that a large number of peers have to perform

the decision to split independently for allowing a fast construction of the overlay network, while making

these independent decisions in a way that the ratio of the number of peers matches the ratio of the data load

in the two partitions. In other words, the global behavior of the distributed decision making process should

match the outcome of the partitioning step in the global partitioning algorithm Partition (corresponding to

lines 3 and 7 in Partition). The solution to this problem is one of the central contributions of the chapter

and will be discussed in detail in next section.

4.3.1 Decentralized Partitioning

Consider a set P of n + 1 peers which hold data keys from key space K. The space K is partitioned into

two parts, 0 and 1, such that the load measured in number of data keys related to the partitions, l0 and l1 are

p and 1−p. In the following we assume w.l.o.g. that 0 ≤ p ≤ 1
2 . Then the partitioning that we would ideally

like to achieve should have the following properties:

1. Proportional replication: Each peer has to decide for one of the two partitions such that (in expectation)

a fraction p of the peers decides for 0 and a fraction 1− p for 1. Thus the workload becomes uniformly

distributed among the peers, meeting the load-balancing criteria in the resulting overlay.

56 4. Multi-faceted load-balanced overlay

2. Referential integrity: During the process each peer has to encounter at least one peer that decided for

the other partition. Thus the peers have the necessary information to construct a routing structure, i.e.,

the overlay infrastructure, for delegating requests for keys they are no longer associated with.

A peer can initiate interactions with any peer selected uniformly randomly from P . We measure the cost

of an algorithm solving the problem in terms of the number of interactions initiated by peers and this cost

should be minimized. The quality of an algorithm solving the problem is measured by the deviation of the

resulting distribution of peers from an optimal distribution that can be achieved based on global knowledge

and coordination. First we assume that the value of p is known to all peers. We will analyze the influence of

having only approximate knowledge of p by sampling the locally stored data keys later.

To clarify the critical issues we first discuss two simple heuristic approaches: In the case of p = 1
2 , a

simple strategy to adopt would be that peers which have not yet decided for a partition, initiate a random

interaction. If the contacted peer is also undecided, the peers decide for different partitions (balanced split),

otherwise the peer initiating the interaction decides opposite to the contacted peer which has decided al-

ready (unbalanced split). In this way it learns about a peer from the other partition. Since the algorithm is

symmetric, in expectation the same number of peers will decide for each partition, and it provides the best

possible performance within the model, since in each interaction every possible decision is taken. We call

this strategy eager partitioning. While the eager partitioning strategy works well for p = 1
2 , it cannot be

employed for other values of p.

For an arbitrary but known p, a possible strategy, which we call autonomous partitioning (AUT), would

be that each peer makes a decision for one of the two partitions in advance, even without meeting any other

peer and then tries to meet some peer from the other partition in order to satisfy the referential integrity

constraint. In this setting, obviously some of the peer interactions are “wasted,” whenever peers which

have decided for the same partition meet. For the specific case of p = 1
2 , by modeling the interactions

as Markovian processes, we observed that 2 log(2) = 1.386 interactions are initiated on an average per

peer asymptotically (i.e., for large n), as compared to log(2) = 0.693 interactions per peer with eager

partitioning. Thus autonomous partitioning is not an optimal strategy.

4.3.2 Adaptive eager partitioning

In the following we introduce a method for such an optimized solution to the partitioning problem, that has

the characteristics of eager partitioning but works for all p.

Adaptive eager partitioning (AEP) algorithm:.

1. Each undecided peer initiates interactions with a uniformly randomly selected peer until a decision is

reached. Selecting peers uniformly at random is a non-trivial problem in itself which we solve by a

variant of random walks.

4.3 Fast construction of load-balanced overlay 57

2. If the contacted peer is undecided the peers perform a balanced split with probability 0 ≤ α(p) ≤ 1 and

maintain references to each other.

3. If the contacted peer has already decided for 0 then the contacting peer decides for 1 and maintains a

reference to the contacted peer.

4. If the contacted peer has already decided for 1 then the contacting peer decides for 0 with probability

0 ≤ β(p) ≤ 1 and with probability 1 − β(p) for 1. In the first case it maintains a reference to the

contacted peer. In the second case it obtains a reference to a peer from the other partition from the

contacted peer.

It is straightforward to see that condition (2) of the partitioning problem is satisfied. The question is now

to determine how to satisfy condition (1) by properly choosing the probabilities α(p) and β(p).

We model the peer interactions as a Markov process using mean value analysis. We assume that in each

step i a peer which has not yet found its counterpart contacts another randomly selected peer. By p0
i and p1

i

we denote the number of peers that have decided in step i for 0 and 1, respectively. Initially, p0
0 = p1

0 = 0.

At the end of the process in some step t we have p0
i +p1

i = n+1. We first assume that α(p) = 1. Informally

speaking, with this α(p) the partitioning proceeds as fast as possible, optimizing the required number of

interactions. Then the model can be given as

p0
i = p0

i−1 +
1
n

(n− p0
i−1 − (1− β)p1

i−1) (4.1)

p1
i = p1

i−1 +
1
n

(n− βp1
i−1) (4.2)

To determine the proper value of β for a given value of p, we have to solve this recursive system. The

first important observation is that the recursion terminates as soon as no more undecided peers exist, i.e., as

soon as p0
i + p1

i = n + 1. Thus we have first to find a value tβ such that p0
tβ

+ p1
tβ

= n + 1. In general this

will not be an integer value, but in the context of mean value analysis we allow fractional steps. By standard

solution methods we obtain

p0
i =

n

β
(2β − 1 + (1− β

n
)i − 2β(

n− 1
n

)i)

p1
i =

n

β
(1− (1− β

n
)i)

and evaluating the termination condition, we obtain

tβ(n) =
log(2)

log(n
n−1)

(4.3)

58 4. Multi-faceted load-balanced overlay

Note, that tβ does not depend on p, and thus the partitioning process requires the same number of

interactions among peers independent of the load distribution. By definition p =
p0

tβ

n+1 , thus we obtain a

relationship between the network size n+1 and the load distribution p with β(p, n), the decision probability

to be used.

Having β(p, n) dependent on n is problematic for two reasons: First the resulting equation is hard to

solve, and second, more importantly, n is not necessarily known to the peers. Since we are interested in

situations where n is (relatively) large we thus perform an asymptotic analysis. By letting n →∞ we obtain

the following relationship among p and β(p)

p = 1− 1
β

(1− 2−β) (4.4)

Positive solutions for β(p) cannot be obtained for all values of p. From Equation 4.4 we derive that

positive solutions exist for p ≥ 1 − log(2). This means that the algorithm cannot partition correctly for

too highly skewed partitions. Therefore for 0 ≤ p < 1 − log(2) we have to pursue a different strategy, by

reducing the probability of balanced splits, i.e., α(p) < 1.

Through an analogous analysis, by setting β(p) = 0, we can derive relationships for α(p):

tα(α, n) =
log(2α)

log(n)− log(1− 2α + n)
+ 1 (4.5)

and for the relation between α(p) and p when n →∞

p = −α (1− 2α + log(2α))
(1− 2α)2

(4.6)

Before we continue with the discussion of different partitioning algorithms, a statement on the modeling

approach is necessary: We use a sequential approach to model and analyze what is a concurrent process.

This is a simplification as well as an appropriate approximation for our purpose. Assume that the latency

in one interaction is such that c other interactions among peers occur concurrently. Then the concurrent

behavior of N peers corresponds (approximately) to the sequential behavior of N
c = n + 1 groups. The

analysis we perform shows that the models we use are sufficiently accurate for relatively small n. Thus for

large numbers of peers the model is a sufficiently good approximation, whereas for small N concurrency is

less likely to occur and less critical.

The analysis provided in this section assumes that the system resides deterministically in its mean state.

We call such an approximation as mean value analysis (MVA). A more accurate analysis of the distributed

partitioning process looking into the time evolution of the probability mass/density function (EoDF) of the

system is provided in Appendix A.1.

4.4 Algorithmic issues and heuristics 59

An interesting observation we make based on the EoDF analysis is that using AEP we have a lower

variance than a binomial distribution as would have been achieved using AUT. Thus to say, AEP not only

reduces the communication cost with respect to AUT, it also reduces the statistical noise associated with the

partitioning process.

So far we also made an idealizing assumption that all participating peers know exactly the value of p

during the decentralized partitioning process. In practice assumption of such global knowledge is however

unrealistic. Instead peers need to use local estimate based on a limited number of interactions/samples. We

study the effect of such approximate information in Appendix A.2

4.4 Algorithmic issues and heuristics

In order to use AEP for implementing the Partition algorithm in a decentralized fashion we have to address

several issues related to the global organization of the indexing process.

4.4.1 Initiating the indexing process

In absence of global coordination the mechanism to reach a decision to initiate the indexing process is

not obvious. While it is not the focus of this chapter, and the initiation process is orthogonal to the index

evolution process, we nonetheless describe a simple, decentralized strategy.

Depending on locally observed queries, individual peers may make autonomous decisions on whether

a new index may be necessary or re-indexing may be required. Any of the peers that locally decide that

indexing is useful can initiate a vote, by flooding the peer network. This flooding can use the pre-existing,

generic, unstructured overlay network which we assume to exist.

When peers receive a voting request they can reply back their local decision. Additionally, helpful infor-

mation, such as locally available storage space that the peer is willing to contribute to store information for

the new index and the number of local data items to be indexed can be piggy-backed. Votes are sent back

along the paths they arrived, and multiple votes are aggregated while flowing back to reduce bandwidth

consumption. Based on the number of positive and negative responses, the peer which initiated the voting

can then decide whether to initiate index construction or not, and can flood the decision back to all peers.

Additionally, based on the aggregate storage space available, and the amount of storage required for all the

data items (references) in the system, the decision will contain the parameters for ensuring optimized uti-

lization of the available resources (i.e., dmax and nmin) and for synchronization of the indexing process. For

simplicity we assume a collaborative environment where the majority of peers does not behave maliciously

or in a Byzantine manner, and adheres to the democratic decision of the group, and thus participates in the

indexing irrespective of their individual votes. In an alternative scenario, a part of the peer population may

opt out of the indexing process, in which case we need to ignore their presence in the whole process, and

60 4. Multi-faceted load-balanced overlay

only consider the peers which agree to participate in the indexing process. Some of such peers who origi-

nally decide not to participate in the indexing may later want to join the already (partially) evolved overlay,

and will be treated as new peers joining the system. These peers will use the sequential joining algorithm

described in Section 4.5 to join the overlay.

4.4.2 Synchronizing and terminating the indexing process

The partitioning algorithm introduced in Section 4.3 enables reaching a decision in parallel on bisecting

the key space proportionally among a group of autonomous peers. In the indexing process the algorithm is

executed multiple times and a synchronization mechanism is needed. In addition peers need to autonomously

recognize when to terminate the indexing process. We realize this as follows.

The peer communicating the decision to start the indexing process provides the parameters dmax and

nmin as used in Partition. The values are chosen such that dmax = davgnmin/2, where davg is the average

number of data keys peers hold (as mentioned in Section 4.4.1 this information can be derived from infor-

mation piggy-backed to the votes). Additionally, it provides a time tinit. Before starting to partition, peers

replicate their data keys at time tinit to nmin randomly chosen other peers. Thus at the start of the indexing

process all data keys are already replicated the desired number of times in the network.

Besides estimating the number of data keys in the current partition, peers also have to estimate the

number of current peers, in order to perform the proper decisions in algorithm Partition. Attempting this

directly, by learning about all existing replicas at each level of the partitioning process, would unnecessarily

slow down the progress of indexing. Instead, we estimate the number of replicas in a partition by analyzing

the overlap in the sets of data keys of two peers interacting in a balanced split. If Di denotes the set of data

keys peers pi, i = 1, 2 hold, and D = D1 ∪D2, then |D1||D2|nmin

|D|dmax
is a maximum likelihood estimate of the

expected number of peers in the current partition. For example, if D1 = D2 and |D1| = dmax then it should

be expected to have nmin peers in the partition since initially data keys have been replicated nmin times. To

ensure the correctness of this estimation was the purpose of initially replicating the data.

During partitioning, peers that have extended their paths attempt to immediately contact other peers to

perform the partitioning at the next level. If they do not succeed in identifying a different peer in the same

partition with which a useful interaction can take place, i.e., “divide and conquer” or “replicate”, after a fixed

number of attempts (e.g., 2), using the refer interaction (see Figure 4.1), they stop to initiate interactions and

only will continue after being contacted by another peer. In this way peers that are “ahead of the crowd”,

e.g., due to faster network connections, are forced to wait for the slower ones. The same mechanism also

eventually leads to termination of the process, when peers encounter only fully synchronized copies of

themselves.

Initiating the indexing process, as well as synchronizing and terminating it are required to bootstrap the

index. After the load-balanced distributed index is constructed, it also needs to be maintained. Maintenance

4.4 Algorithmic issues and heuristics 61

operations needs to account for several sources of dynamics in the system - particularly membership and

workload dynamics.

Membership dynamics caused by new peers joining an existing network is dealt with as will be described

in next Section 4.5. We study how to deal with existing members leaving and re-joining the network with

potentially different physical address in Chapter 6.

Changing workload, caused by addition of new keys may lead to further partitioning of the affected

overloaded key-space partition(s). Deletion of existing keys being indexed is dealt with by coalescing un-

derloaded partitions as is described in the following. Finally, several of these maintenance mechanisms as

well as the overlay construction mechanism in itself leads to variation of replication factor across different

partitions, and a background process to re-balance replication across partitions will be described in Sec-

tion 4.6

4.4.3 Coalescing partitions (path retraction)

If load in any particular portion of the key-space decreases, such that the number of keys in some partitions

is lower than the minimal load peers are willing to accept, the corresponding peers will then retract their

path, essentially leading to coalescing partitions. If replication of a partition falls below the nmin threshold

(because of departing peers) and the background process of replication balancing does not repopulate the

partition quickly enough, peers from two complementary partitions need to retract paths in order to provide

the minimal desired fault tolerance.

Path retraction is essential in order to provide the P-Grid network adaptivity to changing load, and com-

plements the partitioning based peer path extension.

Such decrease of load may result from deletion of keys, or the global load distribution changes, so that

the average load per peer needs to deal with (determined by parameter dmax) is increased.

Note that in a setting where the load is different from storage, say computational load, the computational

capacity at peers instead of storage space will determine the parameter dmax and end of a computational

task will be equivalent to deletion of the corresponding key.

4.4.4 Complexity

The goal of our approach to index construction is to perform it with low bandwidth consumption and low

latency. With regard to bandwidth consumption a necessary requirement is to perform comparably to a

sequential approach using standard construction mechanisms, i.e., O(n log2n). To study this, we look at

the complexity in the case of a balanced key distribution (p = 1
2 for all granularity of key-space partitions).

Then for partitioning at one level, peers engage in log(2) bilateral interactions on average. In addition, to

locate a random peer in the same partition at level k, peers have to route on expectation log(k)/2 steps when

performing the refer interaction. This shows that the total number of interactions is also of order O(n log2n).

62 4. Multi-faceted load-balanced overlay

However, the overlay construction latency is O(log2n) because of parallelization of peer interactions as

opposed to O(n) in the standard maintenance model.

4.5 Peers joining a (partially) existing P-Grid network

In a decentralized system design, synchronization of peer activities can neither be guaranteed, nor should

it be required. One practical implication of this is that some peers may complete a (or several) phase(s) of

proportional partitioning, while some other peers lag behind, still running the proportional partitioning for

a higher level of the tree (a larger key-space). Moreover, new peers will join the overlay which might have

already evolved either completely or partially. Such new peers may comprise either existing peers which

decided to participate in the indexing (overlay) later than other peers, or totally new peers.

Structurally it is the same problem from the point of view of any individual peer, irrespective of its

current degree of “specialization” in terms of the key-space partition it is responsible for. If its own path is

strictly a prefix of any other peer’s path, then it knows that it has lagged behind in the process of partitioning

(not if difference of path lengths is 1). In such a scenario, this peer will need to catch up with the partitioning

process. Thus to say, it has to specialize its path so that it also is responsible for a leaf node of the current

snap-shot of the evolved/evolving P-Grid network.

In this setting it is desirable that each key-space partition is replicated by the same number of peers.

Assuming that replication across all partitions is originally balanced, a first order balancing will be to choose

any of the partitions with equal probability. The challenge in doing so comes from the fact that typically the

size of the partitions are not same (unbalanced tree), which requires a non-trivial mechanism to choose

any particular key-space uniformly randomly. If this can be achieved, we’ll have the normal balls into bins

scenario - the key-space partitions being the bins, and the newly joining peers being the balls.

At a first glance, it may however look like a more complicated problem if the key-space partitions are not

equally replicated. Then the question we need to answer is - “How do the joining peers choose a key-space

partition so that the imbalance of replication across different key-spaces is reduced?” Intuitively, choosing

uniformly randomly any of the partitions no more seems to be a realistic means, since more peers should

replicate the underpopulated partitions.

On the other hand, knowing globally the replication at each partition, and determining the weighted

probability with which to choose peers so that each corresponding partition is chosen uniformly looks both

computationally non-trivial, even if global knowledge and coordination could have been used, and also

impractical in a decentralized setting.

To apparently make things worse, randomly contacting existing members of the network will mean

favoring the overpopulated partitions.

To solve this problem we propose a heuristic, which separates the two concerns of choosing partitions

uniformly and then replicating these partitions uniformly.

4.5 Peers joining a (partially) existing P-Grid network 63

Once we choose the partitions uniformly, simulation based study shows that the same mechanism of us-

ing multiple choices to achieve a second degree of more refined load-balancing in the original (un-weighted)

balls into bins mechanism can also be used in such a situation. Its worth pointing out that such multiple

choices are anyway necessary in order to reduce the otherwise high variance observed by uniformly assign-

ing balls into bins. Thus, multiple key-space partitions are chosen uniformly by the joining peer, and then

the partition with the least replication is replicated.

Two practical problems need to be dealt with in a peer-to-peer environment in order to realize such a

separation of concern based sequential peer joins in an existing network.

First of all, how do we choose a key-space partition uniformly randomly out of all the partitions?

If any random peer is chosen, the probability of choosing a more replicated partition will be higher

than that of choosing a less replicated partition. Thus randomly choosing a peer itself will provide a biased

mechanism to choose a key-space partition. However, that is the basic primitive we need to start with. The

separation of concern between the uniform choice of a key-space partition irrespective of how replicated it

is and hence how a random peer will be chosen, is achieved by the Algorithm 5 described below.

Uniformly choosing the key-space partition using FindPartitionUniformly algorithm 5 thus achieves

a first-order load-balance. In fact it becomes exactly a balls-into-bins problem, with the key-space partitions

being the bins, and the sequentially joining peers being the balls. As with sequential balls-into-bins ap-

proaches the statistical noise can be reduced using multiple choices. The joining peer should choose to

replicate the least replicated partition.

Secondly, choosing a key-space partition means communicating with a peer replicating that partition.

This peer may not know all other replicas of the partition - because of the dynamics of the system, and

hence, it will provide an imperfect information about the replication factor in the key space partition. Thus,

unlike in the classical use of multiple choices based on perfect knowledge, we need to make the decisions

based on imperfect information. Simulations (in Section 4.8.2) show that our heuristic is fairly robust to

such imperfect knowledge of the load and achieves good load balancing.

In the following, we explain how key-space partitions can be uniformly randomly chosen.

4.5.1 Local view of the global structure

Lets consider the following idealized scenario, where a P-Grid network is completely formed - all peers are

responsible for leaf-nodes of the tree. If there is no further restructuring of the P-Grid network, each peer

can determine the number of key space partitions that exist for any given prefix of its own path, based solely

on communication with peers in its own routing table.

As a slight abuse of the notation introduced in Section 3.2.1, we say Πp
l is the key-space partition with

prefix π(p, l) and |Πp
l | is the number of leaf nodes in the P-Grid corresponding to that part of the key-

space. Note that, each of these partitions will have multiple peers, but we are counting just the partitions

64 4. Multi-faceted load-balanced overlay

themselves. Since once the overlay construction is finished, a peer is always responsible for a leaf node,

hence peer p will have |Πp
|π(p)|| = 1.

Then the information |Πp
l | can be obtained by each peer by collaborating with only peers it already

knows from its routing table for all l = 1, ..., |π(p)|. This information is calculated and locally cached at

peer p using information from a suitable peer in its routing table r ∈ ρ(p, l + 1) as follows:

|Πp
l | = |Πp

l+1|+ |Πr
l+1| (4.7)

The overheads of such communication is minimal, and in fact can be piggy-backed with several other

kinds of messages like route maintenance messages or query forwarding messages. When a network is

stable - that is, the key-space is no more re-partitioned - this local view of the global network can be obtained

at each peer for any level incurring a latency corresponding to the maximum depth of the P-Grid tree for

that subspace, and message complexity of its own path length.

4.5.2 A new peer joining an existing P-Grid network

When a new peer q wants to join the existing P-Grid network, it first contacts any existing peer p of the

network. Then, based on local information stored at the entry peer p, q is referred probabilistically to another

peer (or p itself), so that finally q can make an uniformly random choice of the key-space partition to

replicate. The references that p provides come from its own routing table, and the probabilistic decision that

p makes in referring q is also based on information obtained in collaboration with its routing table entries as

described above.

The process for newly joining peer q to choose a random key-space partition is given in Algorithm 5,

where q makes a request: FindPartitionUniformly(p, 1).

Algorithm 5 New peer q joins P-Grid - interaction at peer p: FindPartitionUniformly(p, l)
1: if π(p) == l then
2: Return p’s partition; {q has chosen a partition (that of p’s) uniformly randomly among all the key-space partitions.}
3: else
4: Draw a random number Rand uniformly from [0, 1];
5: if Rand ≤ |Πp

l |/|Πp
l |+ |Πr

l | where r ∈ ρ(p, l) then
6: q executes FindPartitionUniformly(p,l + 1); {Note that this is a local step at p.}
7: else
8: q executes FindPartitionUniformly(r,l + 1) where r ∈ ρ(p, l); {This involves communication. Note also that the joining

peer q may populate (some of) its routing tables till level l−1 from p’s routing table, and can have p as a level l reference.
This process makes the need to replicate complete routing table from any one peer unnecessary, and de-correlates the
routing entries among replica peers.}

9: end if
10: end if

4.6 Re-balancing structural replication 65

This process enables a peer to locate each P-Grid key-space partition with the same probability. The intu-

ition behind this is as follows. Lets say there are |Π0| and |Π1| partitions with prefixes 0 and 1 respectively,

where the total number of partitions |Π| = |Π0|+ |Π1|. Then if q approaches a peer p with prefix 0, it will

refer q to a peer with prefix 1 with probability |Π1|/(|Π0| + |Π1|) and q will decide for its first bit as 1,

otherwise q will decide on the first bit of its path as 0 with probability |Π0|/(|Π0| + |Π1|) and the same

process will be continued until a peer is reached when q has decided the number of bits corresponding to

the path length of that peer. Since the decision by q at each step to extend its path with 0 or 1 is independent

of the decision in the previous step, these probabilities are multiplied to determine the probability of q’s

choosing any specific path. This yields the probability of q’s choosing one and all existing partitions of the

P-Grid a value of 1/Π , i.e., each of these partitions are uniformly chosen.

Choosing multiple partitions based on this scheme and replicating the least replicated partition (count-

ing the actual number of peers in a partition) reduces the variation of replication factor across the various

partitions. This is an idea borrowed from the use of multiple choices in a balls-into-bins problem.

Thus peer joins do not lead to any restructuring of the network, and more significantly, the existing peers

do not need to change their routing tables at all for functional correctness! This is yet another unique feature

of P-Grid network, and hence P-Grid can deal with very high rates of incoming peers, without affecting the

functionality of the existing peers, nor needing any stabilization algorithm for peer joins. However, routing

entries can be changed slowly in a background process to provide better connectivity, exploiting better the

available redundancy, and for (routing and query answering) load-balancing purposes.

The new set of replicas can at some point again initiate partitioning their local portion of the key-space

using the decentralized partitioning algorithm, without affecting peers from the rest of the network. When

to repartition a key-space is similar in nature to when to start indexing in general. Heuristics include start-

ing repartitioning if the number of replicas in a partition exceeds a threshold. Another reason to restart

partitioning is increase of (storage) load at peers.

4.6 Re-balancing structural replication

The parallelized overlay construction mechanism ensured that all key-space partitions are on an average

equally replicated, achieving a first-order balancing of replication factor. The variance from a single parti-

tioning process is shown in Appendix A.1. Apart the effect of construction process, peers may go offline,

which changes the replication factor for different partitions.

Here we investigate how to reduce the variation of replication factor for each key-space partition based

on migration of peers from one partition to another. We use a reactive randomized distributed algorithm

which tries to achieve globally uniform replication adaptive to globally available resources based on locally

available (gathered) information. Before introducing the algorithm we introduce the intuition underlying its

design.

66 4. Multi-faceted load-balanced overlay

Consider a P-Grid of leaves as shown in Figure 4.2(a). Let N1 > N2 be the actual number of replica

peers with paths 0 and 1. To achieve perfect replication balancing N1−N2
2 of the peers with path 0 would

need to change their path to 1. Since each of the peers has to make an autonomous decision whether to

change its path, we propose a randomized decision: Peers decide to change their paths with probability

p0→1 = max(N1−N2
2N1

, 0) (no 0 → 1 transition occurs if N2 > N1).

N1 N2

If N1 > N2

Path = 0* Path = 1*

p = (N1-N2)/2(N1+N2)

If N1 < N2

State transition probability

(a) P-Grid with two leaves

N2

Path = 10*

N
1

Path = 0*

N3

Path = 11*

Local region

 for paths 1*

Global region

 for paths 1*

Bit wise (local)

statistics and
load-balancing

decisions

(N
2
+N

3
)/2

Replication for
path 1* as

perceived by
peers at 0*

(b) P-Grid with three leaves

Fig. 4.2. Re-balancing replication factor: Migration of peers from one key-space partition to another.

Now, if we set p0 = N1
N1+N2

as the probability that peers have path 0, and similarly p1 = N2
N1+N2

, then

the migration probability becomes p0→1 = max(1
2(1 − p1

p0
), 0). It is easy to see that with this transition

probability on an average an equal replication factor is achieved for each of the two paths after each peer

has taken the migration decision. In a practical setting peers do not know N1 and N2, but they can easily

determinate an approximation of the ratio N1
N2

by keeping statistics of the peer they encounter in (random)

interactions.

Now consider the case of a P-Grid with three leaves, as shown in Figure 4.2(b), with N1, N2 and N3

replicas for the paths starting with 0, 10 and 11 respectively. This extension of the example captures the

essential choices that have to be made by individual peers in a realistic P-Grid. In an unbalanced tree,

knowing the count of peers for the two sides at any level is not sufficient because, even if replication is

uniform, the count will provide biased information, with a higher value for the side of the tree with more

leaves. On the other hand, knowledge of the whole tree (shape and replication) at all peers is not practical

but fortunately not necessary either. For example, in the P-Grid with three leaves, peers with path 0 will

meet peers with paths 10 and 11. Essentially, they need to know that there are on an average N2+N3
2 peers at

each leaf of the other sub-tree, but do not need to understand the shape of the sub-tree or the distribution of

replication factors.

Thus, while collecting the statistical information, any peer p counts the number of peers encountered with

common prefix length l for all 0 ≤ l ≤ |π(p)|. It normalizes the count by dividing it with 2|π(q)|−|π(p)∩π(q)|.

4.6 Re-balancing structural replication 67

Thus peers obtain from local information an approximation of the global distribution of peers pertaining to

their own path. The latter aspect is important to maintain scalability.

In our example, peers with path 0 will count on an average N2+N3
N1

as many occurrences of peers with

path 10 or 11 than they will count with path 0, but will normalize their count by a factor of 1
2 . Thus at

the top level they will observe replica balance exactly if on an average N1 = 1
2(N2 + N3). If imbalance

exists they will migrate with probability p0→1 = max(1
2(1 − p1

p0
), 0), where, now p0 = N1

N1+ 1
2
(N2+N3)

and

p1 =
1
2
(N2+N3)

N1+ 1
2
(N2+N3)

.

Once balance is achieved at the top level, peers at the second level with paths 10 and 11 will achieve

balance as described in the first example. Thus local balancing propagates down the tree hierarchy till global

balance is achieved. The peers with longer paths may have multiple migration choices, such that balancing

is performed at multiple levels simultaneously. For example, if N1 = N2 < N3 peers with path 11 can

choose migrations 11 → 0 and 11 → 10 with equal probability.

Note that Ni changes over time, and thus the statistics have to be refreshed and built from scratch reg-

ularly. Thus the algorithm has two phases, (1) gathering statistics and (2) making probabilistic decisions to

migrate. Now we introduce the algorithms extending the intuition to the general situation.

4.6.1 Collecting statistical information at a peer

In a decentralized setting, a peer p has to rely on sampling to obtain an estimate of the global load imbalance:

Upon meeting any random peer q, peer p will gather statistical information for all possible levels l ≤ |π(p)|
of its path, and update the number of peers belonging to the same subspace Σp(l) = |{q s.t. |π(p)∩π(q)| ≥
l}| and the complimentary subspace Σp(l) = |{q s.t. π(p, l) = π(q, l)}| at any level l. When peers p and q

interact statistics gathering is performed as follows:

l := |π(p) ∩ π(q)|;
Σp‖q(l) := Σp‖q(l) + 21+l−|π(q‖p)|;

∀0 ≤ i < l Σp‖q(i) := Σp‖q(i) + 21+i−|π(q‖p)|;

where the meta-notation p‖q denotes that the operations are performed symmetrically both for p and q.

We use a weighted aggregate, with longer path differences making smaller contributions, compensating for

the fact that longer paths mean more partitions and hence more peers even if the replication of each of these

partitions are same.

4.6.2 Choosing migration path for a peer

A path change of a peer only makes sense if it reduces the number of replicas in an underpopulated subspace

(data). Therefore, as soon as a minimum number of samples have been obtained, the peer tries to identify

possibilities for migration. It determines the largest lmax such that Σp(lmax)

Σp(lmax)
> ζ where ζ ≥ 1 is a dampening

68 4. Multi-faceted load-balanced overlay

factor which avoids migration if load-imbalance is within a ζ factor. We set lmax := ∞ if no level satisfies

the condition.

If all peers try to migrate to the least replicated subspace, we would induce an oscillatory behavior

such that the subspaces with low replication would turn into highly replicated subspaces and vice versa.

Consequently, instead of greedily balancing load, peers essentially have to make a probabilistic choice pro-

portional to the relative imbalance between subspaces. Thus lmigration is chosen between lmax and |π(p)|
with a probability distribution proportional to the replication load-imbalance Σp(i)

Σp(i)
, |π(p)| ≥ i ≥ lmax. Thus

the migrations are prioritized to the least populated subspace from the peer’s current view, yet ensuring that

the effect of the migrations is fair, and not all take place to the same subspace. There are subtle differences in

our approach to replication balancing in comparison to the classical balls into bins load balancing approach,

because in our case there are no physical bins, which would share load among themselves, and it is rather

the balls themselves, which need to make an autonomous decision to migrate. Moreover, the load sharing is

not among bins chosen uniformly, but is prioritized based on locally gathered approximate global imbalance

knowledge.

Migration is an expensive operation—it leads to increased network maintenance cost due to routing

table repairs, apart from the data transfer for replicating a new key space—it should only occur if long-

term changes in data and replication distribution are observed and not result from short term variations or

inaccurate statistics. To further reduce oscillatory behavior, the probability of migration is reduced by a

factor ξ ≤ 1. The parameters ζ and ξ are design parameters, which we chose based on performance in terms

of reduction of variance without unnecessary oscillations as observed based on simulations in Section 4.8.3.

4.6.3 Migrating a peer

The last aspect of replication load balancing is the action of changing the path. For that, peer p needs to find a

peer from the complimentary subspace and thus inspects its routing table ρ(p, lmigration) s.t. π(p)∩ π(q) =

lmigration. After identifying a peer q, p clones the contents of q, including data and routing table, i.e.,

δ(p) := δ(q) and ρ(p, ∗) = ρ(q, ∗), and the statistical information is reset in order to account for the changes

in distribution. Peers which referred to p in their routing tables will subsequently discover the change of p’s

path, and update their routing table accordingly.

4.7 P-Grid as a DHT

The P-Grid construction mechanism described in this chapter can accommodate a wide range of distribution

of keys over the key-space. Since not all applications need preservation of lexicographic ordering, and a

simpler data-structure like DHT may well serve such applications, we’d like to reemphasize that a DHT is a

4.8 Evaluation results 69

special instance of the P-Grid overlay network. If an uniform hashing function is used to generate the keys

for P-Grid to index, it’ll realize a DHT.

For parallelized construction using recursive repartitioning, this implies that the partition parameter p =

0.5 should be chosen at all levels of partitioning to realize a DHT.

That apart, a DHT P-Grid network can be easily constructed sequentially as described next.

4.7.1 Balanced tree construction with controlled replication

A traditional DHT like Chord or Pastry has a predetermined globally fixed number (say f) of replicas for

each key. Moreover, load-balancing for DHTs often aim to partition the key-space as uniformly as possible

- which is equivalent to building a tree which is as balanced as possible.

Construction of such a traditional DHT is straightforward using the FindPartitionUniformly algo-

rithm 5. A newly joining peer uses the algorithm to choose two (multiple) key-space partitions randomly,

and decides to replicate the partition with shortest path. Path extensions are done when the replication of the

specific path reaches 2nmin, and each of the resulting partitions are replicated by nmin peers. In the whole

process, if we ignore node departures, apart the very beginning when the network population is less than

nmin, all the partitions are always replicated by at least nmin peers, providing a minimal fault-tolerance.

Finally, if peers depart and the replication of a particular key-space partition falls below nmin, the corre-

sponding peers can as well coalesce the partition with the complementary partition.

Following these simple heuristics a DHT with fairly good balance of the key-space partition sizes and

replication factor between nmin and 3nmin can be realized, and the variance further reduced based on a

background process.

We described above a simple P-Grid construction mechanism to emphasize that the P-Grid network itself

is no more complex than other DHTs and is as simple to build. The complex load-balancing techniques we

discussed earlier in the chapter however are to realize other properties, like accommodating arbitrary load-

skews and construction of the index (overlay) in a rapid manner.

4.8 Evaluation results

4.8.1 Parallelized load-balanced overlay construction

In order to study the global behavior of the indexing algorithms when using the decentralized proportional

partitioning (AEP) algorithm recursively in the sub-partitions based on local estimates of the load-skew, we

performed simulation studies implemented in Mathematica. We were mainly interested whether the desired

load balancing properties would be achieved under the various approximations and whether the algorithm

performs as predicted.

70 4. Multi-faceted load-balanced overlay

In the simulations we used peer populations of sizes 256, 512, and 1024. As data distributions we used a

uniform distribution, a Pareto distribution with PDF a ka

x1+a with parameters k = 1 and a = 0.5, 1.0, 1.5, and a

Normal distribution with mean value 1
2 and standard deviation 0.0513, and test data from text retrieval exper-

iments (project Alvis [30]). In Figure 4.3 these distributions are denoted as U, P0.5, P1, P1.5, N and A. The

Pareto and Normal distributions represent cases with extremely skewed distributions. Initially, we randomly

assigned 10 keys from the distributions to peers, so that they held samples. We tested with nmin = 5 and

nmin = 10 such that at least 5 (respectively 10) replicas of the keys are generated. Typically the experiments

had dmax = 10nmin. All experiments were repeated 10 times and the results were averaged. The algorithms

were implemented as described above. The experiments were executed on a workstation cluster using up to

36 machines and were running for more than a week. Note that there were 36 separate experiments, each

conducted 10 times. Furthermore, in a real network the peers would use exclusive resources, and thus the

actual overlay construction process is much faster.

For evaluating the experiments we primarily were determining the degree to which the load balancing of

peers across key space partitions worked. To do so, we compared the generated key sets to the distribution,

that would be generated by global coordination (Partition algorithm).

The Partition algorithm generates a distribution (ki, ni), i = 1, . . . ,K, where ki are the K partitions

of the key space generated and ni are the number of peers associated with each partition. We compared this

distribution to the distribution (kd
i , n

d
i) generated by the decentralized algorithm.

√∑K
i (ni − nd

i)2

1
K

∑K
i nd

i

As explained in Section 4.3, we consider the distribution generated by Partition as the optimal distri-

bution. Measuring the distance to this distribution provides a measure for the quality of load balancing.

The first experiment (Fig 4.3(a)) for nmin = 5 and dmax = 10 shows the quality of load balancing

depending on the peer population size for the different distributions. One can observe that the quality remains

practically stable independent of the size.

We also investigated the influence of the replication factor nmin by comparing nmin = 5, 10, 15, 20, 25

(Fig 4.3(b)). In principle the load balancing properties should not be affected as we measure deviations

relative to the average replication. This is confirmed for less skewed distributions, whereas for the strongly

skewed distributions a certain degradation can be observed. We have still to investigate in detail the reasons

for this effect, but most likely it is related to the relatively low number of partitions with high replication

factors.

We were also interested in the influence of the sample size dmax on the quality of load balancing. It

might be expected that more samples lead to higher accuracy. In fact, the result (Fig 4.3(c)) shows that no

4.8 Evaluation results 71

U P0.5 P1.0 P1.5 N A

0.1

0.2

0.3

0.4

0.5

Deviation for various peer populations

(a) Varying peer population: n = 256, 512,
1024; dmax = 10nmin; nmin = 5

U P0.5 P1.0 P1.5 N A

0.2

0.4

0.6

0.8

1
Deviation from ideal distribution for different distributions and replications

(b) Varying required replication: n = 256;
dmax = 10nmin; nmin = 5, 10, 15, 20,
25

U P0.5 P1.0 P1.5 N U

0.2

0.4

0.6

0.8

Deviation for various data sample sizesL

(c) Varying data sample size: n = 256;
dmax = 10, 20, 30 nmin; nmin = 5

U-5 U-10 P0.5-5 P0.5-10 P1.0-5 P1.0-10 P1.5-5 P1.5-10 N-5 N-10 A-5 A-10

0.2

0.4

0.6

0.8

1

1.2

Deviation Hfor n_min=5,10Lmodel theoretical using vs.heuristics

(d) Theory vs. Heuristics

U P0.5 P1.0 P1.5 N A

2

4

6

8

10

12

Interactions required per peer for overlay construction Hfor various population sizesL

(e) Interactions per peer: n = 256, 512,
1024; dmax = 10nmin; nmin = 5

U P0.5 P1.0 P1.5 N A

2500

5000

7500

10000

12500

15000

Total number of data items moved Hbandwidth consumtionL for overlay construction

(f) Bandwidth consumed (data keys
moved): n = 256, 512, 1024; dmax =

10nmin; nmin = 5

Fig. 4.3. Simulation results for various experiment scenarios.

such influence exists. This is insofar important as it shows that the partitioning can be done using very small

samples which enables several possibilities for optimization to reduce bandwidth consumption.

In order to understand the quality of the load distributions achieved we also analyzed the role of our

theoretical framework (Fig 4.3(d)). We replaced the functions αcorr(p) and βcorr(p) by heuristic functions

which likely would be chosen in the absence of a theoretical understanding of their properties. The functions

αcorr(p) and βcorr(p) are derived by extending the analysis of Section 4.3.2 to account for the fact that

peers do not have exact knowledge but only local estimates of the load-skew (parameter p) during the

partitioning process. Such an error analysis assuming that the peers have a randomly uniform sample of

load-skew is provided in Appendix A.2. The hypothesis we wanted to verify was whether the concrete

nature of these functions plays a significant role in view of the many approximations made in the overall

distributed algorithm. We chose

αheur(p) =
1

1
p − 1

, βheur(p) = 0

These functions exhibit qualitatively the same behavior as the ones used by AEP. The experiment was

executed for n = 256 and nmin = 5. The conclusion is clear from the result: Even a minor change to the

theoretically correct functions degrades the quality of load balancing substantially. Thus the theoretical basis

proves valuable despite many idealizing assumptions.

72 4. Multi-faceted load-balanced overlay

We also analyzed the communication costs of the algorithm. We can see that both the number of in-

teractions per peer (Fig 4.3(e)), and the overall bandwidth consumption per peer measured in terms of the

total number of data keys exchanged among all peers during the interactions (Fig 4.3(f)) grow gracefully in

terms of the network size, as expected from theory. However, skew in the data distribution can significantly

increase the bandwidth consumption.

4.8.2 New peers joining an existing network

We study the process of new peers joining an existing P-Grid network. We conducted simulation experiments

with a randomly generated P-Grid network which had 120 partitions of the key-space according to the

density shown in Figure 4.4. Each vertical line in the figure corresponds to a partition of the [0, 1] interval of

the key-space in the instantiated P-Grid corresponding to the decimal representation of the partition’s path

(which is a binary string). The unequal spacing between these lines in the plot is because the instantiated

P-Grid is not balanced,and different partitions have different path lengths.

0.2 0.4 0.6 0.8 1
Key-space

0.2

0.4

0.6

0.8

1

Granularity of key-space partitions

Fig. 4.4. Key-space partitioning granularity of a randomly generated unbalanced P-Grid network with 120 partitions. Each vertical
line in the figure corresponds to a partition of the key-space in the instantiated P-Grid.

The average replication of each of these partitions was 20. However the experiments were conducted

with different initial variance of replication factor across the key-space partitions. In one setting, the ac-

tual replication factor was chosen to be precisely 20 across all partitions, while other settings included the

replication factor chosen uniformly randomly (integer) between [20− i, 20 + i] for various values of i.

As previously mentioned, in a real setting, individual peers may not know the correct replication factor

corresponding to its own key-space partition. So we conducted experiments for various degree of error in

4.8 Evaluation results 73

local estimates of replication factor at peers. In these experiments, each peer made an estimation error (a

maximum) of j%. Thus to say, the local estimate of replication factor varied between 100 − j% to 100%

of the actual replication factor in the partition, chosen uniformly randomly. The model for replication factor

estimation error itself is not necessarily representative, but the main intention of these experiments was

to see how errors in replication factor estimates influence the sequential peers joining, and the observed

replication factor variance.

We report our simulation results in Figures 4.5 to Figure 4.9.

In each of the plot, the x-axis shows the number of new peers (per peer in the network at the beginning

of the experiment) joining the existing network and structurally replicating an existing partition. We thus do

not study any repartitioning and restructuring of the P-Grid key-space partitions in these experiments. The

y-axis shows the variance of the replication factor across the different key-space partitions. Each experiment

was repeated ten times. We plot the mean along with the error bars showing the standard deviation.

Figures 4.5 to Figure 4.8 each show experiment results for a given range of initial replication factors.

Each plot corresponds to a different level of maximum replication factor estimation error. Finally, each of

these plot shows the results obtained based on k = 1, 2, 3 random tentative choices that a peer makes, and

then chooses to replicate the least replicated key-space partition. The decision on least replicated key-space

partition is based on the erroneous estimates provided to it by the contacted peers of the corresponding

partitions. These three cases are represented as Random, 2 choices and 3 choices in the plots.

In experiments starting with perfect balance in replication factor, we observe that the absolute variance

increases, as expected from the stochastic nature of the peer joining mechanism. When there is a high

variation in the initial replication factor, we observe that use of the heuristic of multiple choices reduce the

variation, as we anticipated in Section 4.5.

As expected, under perfect knowledge (zero estimation error), using more choices of tentative partitions,

and choosing the least replicated partition reduces the variance of replication factor. Also the second-order

statistical noise, that is, the variance of the variance across different experiments is also less with the use of

more choices, as observed from the smaller error bars.

Also expected, if not obvious, is that when no choices are involved, estimation (error) has no role to play.

This is also confirmed by the different sets of experiments.

What is reassuring is that even in presence of estimation error, while the variance is more than the case

without estimation errors, the performance deterioration is graceful - both the (mean) variance, and the

variance of the variance across different experiments being small. More importantly, the benefits of multiple

choices stay significant even in presence of estimation errors, making the peer join algorithm practical for

the typical P2P environment.

74 4. Multi-faceted load-balanced overlay

Figure 4.9 provides some more experiment results to directly compare the performance under various

degrees of estimation errors when 3 choices are used. We observe that the variance of replication factor

across key-space partitions gracefully increases with estimation error.

These simulation results demonstrates the robustness of our heuristic sequential join mechanism (Sec-

tion 4.5) to balance replication when more peers join an existing overlay sequentially.

4.8.3 Replication load balancing

Given a P-Grid that partitions the data space such that the storage load is (approximately) uniform for

all partitions, peer migrations are used to balance replication factors for the different partitions without

changing the key-space partitioning. For the experiments we chose the design parameters ζ = 1.1 (required

imbalance for migration), ξ = 0.25 (attenuation of migration probability) and a statistical sample size of 10.

These parameters had been determined in initial experiments as providing stable (non-oscillatory) behavior.

The performance of the migration mechanism depends on the number of key space partitions and the

initial number of peers associated with each partition. Since the expected depth of the tree structure grows

logarithmically in the number of partitions, and the maintenance is expected to grow linearly with the depth

of the tree (since each peer uses its local view for each level of its current path), we expect the maintenance

algorithm to have logarithmic dependency between the number of partitions and the rate of convergence.

Figure 4.10 shows the reduction of the variance of the distribution of replication factors compared with

the initial variance as a function of the number of key space partitions. The simulations started from an

initially constructed, unbalanced P-Grid network with replication factors chosen uniformly between 10 and

30 for each of the key space partitions.

In Figure 4.10(a) we compared the effect of an increasing the number of key-space partitions (p =

{10, 20, 40, 80}) on the performance of the replication maintenance algorithm. One observed that the reduc-

tion of variance increases logarithmically with the number of partitions. For example, for p = 80 the initial

variance is reduced by approximately 80%. We conducted 5 simulations for each of the settings. The error

bars give the standard deviation of the experimental series.

Figure 4.10(b) shows the rate of the reduction of variance of replication factors as a function of different

numbers of peers associated with each key partition. We used a P-Grid with p = 20 partitions and assigned

to each partition uniformly randomly between k and 3k peers, such that the average replication factor was

2k. The other settings were as in the previous experiment. Actually variance reduction appears to slightly

improve for higher replication factors. This results from the possibility of a more fine-grained adaptation

with higher replication factors.

4.8 Evaluation results 75

1 2 3 4 5
P_inc

0.25

0.5

0.75

1

1.25

1.5

1.75

Var Init repl var: 0., Local estimate error: 0%

3 choices

2 choices

Random

(a) No errors in estimating replication factor.

1 2 3 4 5
P_inc

0.25

0.5

0.75

1

1.25

1.5

1.75

Var Init repl var: 0., Local estimate error: 5.%

3 choices

2 choices

Random

(b) Error in local estimate of replication factor between 0%-5%.

1 2 3 4 5
P_inc

0.25

0.5

0.75

1

1.25

1.5

Var Init repl var: 0., Local estimate error: 10.%

3 choices

2 choices

Random

(c) Error in local estimate of replication factor between 0%-10%.

1 2 3 4 5
P_inc

0.25

0.5

0.75

1

1.25

1.5

Var Init repl var: 0., Local estimate error: 20.%

3 choices

2 choices

Random

(d) Error in local estimate of replication factor between 0%-20%.

Fig. 4.5. Sequential join of peers in an existing P-Grid network without variance in replication factor.

76 4. Multi-faceted load-balanced overlay

1 2 3 4 5
P_inc

0.5

1

1.5

2

2.5

Var Init repl var: 0.760148, Local estimate error: 0%

3 choices

2 choices

Random

(a) No errors in estimating replication factor.

1 2 3 4 5
P_inc

0.5

1.5

2

2.5

Var Init repl var: 0.714855, Local estimate error: 5.%

3 choices

2 choices

Random

(b) Error in local estimate of replication factor between 0%-5%.

1 2 3 4 5
P_inc

1.5

2

2.5

Var Init repl var: 0.6858, Local estimate error: 10.%

3 choices

2 choices

Random

(c) Error in local estimate of replication factor between 0%-10%.

1 2 3 4 5
P_inc

0.75

1.25

1.5

1.75

2

2.25

Var Init repl var: 0.692352, Local estimate error: 20.%

3 choices

2 choices

Random

(d) Error in local estimate of replication factor between 0%-20%.

Fig. 4.6. Sequential join of peers in an existing P-Grid network with variance (<1) in replication factor.

4.8 Evaluation results 77

1 2 3 4 5
P_inc

3

4

5

6

Var Init repl var: 4.00541, Local estimate error: 0%

3 choices

2 choices

Random

(a) No errors in estimating replication factor.

1 2 3 4 5
P_inc

3

4

5

6

Var Init repl var: 4.29796, Local estimate error: 5.%

3 choices

2 choices

Random

(b) Error in local estimate of replication factor between 0%-5%.

1 2 3 4 5
P_inc

3

4

5

6

Var Init repl var: 4.72525, Local estimate error: 10.%

3 choices

2 choices

Random

(c) Error in local estimate of replication factor between 0%-10%.

1 2 3 4 5
P_inc

3

4

5

6

Var Init repl var: 3.77909, Local estimate error: 20.%

3 choices

2 choices

Random

(d) Error in local estimate of replication factor between 0%-20%.

Fig. 4.7. Sequential join of peers in an existing P-Grid network with variance (∼4-5) in replication factor.

78 4. Multi-faceted load-balanced overlay

1 2 3 4 5
P_inc

8

10

12

14

Var Init repl var: 11.3474, Local estimate error: 0%

3 choices

2 choices

Random

(a) No errors in estimating replication factor.

1 2 3 4 5
P_inc

8

10

12

Var Init repl var: 10.6162, Local estimate error: 5.%

3 choices

2 choices

Random

(b) Error in local estimate of replication factor between 0%-5%.

1 2 3 4 5
P_inc

8

10

12

Var Init repl var: 10.559, Local estimate error: 10.%

3 choices

2 choices

Random

(c) Error in local estimate of replication factor between 0%-10%.

1 2 3 4 5
P_inc

8

9

10

11

12

13

14

Var Init repl var: 10.1483, Local estimate error: 20.%

3 choices

2 choices

Random

(d) Error in local estimate of replication factor between 0%-20%.

Fig. 4.8. Sequential join of peers in an existing P-Grid network with variance (∼10-12) in replication factor.

4.8 Evaluation results 79

1 2 3 4 5
P_inc

0.2

0.4

0.6

0.8

Var Init repl var: 0.

20%
10%
5%
0%
Estimate error

(a) No initial variance in replication

1 2 3 4 5
P_inc

1.5

2.5

3

3.5

4

4.5

Var Init repl var: 4.72525

20%

10%

5%

0%

Estimate error

(b) Moderate initial variance in replication

Fig. 4.9. Effect of replication factor estimation error at peers on sequential join of peers in an existing P-Grid network

1 2 3 4
10∗2^Hk−1L paths

0.2

0.4

0.6

0.8

1

variance red

(a) Effect of the number of key-space partitions

1 2 3 4 5 6 7
k

0.1

0.2

0.3

0.4

0.5

variance red

(b) Effect of the peer population for same key-space parti-
tioning

Fig. 4.10. Maintenance of replication load-balance

4.8.4 Simultaneous balancing of storage and replication load in a dynamic setting

In this experiment we studied the behavior of the system under dynamic changes of the data distribution.

Both storage load balancing by restructuring the key partitioning (i.e., extending and retracting paths) and

replication balancing by migration were performed simultaneously. We wanted to answer the following

two questions: (1) Is the maintenance mechanism adaptive to changing data distributions? (2) Does the

combination of restructuring and migration scale for large peer populations?

For the experimental setup we generated synthetic, unbalanced P-Grids with p = 10, 20, 40, 80 paths

and chose replication factors for each path uniformly between 10 and 30. Thus, for example, for p = 80 the

expected peer population was 1600. The value δmax was set to 50 and the dataset consisted of approximately

3000 unique Zipf-distributed data keys, distributed over the different peers such that each peer held exactly

those keys that pertained to its current path. Since the initial key partition is completely unrelated to the

data distribution the data load of the peers varies considerably, and some peers temporarily hold many more

data items than their accepted maximal storage 2δmax load would be. Then the restructuring algorithms,

80 4. Multi-faceted load-balanced overlay

i.e., path extension and retraction used for P-Grid construction and path migrations used for replication load

balancing, were executed simultaneously.

Table 4.1 shows the results of our experiments. We executed an average of 382 rounds in which each

peer initiated interleaved restructuring and maintenance operations, which was sufficient for the system to

reach an almost steady state. Rσ2 is the variance of the replication factors for the different paths and Dσ2 is

the variance of the number of data items stored per peer representing replication and storage load balancing

respectively.

Number of paths Rσ2 Dσ2
Number of peers

initial final initial final initial final

219 10 43 55.47 3.92 180,338 175
461 20 47 46.30 10.77 64,104 156
831 40 50 40.69 45.42 109,656 488

1568 80 62 35.80 48.14 3,837 364

Table 4.1. Results of simultaneous balancing

The experiments show that the restructuring of the network as well as replication balancing was effective

and scalable: (1) In all cases the data variance dropped significantly, i.e., the key space partitioning properly

reflects the (changed) data distribution. Because of the randomized choices of the initial P-Grid structure

and the data set, the initial data variance is high and varies highly. It actually depends on the degree to which

the randomly chosen P-Grid and the data distribution already matched. From the case p = 40 (number

of initial paths), we conclude that this has also a substantial impact on the convergence speed since more

restructuring has to take place. Actually, after doubling the number of interactions, the replication variance

dropped to 20.93, which is an expected value. (2) With increasing number of replicas per key partition the

replication variance increases. This is natural as fewer partitions mean higher replication on an average and

thus higher variance. (3) With increasing peer population the final data variance increases. This is expected

as we used a constant number of interactions per peer and the effort of restructuring grows logarithmically

with the number of key partitions.

The algorithms do not require much computation per peer hence have a low overhead. Simulating them,

however takes considerable effort: A single experiment with 3∗105 interactions for the results in this section

took up to 1 full day. Thus we had to limit the number and size of the experiments. Nevertheless they indicate

the feasibility, effectiveness and scalability of the algorithms.

4.9 Related work

The fundamental problems to address for any large-scale distributed indexing systems are distributed index

construction and load-balancing. Traditionally structured overlay networks, mainly based on distributed

4.9 Related work 81

hash tables (DHTs), have followed sequential construction and maintenance strategies (online balancing)

[63, 117, 154, 163]. In contrast to this, our approach applies a highly parallel strategy which speeds up the

construction process, takes advantage of the distributed computing resources by allowing the participants

to work independently and asynchronously on the construction, and enables the merging of independently

created indices.

To address load-balancing, the standard strategy of overlay approaches is to use uniform hashing of keys

to remove skew from the distribution. However, this defeats the applicability of overlay networks to semantic

processing of keys (range queries, etc.). Thus in standard overlay approaches, typically an additional index

on top of the overlay network needs to be created [136]. The advantage of this approach is its universal

usability on top of any DHT. However, it is considerably less efficient than our approach since semantically

close data items are not necessarily stored close to each other in the overlay network (high fragmentation),

and hence, multiple overlay network queries are required to locate all the semantically close content. Thus,

apart from the additional effort of constructing an additional index, such schemes additionally suffer from

inefficiencies throughout the operational phase of the system.

In contrast to that, we build a trie that clusters semantically close data, thus realizing in-network indexing

which enables more efficient query processing. This comes at the expense of a more sophisticated construc-

tion process for such data-oriented overlay networks. Additionally, more complex online load-balancing

strategies have to be applied, as presented.

Online load-balancing is widely researched area in the distributed systems domain which often been

modeled as “balls into bins” [135]. Traditionally, randomized mechanisms for load assignment, including

load-stealing and load-shedding and power of two choices [121], have been used, some of which can partly

be reused in the context of P2P systems [32, 94], but with limited applicability. For example, [94] provides

storage load-balancing as well as key order preservation to support range queries, but at the cost that efficient

searches of isolated keys can no longer be guaranteed.

Most of these load-balancing approaches look into the relative load at peers, counted in term of the

number of keys stored at each peer. We consider the absolute (storage) load peers are willing to contribute

to the overlay. End users are concerned more about their absolute load, and different key-value pairs (which

is stored in the overlay) require different amount of resource. Our mechanism of allowing peers to decide

the absolute load, and balancing the replication based on available capacity in the system takes into account

such practical concerns.

The dynamic nature of P2P systems is also different from the online load-balancing of temporary

tasks [21] because of the lack of global knowledge and coordination. Moreover, for replication balancing,

there are no real bins, and actually the number of bins varies over time because of storage load balancing,

but the balls (peers) themselves have to autonomously migrate to replicate overloaded key spaces. Also, for

storage load balancing, the balls are essentially already determined by the data distribution, and it is essen-

82 4. Multi-faceted load-balanced overlay

tially the bins that have to fit the balls by dynamically partitioning the key space, rather than the other way

round.

A distinguishing property of our approach to all other related load-balancing strategies is actually that

we address two, sometimes conflicting load-balancing problems—storage load, i.e., balancing the amount

of storage used at the nodes, and replication load, i.e., ensuring approximately uniform data availability by

having roughly the same number of replicas per data partition. The first step in that direction was a heuristic

key space bisection proposal [6]. In comparison to the heuristics, we now exhaustively analyze and refine

the bisection mechanism, in order to better understand and guarantee superior load-balancing characteristics

in the overlay network emerging from the recursive use of the bisection algorithm. Additionally, we not only

simulate the construction process, but verify several of the analytically predicted properties using a fully-

fledged implementation (P-Grid) deployed on PlanetLab to validate some of our analysis and simulation

results with a moderately large-scale experimental data. The PlanetLab experiment results are reported later

in Chapter 7. The overlay network is already used as a substrate for two data-oriented applications—a peer-

to-peer search engine [30] (http://www.alvis.info/) and a semantic overlay network [3].

Furthermore, most existing load-balancing as well as overlay network construction mechanisms have so

far been sequential. However, the need for faster overlay construction has recently generated interest in the

research community, as is evident from some recent publications [19, 92].

Both [19] and [92] use random interactions among peers, induced potentially by the original unstructured

topology, and try to build a desired topology, by essentially trying to sort the peers according to their iden-

tifiers that are generated at the beginning of the process. These mechanisms can again be used for overlay

networks construction which support search of keys generated by uniform hashing, since then peer identi-

fiers can be simply generated using uniform hashing, as there is no skew in the load-distribution. However,

for data-oriented applications such a mechanism has a critical limitation, since peers are predestined for the

amount of load (based on the whole set of peer identifiers generated at the beginning of the process), and

there is no flexibility or adaptivity for load-balancing, particularly if the load is skewed. Our scheme on the

other hand adaptively creates the key space partitions and assigns peers to these partitions based on load

characteristics, and is thus a more generic parallel overlay construction mechanism. For the special case

of uniform load distribution (as it is traditionally assumed in DHTs using uniform hashing), we can easily

construct a load-balanced overlay by requiring p = 0.5 in each step of the partitioning.

The Y0 extension of Chord [72] deals with heterogeneity by allowing resource rich peers to participate

in the overlay as multiple virtual peers responsible for a contiguous stretch of the identifier ring. A similar

approach may be used in P-Grid where resource rich peers can assume responsibility for (replicate) multiple

contiguous key-space partitions. This essentially means that such a peer will be responsible for a subtree

instead of just the leaf-node of the tree abstraction.

4.9 Related work 83

In our approach we assumed that the load-balance is to be achieved with the collaboration of other

peers. Such an assumption is in the same spirit as most other related work on load-balancing in peer-to-peer

systems. In reality, this need not be the case always. The simplest and passive form of departure from such

a collaborative norm is freeriding [13], and hence it may be necessary to enforce cooperation. One possible

way to realize cooperation is to provide incentives [31]. However, the system may also come under attack

from proactive attacks. To point out one example - resource rich peers may participate with multiple peers to

gain access to a large pat of the key-space. Such an attack is commonly known as the Sybil attack [56], which

can then be used for further distributed denial of service attacks (DDoS). Using virtual peers to deal with

and heterogeneity in the system is for instance in direct contradiction with Sybil attack. Thus, security and

enforcement of cooperation are important aspects of load-balancing in overlay networks, which we, as well

as most existing related work have not addressed so far, and will be critical for deployment of structured

overlays out in the open. Nonetheless, the load-balancing techniques we study are very relevant, even if

the overlays are to be deployed within more trusted environments, say within an organization or a single

trust domain like PlanetLab, or even in a less trusted environment in conjunction with other mechanisms

to enforce cooperation holding participating peers accountable for their (in)actions and secure the system

against active attacks.

5. A first-order balancing of query-load

“Sometimes questions are more important than answers” — Nancy Willard

5.1 Introduction

Balancing number of keys per peer for both uniform as well as skewed distribution of keys over the key-

space has been extensively studied for structured overlays over the last few years as discussed in detail in

the previous chapter. Query related load - both in terms of the traffic (query forwarding) as well as query

answering also need to be balanced. The main focus of this chapter is to look at the aspects of balancing

query-load in structured overlays, and compliments the work on balancing of storage-load at peers and

structural replicas in the overlay network.

Access to different keys may be with different frequency, and the employed load-balancing techniques

will need to account for such skews also. Dealing with skewed access load on keys in structured overlays has

been dealt mostly with caching heuristics, where both the placement and frequency of caching is typically

ad-hoc [39, 46, 140]. This chapter is a step towards a more objective look at the replication/caching strategies

for balancing skewed query-load in structured overlays.

Our current work is a first important step towards query-load balancing [53], and as we will infer from

our current results, balancing query-load in structured overlays is still an outstanding practical issue because

optimal first-order query load-balancing as we achieve currently is essential but in itself is not sufficient.

Since first-order balancing is still essential, and compliments the previously studied storage load and

structural replica balancing problems, and the results lead us also to interesting general observations on

structured overlay networks which have not been reported in the literature yet, we present them here.

Here we show that balancing query load in structured overlay networks, i.e., if replication of a key is

proportional to query frequency for the key, is also optimal with respect to reduction of expected search

latency given a limited aggregate storage capacity in the system. This result may appear obvious at the

first glance, but search cost minimization and load-balancing are two different constraints in a system, and

meeting one may be in conflict with another. Indeed, both for unstructured overlay networks [111] and for

mobile broadcast environments [12] it has been shown that following a square-root rule for replication is

optimal for access latency reduction, and has thus often been used generally as a rule of thumb. The square-

86 5. A first-order balancing of query-load

root rule is to replicate or cache objects proportional to the square-root of the access/query frequency for

these objects.

Additionally, in the context of unstructured overlays, if objects are replicated proportional to the square

root of their popularity to reduce (minimize) search latency, the query-load is not balanced across the peers.

Moreover, achieving even approximately square-root replication without global knowledge and coordination

is complicated [111].

Thus, based on our result, we conclude that for structured overlay networks accidentally replication can

be simultaneously optimized with respect to minimizing search latency as well as non-uniform query loads,

apart that approximate proportional replication is straightforward to achieve even in a distributed manner.

Caching techniques are inherently adaptive, but such adaptivity in itself does not imply self-organization.

For practical query-load balancing we need to determine an appropriate rate at which caching should be

done (the constant of proportionality) given absolute query rate and cost of caching in an overlay. We also

see in this chapter that even if appropriate number of replicas are chosen to match query-load, because of

randomness in the (greedy) route forwarding process, there is huge variance in query-forwarding as well as

query-answering loads. Determining alternative routing strategies taking into account the load at peers, to

reduce variance of load across peers (second-order balancing) are also necessary. Determining algorithmic

parameters (for determining the number of replicas) or modifying the current query forwarding schemes in

order to dynamically balance query-forwarding load would require a more rigorous understanding of the

(modified) routing and replication strategies, and may have self-organizing characteristics.

Before delving into the study of caching-based query-answering (access) load-balancing, in Section 5.2

we look into balancing degree distribution in randomized structured overlays in order to eliminate hot-spots

created by the overlay (instantiated graph) itself. Balancing in-degree eliminates any systematic query traffic

hotspots at peers with larger (than other peers) in-degree. Balancing the degree-distribution of different peers

is also desirable so that peers have comparable overhead to maintain their routing tables.

In Section 5.3 we determine the criterion to decide whether a specific cache placement strategy is opti-

mal with respect to search cost, that is, given a number of caches for an object, what is the best expected

search latency we can achieve for that object. Then we determine the optimal replication strategy for struc-

tured overlays in Section 5.4. There we prove that for a wide range of popular structured overlays (with

logarithmic search cost), caching proportional to the query load which by definition provides a first-order

query answering load-balancing, also minimizes the expected search latency for a system with fixed storage

capacity, assuming that these caches can be placed optimally. In Section 5.5 we determine that apart some

approximations which are necessary in any realistic system, it is indeed possible for a broad class of (at-least

tree) structured overlays to place caches optimally to achieve optimal reduction of search cost. We present

the results in Section 5.6.

5.2 Route in-degree in randomized overlay topologies 87

These early results expose the limitations of caching techniques for (a) not only improving search latency

in structured overlay networks (because of the enormous storage consumption for marginal gains in latency),

(b) but we also expose that even the optimal first-order balancing of query load based on caching is not good

enough because of statistical noise. (c) Furthermore, similar statistical noise leads to hotspots (congestion)

in an overlay network even when the routing network graph in itself has good in/out-degree distributions.

These results need to be seen in context with the current understanding of structured overlays, where

caching has been proposed for constant time lookups [137], and often caching is proposed to alleviate hot-

spots without further experimental validation of the quality of the actual load-balancing achieved.

Our results raise important concerns also about the effectiveness of any of the existing heuristics found

in the structured overlay literature with respect to alleviating query-load. Furthermore, we see that greedy

routing as used in most overlays can lead to congestion.

These observations highlight the need to use some second-order load-balancing techniques. We outline

some potential approaches to achieve such second order balancing and conclude in Section 5.7.

This work makes the following assumptions: (i) The number of keys a peer is responsible for is already

balanced, which is, as discussed in previous chapter, more or less achieved under various settings - range-

partitioned or DHTs - by [8, 32, 63]. (ii) All peers have same1 and limited storage, part of which is dedicated

to store the keys it is responsible for based on its role in the index, and the rest is used in order to dynamically

cache some keys in order to alleviate load-balancing and improve search latency. (iii) The routing network

itself does not lead to any systematic hot-spots because of large variations in degree distribution at each peer.

This is a critical issue particularly for overlays with randomized routing networks [8, 154] (deterministic

ones [163] already have good balance), which has not been studied in the literature in great detail, but can

be achieved fairly well using standard techniques like power-of-two choices as we show next.

5.2 Route in-degree in randomized overlay topologies

We will like to eliminate any systematic bottle-necks or hot-spots in the routing network. In order to do so,

we need overlay networks where peers have their out/in-degrees well balanced.

There are several overlay networks where once the peers assume identifiers in the identifier space, the

routes are chosen deterministically. Apart from close to logarithmic out-degree (in terms of peer popula-

tion) for all peers, a well-designed deterministic topology also tends to have good balance of in-degree

(logarithmic), such that there is no routing hot-spots. This is, for instance, the case for the original Chord

proposal.

While the early DHT proposals like Chord considered deterministic choice of routes, randomized choices

of route have several advantages - it naturally means more choices so that there is more flexibility to incor-

1 Homogeneity can be achieved by using multiple virtual peers for resource rich peers.

88 5. A first-order balancing of query-load

porate locality as well as other considerations like reliability of the target peers. Route maintenance in such

overlays, referred as randomized routing networks [115] is also easier. Such networks include small-world

networks [98, 26], Symphony [119] and SkipGraphs [20], as well as other topologies like Pastry [154],

P-Grid, Kademlia [120] and randomized versions [115] of other deterministic networks to name a few.

However a simple randomized choice as advocated so far in most of these systems will lead to poor

balancing of in-degree distributions, because of the balls into bins effect, where the peers can be considered

as the bins, and the in-coming links the balls. In the context of in-degree balancing, the problem has however

not been addressed in the literature. Symphony [119] tries to bound in-degree using a global bound for

incoming links. Such a global bound hard-coded in a system design is both restrictive as well as unnecessary.

The standard randomized mechanisms like use of multiple choices, e.g., Power-of-two choices [121] can

however be used effectively. Power-of-two-choices has in fact already been used in the context of storage-

load balancing in DHTs [32].

Such a balancing of in-degree can be achieved in an existing overlay network by running a background

process of rewiring the network (changing routing table entries at peers). In a real network, such multiple

choices can be obtained as follows. A peer queries for (two) random keys belonging to the region of the key

space for which it requires routing entries, and then gather from the contacted peers their in-degrees (which

can be locally observed by them), and thus choose the less loaded peer as a candidate entry for the routing

table.

The analysis in Section 3.2.1 to determine the expected search cost in P-Grid only assumed uniform

random choice of routes for each level at each peer. Even after in-degree balancing, the assumption of

uniform random route choices hold. So balancing the in-degree in randomized overlays according to the

above mentioned mechanisms do not affect the expected search cost. Hence it has no bearings on the analysis

in the subsequent sections where we determine the optimal number of replicas to minimize search cost based

on query frequency.

5.3 Replication and search cost

The latency to search resources in a wide area network is an important performance metric. Structured

overlays provide a reasonably good guarantee for the search latency. However if there is extra capacity

among the peers to selectively replicate some keys more often, these keys may be found with shorter latency.

Replicating highly queried keys more frequently can then reduce the expected search cost on the overlay.

Similar intuition is used for diverse distributed systems including web caching, content delivery networks

and unstructured overlays. Here we look into how replication affects search cost in structured overlays.

Definition 5. Let σ(N, r) be the expected cost to search a key in a structured overlay network (using any

particular topology/routing mechanism) with N peers, and r replicas of the key.

5.4 Optimal query-adaptive replication strategy for structured overlays 89

Consider that we form clusters of r peers such that there are N/r logical units, with one of these clusters

consisting of the r peers storing the replicas of the concerned data item. These clusters may be considered

to be connected using the same topology, as the original network of N peers. Then exploiting the self-

similarity of the structured overlay networks, the expected cost of locating the particular cluster is σ(N/r, 1),

independent of the topology. Stated otherwise, we can assume r parallel networks, each with population of

N/r, to achieve a search cost of σ(N/r, 1) for a key replicated r times in a network of N peers.

Observation 1. In a structured overlay network of N peers, if a data item is replicated r times, then there

exists (for a wide range of structured overlays) a policy to place these replicas so that at least any one of

the r replicas can be located with an expected search cost σ(N, r) of σ(N/r, 1).

Of the various existing replication strategies (summarized in Section 2.5.2) for diverse overlay topolo-

gies, none is known to have better search performance, and most even do not match up with the above

mentioned potential search cost reduction. In the following we use this known best achievable search cost

reduction criterion to define optimality for replica placement strategies. Whether even further search cost

reduction is possible in an overlay by cleverly placing the replicas and possibly even changing the routing

strategy (subject to the same topology) is an interesting open question.

Definition 6. The optimal replication placement strategy from the search cost perspective in an overlay

network is the one which guarantees that σ(N, r) = σ(N/r, 1) for a data item replicated r times.

Note that when different data items need to be replicated with different frequency, for example, for

query-load balancing; it may not even be possible to exactly form such clusters (or juxtaposed networks) in

practice. In such cases we can only aim to determine the best replica placement in the network in order to

be as close to this optimal as possible.

Uniform structural replication for any topology is optimal with respect to search latency (and cost)2.

However, such a placement strategy ceases to be optimal if different items are replicated with different

frequency, and as a consequence, structural replication is not a suitable placement strategy for query-adaptive

replication in general.

5.4 Optimal query-adaptive replication strategy for structured overlays

For most realistic applications queries are non-uniformly distributed. The standard solution approach both

in an internet setting as well as in any overlay network in order to provide good load-balancing as well as

guarantee low latency is to cache (replicate) the queried objects in a query-adaptive manner. Caching in

standard networks is a mature technology, e.g., Akamai [15]. Here we want to systematically study the im-

plications of caching in structured overlays. For the rest of this chapter we consider the family of structured
2 By uniform we mean that each partition, and hence each item is equally replicated.

90 5. A first-order balancing of query-load

overlays which have logarithmic expected search cost, i.e., σ(N, 1) = c log(N) for a peer population of

size N , where c is an overlay topology and routing algorithm dependent constant. Additionally, we assume

for the time being, that it is indeed possible to optimally place replicas in the network, such that for a data

item di with ri replicas, σ(N, ri) = c log(N/ri).

Theorem 3. The replication strategy which is optimally adaptive to query frequency in structured over-

lays with logarithmic search cost is the strategy which proportionally (with respect to query frequency)

replicates data items, assuming replicas are placed optimally. (Placement strategy optimality as defined in

Definition 6.)

Proof: Consider that peers have the possibility to replicate a data item such that replica placement is

optimal with respect to the search cost. Thus to say, search cost for any one instance of a data item replicated

r times in a network of N peers is c log(N/r).

Assume also that there are M distinct data items in total, and the access (query) probability for data item

di, i = 1, . . . ,M equals qi and di has ri replicas.

The total storage used in the system is then (with R being the average replication factor in the system)

M∑

i=1

ri = RM

The expected access time (in terms of messages) to access any data item is

T = c
M∑

i=1

qilog(
N

ri
)

In order to determine the optimal allocation of replicas for a given global average replication factor R

(essentially determined by the total storage capacity of the system, and the total number of distinct data

items in the system) we have to solve the system of partial differential equations

∂T

∂ri
= 0, i = 1, . . . , M

Substituting rM = RM −∑M−1
i=1 ri and differentiating we obtain

∂T

∂ri
= −qi

1
ri

+ qM
1

rM
= 0

from which we conclude that qi
ri

must be constant ∀i = 1, . . . , M .

Note that there are thus two dimensions of optimality for replication:

(a) Query-adaptivity determines how many replicas to maintain for individual data items to minimize ex-

pected search cost. Unlike in unstructured overlays [111], it so happens that for a large family of (logarithmic

search-cost) structured overlays, this simultaneously provides a first-order query-load balancing.

5.5 Optimal replica placement 91

(b) The placement strategy determines, for r replicas of a data item to be placed in the network, where

exactly these replicas are to be placed in order to reduce search latency.

Next we explore the specific placement strategy for some important groups of structured overlays, par-

ticularly determining the optimal placement strategy for P-Grid.

5.5 Optimal replica placement

In recent years, many routing network topologies have been proposed. There have been recent attempts

to derive abstracted, generalized models [11, 139] for these diverse topologies. However, none of these

models are exhaustive, and in absence of any universal abstraction, we limit the discussion to tree-structured

overlays [11] which particularly include P-Grid [8] and XOR topology based Kademlia [120] and other

PRR [133] variants like Pastry [154].

In these virtual tree based access structures, a peer is responsible for all data items corresponding to a

leaf node of the tree. This peer then acts as the primary replica for the data items. When a particular data

item needs to be replicated, the optimal replication strategy places the replicas at the other leaf nodes which

share common intermediate nodes in the tree. In effect, this is like replicating in the tree at a higher level

(or reducing the depth of the search tree), since the data item will then be found at any of all the peers

which split the intermediate (imaginary) node. This process can be repeated, successively propagating the

replication to larger number of peers, which all share the same internal nodes in the tree abstraction. Such a

placement strategy effectively leads to logically coalescing of the key space partitions and has been shown

in Figure 5.1. In terms of the generic overlay network scheme [11], essentially, the search space can be seen

as being split among peers recursively (when joining). So a peer should replicate the content at other peers

with whom it had conducted the splitting operation, such that effectively the data is available in the logically

coalesced search space.

The basic idea of such a replication scheme is to coalesce r partitions which are topologically closest

(based on incoming links), effectively leading to a logical network of N/r partitions. Lookups from different

clients for the same data item tend to converge to the same set of peers, such that a replica is located earlier,

hence speeding up the lookup process. The N/r partitions are connected with the same topology as the

original N partitions, hence the search speeding up matches the optimality criterion in the ideal case. In

realistic scenarios, overlay networks are not evenly partitioned, and this replication approach, while being

the best strategy, may not quite match the theoretical optimum.

Even though Chord does not have a direct tree-mapping nor is modeled by the generic abstraction [11],

the routing network resembles a tree-like access structure from the perspective of individual peers. If a peer

p1 is the primary responsible peer for a data item, p1 should replicate this data item at the closest preceding

peers from which p1 has incoming links. This information is locally available to p1, (from the route main-

tenance operations). This replication scheme is in principle a small variation of the caching strategy (along

92 5. A first-order balancing of query-load

Rest of the
network

Progressive replication at higher levels
(logical coalescing of key space partitions)

Fig. 5.1. Replication in tree structured networks. For many structured overlays there is no actual global tree abstraction, but the
access from any peer to other peers in the network can still be locally viewed at as a tree.

query downstream) which CFS [46] already uses, and may have marginal influence in terms of search cost

improvement. However, by choosing the closest incoming links at a peer (network maintenance protocols

require these peers to communicate periodically in any case), instead of necessarily choosing the peers from

the direction the last query arrived, the replicas are placed in a deterministic manner, based purely on lo-

cally available information. This placement strategy can also be used to improve fault tolerance in CFS [46].

Instead of having a separate policy for placing replicas for fault tolerance, and a separate policy for cache

placement, thus making efficient use of storage and bandwidth required for.

So far we determined the replication factor purely in terms reducing expected access cost. We have to

instead choose the larger of the two numbers based on load-balancing and fault-tolerance criteria, to be used

as the replication factor. This argument is universally true for all structured overlays.

5.6 Results

5.6.1 Balancing in-degree in randomized routing networks

Multiple choices based reduction of variance in balls-into-bins problems is a standard solution technique.

We evaluate its effectiveness to reduce variation of in-degree in randomized structured overlays like P-Grid

for various network population sizes3 N between 25 to 215, and provide the results in Figure 5.2.
3 Here we consider number of peers to be the same as the number of key-space partitions |Π| in P-Grid, that is to say, we ignore

structural replication.

5.6 Results 93

We observe from Figure 5.2(a) that the standard deviation of in-degree grows when using randomized

choices, while with power-of-two choices, the standard deviation stays more or less the same, thus demon-

strating the effectiveness of the power-of-two-choice based mechanism with scale. Figures 5.2(b)and 5.2(c)

show histograms of in-degree distribution for networks of size 215 peers without and with the use of load-

balancing. Noteworthy is the fact that the in-degree is concentrated around log(N) = 15, unlike the case of

randomized choice, where the bell-shaped distribution has a much wider spread. This clearly demonstrates

the effectiveness of a simple and time-tested load-balancing mechanism to provide very good load-balancing

without the need of any global information.

Deterministic networks have good in/out-degree distributions. While randomized networks also show

good out-degree distribution, we have validated that use of a standard power-of-two-choice solution can be

used to achieve good in-degree balance in randomized topologies. This ensures that for queries generated

randomly at any peer, destined to any other peer, the routing network in itself will not cause any systematic

bottle-necks. Note that this is the best that can be done with the routing network irrespective of the query

distribution. Moreover balancing out/in-degree also balances the route maintenance load on each peer.

5.6.2 Numerical evaluation: Square-root vs. Proportional replication

Replication proportional to the square-root of the query frequency has been shown to minimize expected

search cost for unstructured P2P systems [111]. We choose this strategy as the baseline to compare with

our proposal of replicating directly proportional to the query frequency. We consider a Zipf-distribution

(parameter 0.8614) of queries. We consider that there are M = 4096 unique keys di that are queried with

relative frequencies qi which vary between 1 and 256. We further assume an overlay with 1024 partitions of

equal size (e.g., for a tree-structured overlay, a balanced tree). That is, ignoring any structural replication,

its a network of N = 1024 peers. We additionally assume that the keys are distributed over these partitions

in such a manner that it would be possible to optimally place the replicas by exploiting only the available

storage in the appropriate peers (as determined by optimal placement criterion). So to say, this numerical

analysis makes several idealizing assumptions.

Consider that there is storage capacity for an average replication factor of R ≥ 1 in the system4. For the

proportional replication case, there are thus ri = Max(1, α1qi) replicas and for the square-root replication

strategy, there are ri = Max(1, α2q
0.5
i) replicas for data item di, where α1 and α2 are determined under the

constraint of limited available storage in the system, that is
∑M

i=1 ri = RM .

We numerically evaluate and show in Figure 5.3 (y-axis) the expected search latency and cost 0.5
∑M

i=1 qilog2(N
ri

)

for various values of overall storage capacities (x-axis).

This demonstrates that for the same average storage capacity R, in structured overlay networks with

logarithmic search cost (in terms of network size), proportional replication achieves a lower search cost in
4 Note that R = 1 actually means there is no replication, but only the original copy is stored.

94 5. A first-order balancing of query-load

8 10 12 14
Network size HLogL

0.5

1

1.5

2

2.5

3

3.5

4

Standard deviation Hin-degreeL

Uniformly random choices

Power of two choices

Route choices

(a) St.dev. of route in-degree

5 10 15 20 25 30
In-degree

500

1000

1500

2000

2500

3000

3500

peers
In-degree distribution of a 2^15 peers randomized network

(b) Route in-degree at peers where routes are chosen based on
randomized choices

5 10 15 20 25 30
In-degree

2000

4000

6000

8000

10000

12000

14000

peers
In-degree distribution of a 2^15 peers using power-of-two choices

(c) Route in-degree at peers where routes are chosen based on
power-of-two choices

Fig. 5.2. Route in-degree balancing in randomized topologies

5.6 Results 95

50 100 150 200 250
R Hstorage requirementL

1

2

3

4

5

Search cost Hoverlay hopsL Network of 2^10 peers

square-root replication

linear replication

replicas determined by

Fig. 5.3. Numerical evaluation: Proportional (linear) vs. Square-root replication for Zipf (parameter 0.8614) distributed queries for
various storage capacities

comparison to the square-root replication strategy which was optimal for unstructured networks [111], thus

highlighting a fundamental difference of the effect of replication in these two broad classes of P2P systems

- structured and unstructured.

We also observe that search cost reduction consumes storage exponentially, which further shows the fun-

damental limitation of replication/caching to improve search latency in structured overlays, making systems

like Beehive [137] which tries to achieve O(1) lookup using replication impractical.

5.6.3 Simulations: Optimal query-adaptive replication

Setup and workload: We simulated a randomized tree-structured network of 28 peers (specifically using the

P-Grid routing topology but without any structural replication), with the routes chosen either (i) randomly

or (ii) using the power-of-two-choices to balance the in-degree at peers.

Queried objects were replicated according to the optimal placement strategy described earlier, with one

additional replica created for each query received by any current replica. In case of lack of storage space,

least recently queried object (locally perceived at individual peers) was removed in order to replicate a newly

queried object. This is an approximate way to achieve proportional replication5.

Each peer initially held 5 unique data items, thus there were 1280 unique keys. Each peer had a capacity

for Rpot data items (including the original), where Rpot was varied between 1.2 to 20. Queries with rel-

ative frequencies Zipf-distributed (parameter 0.8614) were originated at random peers chosen uniformly.

Approximately 16700 queries were issued.

5 Note that the constant of proportionality here is implicitly chosen as 1 which may result in enormous data movement load as
well, and in practice a less aggressive caching may be viable.

96 5. A first-order balancing of query-load

2.5 5 7.5 10 12.5 15
R

2.5

3

3.5

4

Hops # of overlay hops in a network of 2^8 peers

No replication

Thoretical HreplicationL

Observed HreplicationL

Fig. 5.4. Storage space vs. search latency trade-off under Zipf-distributed (parameter 0.8614) queries

Experiment results: In Figure 5.4 we show the average number of hops required to answer the queries

for different values of average replications R. First thing we noticed in the experiments was that the value of

R stay smaller than available storage space Rpot since replication placement is constrained by the placement

optimality criterion and thus any arbitrary available space can not be used. For example, in our experiments,

with Rpot = 20, only R ≈ 16 was used. We also notice that for the storage space used, the average

search cost is slightly higher than as expected from theory, even though it follows the same trend. This is

because before enough replication is done, the queries can not leverage the advantage of replication and

hence require more hops. The analysis in Section 5.4 assumed the replicas were already in place. This is a

practical limitation of a caching scheme in a realistic setting.

We show cumulative distribution functions in Figure 5.5 to summarize the load-balancing results, where

two different measures of load are used: (i) the number of query messages forwarded by peers, as well as

the (ii) the number of queries actually answered by peers (possible when the peer has the corresponding

key stored/cached locally). The cumulative distribution plots are to be interpreted as follows: The x-axis

represents the load and the y-axis the percentage of the peer population which has a load less than or equal

to this specific (x-axis) load. Thus steeper ascent of the curve represent smaller variation of load among

peers, while gradual ascent results from greater variation (poorer load-balance). Two sets of experiments

were conducted, once with queries with relative frequency Zipf-distributed, another where all keys were

queried exactly the same number of times. Queries were issued at random peers.

The fact that the curve for adaptive replication based search (in Figure 5.5(b)& 5.5(d)) is above the one

without replication implies, that the adaptive replication based strategy requires fewer number of messages

per peer for search. A steeper slope in Figure 5.5(a) shows that the deviation in the number of queries

answered using the replication based strategy is lower than without replication, that is, replication leads to

better query-answering load-balance. We also notice that balancing the in-degree based on power-of-two

5.7 Conclusion and future work 97

choices (Po2C) leads to improvement in load-balance. The improvements are discernable, but limited. We

attribute it to the statistical noise. The huge effect of statistical noise becomes apparent in Figure 5.5(c)

for the experiment where all keys are queried the same number of times. In this case, the query-answering

load is balanced if no replication is done, since each peer receives queries for its own keys and all keys are

queried equally. However, with adaptive replication, as keys are replicated - the effect of statistical noise

kicks in, thus in fact leading to load-imbalance.

20 40 60 80 100
Qur. Ans. < X

20

40

60

80

100

% peers

Po2C + Adaptive repl.

Randomized + Adaptive

Po2C route topology

Randomized DHT

(a) Queries answered by peers (Zipf distr. queries)

100 200 300
Msgs < X

20

40

60

80

100

% peers

Po2C + Adaptive repl.

Randomized + Adaptive

Po2C route topology

Randomized DHT

(b) Messages forwarded by peers (Zipf distr. queries)

20 40 60 80
Qur. Ans. < X

20

40

60

80

100

% peers

No replication

Adaptive repl.

(c) Queries answered by peers (Same # queries per key)

50 100 150 200 250 300
Msgs < X

20

40

60

80

100

% peers

No replication

Adaptive repl.

(d) Messages forwarded by peers (Same # queries per
key)

Fig. 5.5. Cumulative distribution of query forwarding and query answering loads at peers

This experiment where keys were queried equally was more to put in context the effect of statistical noise.

Under realistic work-loads where access to different keys is often heavily skewed, we’ll need the query-

adaptive replication as a means to achieve first-order load-balancing. However, a first-order load-balancing

is in itself inadequate unless complemented with a second order mechanism to reduce the variance.

5.7 Conclusion and future work

There is a déjà-vu from what we observe from a first objective look at caching based query-load balancing

in structured overlays. Initial research in overlay design [163, 140, 154] hoped to achieve good balanc-

98 5. A first-order balancing of query-load

ing of key-distributions among peers by using uniform distribution. The effect of statistical noise [135]

was recognized only later, and had to be fixed using second-order load-balancing mechanisms [32]. Still,

one can find in literature that in order to deal with hot-spots, caching is proposed (which is necessary!),

and presumed sufficient, which is not the case. In some sense, it is unfortunate that despite dealing with

the effect of randomization for storage load balancing, the same effects of randomization for more critical

resources - bandwidth and peer’s answering capacity under hot-spot conditions, were totally ignored, pre-

suming caching itself will solve the problem. One may speculate several reasons for overlooking such an

important issue: (i) Initial work based on simulations could observe the imbalance of key distribution, since

it accumulates over time. Bandwidth consumption is however temporary, and if only the average is measured

(as has often been reported in most published results), the imbalance goes unnoticed. (ii) It is only recently

that some structured overlay implementations have matured enough to be deployed and is dealing with mod-

erate query loads, and hence the effect of imbalance has not been observed. But as the volume of traffic in

structured overlays increase, second-order balancing of query-load will become critical, since otherwise it’ll

cause congestion (and IP layer congestion control mechanisms won’t be useful if the overlay systematically

causes the congestion at end-nodes) even while other peers would have their resources under-utilized.

In that context, our work rediscovers the ghost of statistical noise. The way to reduce the variance

may(not) be straightforward, requiring slight modification of the existing greedy routing mechanism used

in most structured overlays. Overlays often maintain multiple routes to a destination for fault-tolerance and

during routing many systems send acknowledgement to the previous peer which had forwarded a query.

Along with the acknowledgement, peers may piggy-back the load as perceived by themselves in a time-

window,6 and the forwarding peer may use a power-of-two choice to decide the next peer to forward the

next query to. Alternatively peers can also measure the delay in the acknowledgement messages to guess not

only the load at the next hop peer, but rather the combined effect of load at the next hop peer as well as the

underlying physical network for a specific connection e.g., if a particular connection is congested, there will

be greater delays. Using such an approach even allows the possibility to implicitly take care of and better

exploit the underlying physical network, since it avoids overloading the physical network (which has so far

not been studied in the context of peer-to-peer systems), as well as accounts for proximity (proximity route

selection [75]).

Such mechanisms are expected to reduce the variance in the query-forwarding load at peers. Coupled

with optimal adaptive replication, we speculate that it’ll also reduce the variance in query-answering load.

Apart these fundamental outstanding issues to achieve good query-load balancing in structured overlays,

there are some practical aspects of incorporating the first-order query-load balancing in a real overlay in

a distributed manner which we have overlooked. Particularly, in this chapter we have ignored that the (P-

Grid) overlay will already be structurally replicated. Thus, even though the results are valid in principle,

6 Since bandwidth load does not accumulate assuming flat pricing for internet connection for end users.

5.7 Conclusion and future work 99

performing proportional replication and coalescing the search space will first require to replicate at different

structural replicas of the other key-space partition before coalescing larger key-space. Moreover, in the

simulations we have replicated a key once for each access/query for the key. In practice, a slower strategy

will be necessary in order to reduce data movement every time. Ad-hoc solutions to these practical problems

are fairly straightforward, however it’d be interesting to find ways to optimize the amortized cost of querying,

caching and cache replacement.

We expect self-organizational principles, based on a proper understanding of the involved interplay of

different system properties and design decisions like query and caching costs and rates and routing strategy,

to play an important role in achieving practical query-load balancing in structured overlays. In that context

(of query-load balancing, which compliments other load-balancing issues studied in this thesis), this chapter

is a first step in identifying the design space and the challenges.

6. A self-referential directory

“Most instant message or communication software requires some form of centralized directory for the pur-

poses of establishing a connection between end users in order to associate a static username and identity

with an IP number that is likely to change. This change can occur when a user relocates or reconnects to a

network with a dynamic IP address. Most Internet-based communication tools track users with a central di-

rectory which logs each username and IP number and keeps track of whether users are online or not. Central

directories are extremely costly when the user base scales into the millions. By decentralizing this resource-

hungry infrastructure, Skype is able to focus all of our resources on developing cutting-edge functionality.”

— Skype [160]

6.1 Introduction

Identification provides an essential building block for a large number of services and functionalities in

distributed information systems. In its simplest form identification is used to uniquely denote computers

on the Internet by IP addresses in combination with the Domain Name System (DNS) as a mapping service

between symbolic names and IP addresses. Thus computers can conveniently be referred to by their symbolic

names, whereas in the routing process their IP addresses must be used. Higher-level directories, such as

X.500/LDAP, consistently map properties to objects which are uniquely identified by their distinguished

name (DN), i.e., their position in the X.500 tree. Other directories, such as UDDI, map names onto service

descriptions and vice versa. These are just a few examples among many others that map sets of attributes

onto objects, and that are essential to provide basic functionalities, such as routing of IP packets, searching

distributed databases and retrieving certificates from public key authorities to conduct secure e-commerce.

Although the quality and purpose of identification may differ in the various domains, due to varying

requirements and levels of abstraction, the basic underlying problem is always the one of binding a set of

attributes to an identifier in a unique and deterministic way. Name/directory services such as DNS, X.500,

or UDDI are a well-established concept to address this problem in distributed information systems. Usually

these services are optimized towards the targeted problem area and differ in the degree of (de-)centralization,

security guarantees, descriptive power, and flexibility. However, none of these pre-existing services ad-

dresses the specific requirements of peer-to-peer systems.

102 6. A self-referential directory

Peers temporarily depart the system, rejoin with potentially different physical address because of dy-

namic IP address assignment and/or mobility. It is desirable that the peer retains its identity across sessions

so that other peers can re-establish contact with the peer across sessions. The primary functionality we are

aiming at here is thus that a peer be able to retain its identity across sessions even if its physical address

changes, and other peers can easily re-locate the peer whenever it is available in the network, and prevent

other peers from impersonating an existing peer.1

Persistent peer identifiers across sessions is a departure from the traditional practice in some other over-

lays where peers assume a new and random identity in a new session, totally discarding their previous role

in the overlay. Using persistent peer identity in the overlay routing level has some interesting uses for even

just the overlay infrastructure: (i) In conjunction with structural replication, persisting peer identity can be

used to devise a novel and efficient family of overlay maintenance mechanism (as will be elaborated in this

chapter). (ii) When a peer rejoins the system, instead of triggering a lot of content movement, it instead

needs to only synchronize its content with its online structural replicas. In P-Grid, a pull mechanism is used

by peers to get up-to-date, as described later in Chapter 9.

Persistent peer identity across sessions can be exploited by various other peer-to-peer applications. For

instance, in a storage system which uses redundancy to guarantee availability and persistence, returning

peers can bring back the content stored in previous sessions, thus compensating for loss of redundancy

because of (temporary) departure of some other peers. Exploiting the fact that peers have relatively short

sessions but a long lifetime in the system can be used in designing efficient redundancy maintenance schemes

for collaborative/P2P storage systems, as we will study in Chapter 8.2

Peer-to-peer systems are inherently decentralized and thus identification management should be decen-

tralized as well to avoid scalability problems. Peer-to-peer systems are rather dynamic, with nodes frequently

joining and leaving the system, and a centralized identification service may easily become a bottleneck. In-

terestingly, and presumably independently, this observation has been made and exploited by what can be

called one of the biggest success stories of legitimate use of peer-to-peer technology, the Skype [160] VoIP

network. Additionally, it is desirable not to depend on a third-party infrastructure because if this external

service ceases to exist, the peer-to-peer system would no longer be operable. Such a centralized provider

can also become a point of censorship or breach of privacy. Thus the peers should be able to manage identi-

fication issues themselves.

A system of peers managing their own identity-to-address mapping without any external directory ser-

vice is self-referential. On the one hand, in order to correctly communicate, peers need to know the correct

addresses of other peers. In order to know the correct address of other peers even as peers change their

1 Our mechanism aims at preventing impersonation, but not Sybil attacks [56], which means that the same peer may have multiple
identities in the system.

2 The TotalRecall [25] storage system was the first system to exploit such returning peers to devise a lazy and efficient maintenance
scheme, however, the strategy used there has poor resilience characteristics.

6.1 Introduction 103

address over time, peers need to communicate with other peers while querying the self-referential directory.

Thus there are several forces in action: peers’ address changes, update of such address changes and location

of the latest information and communication among peers in general (for all other purposes). The repair

operations can be proactive, trying to repair irrespective of being necessary or not, or may be adaptive,

determining the repair rate based on the overall state of the system.

From a systems design perspective, we were specifically interested in algorithms which will make the

system adaptive, so that it can be deployed in a wide range of environments with minimal administrative

burden to fine-tune system parameters to judiciously use available resources while providing resilience

guarantees. To be more specific, we wanted to devise route maintenance strategies which will not waste

resources to maintain routes when there is no need to, while gracefully adapt the rate of repairs as and when

the membership dynamics increases in the system. Depending on the rate at which changes occur and how

the latest changes are propagated among affected peers (repair of stale information), such a self-referential

system under continuous changes and maintenance operation is expected to operate in a dynamic equilibrium

(corresponding to a specific rate of changes) or collapse if the repair rate is too low to compensate for the

changes.

There are a multitude of design choices in engineering such a self-referential directory. In order to un-

derstand the implications of such design choices as well as quantitatively compare different options, we

study the system (modeled as a probabilistic system) using a Markov model, where the state transitions are

triggered either when peers change their addresses, or update the locally cached addresses of other peers

(depending on the route maintenance policy), and account also for peers being either off-line or online. We

look into the system’s steady-state (dynamic equilibrium) to evaluate system performance, particularly look-

ing at the overheads of maintaining the overlay as a metric to compare different maintenance schemes. We

propose interesting metrics like the operational zone based on contour maps to also evaluate the dynamics

that the system can tolerate given a budget (network usage) for a chosen maintenance scheme.

While the presented system design as well as analytical study are restricted to the P-Grid overlay net-

work and only some specific overlay maintenance schemes, the ideas and analysis approach in themselves

are generally applicable to study overlays under churn. For instance, the dynamic equilibrium behavior of

the Chord overlay network under continuous churn while using its self-stabilization algorithms [163] has

subsequently been studied by others [101, 102].

6.1.1 A separation of concern from the underlying physical network

Overlay networks use a logical identification of the peers, realizing a logical independence from the physical

address in the underlying physical network. For routing this logical identification is mapped onto an IP

address in the routing tables. Since IP addresses are scarce most peers will have dynamic IP addresses that

may change over time. This problem would be solved if Mobile IP [130] or IPv6 [155] were in place already

104 6. A self-referential directory

and available at a large scale, because they take into account mobility (dynamism) and offer a much larger

address space. However, this requires considerable changes in the basic networking infrastructure of the

complete Internet and the ground reality is that such an infrastructure is yet to be widely deployed. Our

approach of using a self-referential directory not only bridges this gap but also disentangles the overlay

infrastructure from the peculiarities of the underlying physical network.

6.1.2 What are some of the other overlays doing?

In Chord [163], peers that (re-)join the overlay with a new IP address adopt a new identity and introduce

themselves into the routing infrastructure like a completely new node. This is partly due to the fact that in

Chord the logical identifier depends on the IP address. To repair faulty entries in routing tables resulting

from node departures, the approach in [106] devises a periodic maintenance protocol. The execution of the

periodic stabilization protocol is independent of changes to the network and the adaptation resulting from

repairs may compromise structural properties of the routing infrastructure, which may have been established

in order to address some other properties, like dealing with non-uniform workloads [138]. DKS(N,k,f) [16],

a generalization of the Chord model, proposes a correction-on-use protocol to maintain routing tables. The

authors show that their protocol is self-stabilizing and more efficient than the Chord maintenance protocol.

In their approach peers can maintain logical identifiers with changing IP addresses, but routing tables need

to be reorganized at all depths with the occurrence of every update.

In Pastry [154] nodes have an independent logical ID, and upon re-entering the overlay peers may enter

their new ID-to-IP binding into the routing tables of peers, encountered when executing the node join proto-

col. However, as these peers are typically different from those already storing such bindings, stale mappings

will be encountered by other peers during query routing. These stale entries are replaced by new routing en-

tries [112], irrespective of whether the peer identified by the stale entry has rejoined with a new IP address

or not.

6.1.3 Motivation for a new approach

We see the management of dynamic IP addresses in overlay networks as an instance of the more general

problem of identification. In this chapter we will present our decentralized, self-maintaining approach to

identification and prove its applicability and validity by applying it to the basic problem of changing IP

addresses. In contrast to the approaches of Chord, Pastry and DKS, our strategy which we use in P-Grid can

track changes in the mapping. This is important as soon as information on the characteristics of specific peers

is exploited for routing purposes or needed by applications which exploit specific information of individual

peers, such as their trustworthiness, quality of service or locality. Thus our approach is in particular relevant

6.1 Introduction 105

for applications such as e-commerce [50], trust management [9], collaborative storage networks,3 social

networks (clusters) such as semantic overlay networks [3] and potentially for mobility management in ad-

hoc networks. If information about peers is gathered from earlier interactions and the choice of routing

table entries is made dependent on such properties, changes to the structure of the overlay network due to

modification of routing tables should be avoided if possible (unless triggered by the application). This is in

particular true for changes resulting from a peer’s physical address, which may be completely independent

of a peer’s other properties. The approaches of changing the logical IDs or restructuring routing tables as a

result of changes to the peers’ physical IDs as used in most other overlays would incur a loss of information.

Thus our approach makes the overlay network logically independent of the underlying physical network.

It is worth to mention that this functional advantage comes at no specific additional cost. All approaches

(including the one we introduce here) incur O(log2 n) message costs for maintenance.

File sharing applications brought the potential of a peer-to-peer paradigm to the forefront. In file sharing

applications user response time is a major issue and identification is viewed to be only of subordinate

importance. However, this is already changing, since reputation, data authenticity, and fair use of resources

have become major issues in P2P systems and require identification as a service to address them. Also,

quickly finding the peers with which some trust relationship has been established (say about quality of

information) reduces response time and provides the appropriate information - such is the case in clusters of

peers with similar interests, e.g., semantic overlay networks [3]. If peers have dynamic network addresses,

this again requires an identification service as described here. As mentioned earlier, collaborative storage

systems can also exploit the persistence of peer identity across sessions to devise better storage redundancy

maintenance schemes as will be described in Chapter 8.

6.1.4 Problem statement and overview of the approach

To support dynamic IP addresses as an application of identification, it is necessary to address the following

problems: (1) How can universally unique identifiers be mapped onto physical addresses in a secure, decen-

tralized and efficient way, and be maintained securely by the owner? (2) With the possibility of changes of

the mapping, i.e., the physical addresses, how can a peer detect whether it is still talking with the intended

entity? This means that, (a) if peer p1 goes offline and a different peer p2 gets associated with p1’s old IP

address, the other peers in the system must be able to detect this change and react accordingly, and (b) if a

peer goes online again with a new IP address, the other peers must be able to detect this, re-locate the peer

and verify its identity and update their routing tables accordingly.

We originally proposed the self-referential directory in order to maintain the P-Grid overlay in presence

of logical mobility of the participating peers, e.g., to keep track of changing IP addresses. However, the
3 Some P2P storage systems (see TotalRecall [25] as well as Chapter 8) exploit the fact that most peers have short session time

but long life-time in the system, and thus use lazy maintenance of redundantly stored content. In such a system even if the peer
changes its physical address, it is nonetheless desirable to be able to locate the peer at its new address.

106 6. A self-referential directory

directory
(logical ID <-> IP address)

(if local cache does not work)
lookup IP address

P-Grid

routing based on
logical address
(and cached IP)

Self-referential directory

routing based on
logical address

lookup IP address
in case of failure

Fig. 6.1. Use of a self-referential directory instead of an external directory service

same approach may be used to maintain any other information about the peers as well and in principle, in

any structured overlay. We explain here the basic idea of how ID-to-IP mappings are managed.

Peers use their public key as their logical identifier (ID). Mapping of information (like ID-to-IP mapping)

about a peer is stored in the overlay corresponding to a key generated using the peer’s ID. e.g., the ID itself

can be used as the key. This information is redundantly stored in the overlay on a certain number of peers,

e.g., at structural replicas of P-Grid. Any peer trying to look up the ID-to-IP mapping will issue a query

corresponding to the key generated using the peer’s ID. Similarly, when a peer needs to reinsert a new value

for the mapping, it signs this latest value with its private key, and inserts it corresponding to the key. Use of

public key cryptography and an external directory service could be used in order to maintain and retrieve

such mappings corresponding to any ID. However, since a structured overlay network itself is a directory

service, we choose to use the overlay as its own directory to manage the ID-to-IP mapping of participating

peers. Following this simple strategy a self-referential directory is realized which is resilient against imper-

sonation attacks. However, other attacks, particularly denial-of-service (D)DoS attacks are possible on such

a directory service, and to that end, we consider a collaborative environment. Some preliminary security

assessment looking into the possible attacks including (D)DoS has been done [50].

6.1 Introduction 107

A self-referential directory for self-healing routing. At an abstract level, in a structured overlay the log-

ical IDs are used for querying and routing, but still peers need to know and use physical addresses for the

actual communication.

Contacting a peer fails if the peer has either changed its network address or because it is offline. The

requester can now either assume that the peer is offline (unreachable) and give up or query a directory service

maintaining ID-to-IP mappings to determine the peer’s latest network address. In using a self-referential

directory, what happens is that when an unusable routing entry is encountered, in order to retrieve the peer’s

latest IP address, a new query is issued in the overlay itself. Thus queries are issued recursively. Upon

completion of such a child query a routing entry may be corrected based on the latest retrieved ID-to-IP

mapping, and the parent query may be continued. That is why we call this routing process self-healing.

Since there are redundant routing entries at each peer, it is also not necessary to always issue a recursive

child query when an unusable routing entry is encountered. Depending on how aggressively the recursive

queries are issued, we have a whole family of route maintenance strategies using the basic principle of

self-healing routing. The idea is illustrated in Figure 6.1.

If and when contacting a peer from the routing table succeeds, its public key can be used to determine

whether the contacted peer is really the one, whether a different peer reuses the address, or a malicious peer

tries an impersonation attack.

There is an apparent hen-egg problem because of the recurrent nature of self-reference, as we use the

overlay that depends on using the mappings for effective routing also for storing and maintaining the map-

pings. The main focus of this work is to demonstrate that despite this recursive dependency, it is in fact pos-

sible to realize a self-contained service which is completely decentralized and self-maintaining. We evaluate

the performance of the overlay (and the maintenance scheme) under continuous churn and self-healing.

The rest of the chapter is organized as follows. In Section 6.2 we describe the protocols used by peers

participating in a self-referential directory, particularly looking into how peers (re-)join the system, and how

they operate. We provide an example of a self-referential directory realized using the P-Grid overlay in

Section 6.3, where we also give a concrete example of self-healing routing. We furnish details of the self-

healing routing which is algorithmically a slight variation of the greedy routing algorithm in Section 6.4.

We analyze the two extreme variants of the self-healing family of routing algorithms, where the recursive

self-healing queries are triggered as lazily or aggressively as possible in Section 6.5. We validate the analysis

and evaluate the performance of self-healing routing with simulations and report our results in Section 6.6.

We take a detailed look of various related works in Section 6.7 before concluding in Section 6.8.

Before proceeding further, a brief note on the security implications of our approach is due. Note that

for a peer joining the network for the first time, there is no notion of an existing identity, and it is accepted

as a new user, and its public key stored at the responsible peers. When it comes back, it signs its latest

mapping with the corresponding private key. This ensures prevention against impersonation attacks. A peer

108 6. A self-referential directory

may however create multiple identities (Sybil attack [56]). In an internet setting it is hard to prevent such an

attack. Some preliminary study of using the self-referential directory for realizing a PGP-like decentralized

public key infrastructure has been done in [50]. With Sybil attacks, the malicious users can in fact be the

same, and hence collaborating. Effective prevention of Sybil attacks, as well as other known or even un-

known sophisticated attacks in a decentralized setting thus clearly stays an open challenge, and only some

approaches based on centralized certification authorities exist so far [33]. The prevention of impersonation

that our directory service provides guarantees that no other peer can impersonate an existing peer. Avoiding

impersonation has at least the advantage that if trust has been built in a given identity or resources are as-

signed to a specific identity, then it can be safely maintained and not be abused by others. Other attacks are

out of the scope of this work.

6.2 Self-referential directory service protocols

This section defines the algorithm and protocol for maintaining ID-to-IP mappings in P-Grid. Generalizing

this specific example to other mappings is implicit and straight-forward.

As is common in various peer-to-peer systems, each peer generates a private/public key pair Dp/Ep

locally once in the bootstrap phase by applying a cryptographically secure hash function using random

inputs including, for example, its current IP address addrp. Each peer p is uniquely identified by its public

key Ep.

In the following we use the notation Dp(x) and Ep(x), where Dp(Ep(x)) = Ep(Dp(x)) = x, to denote

the application of the private and public keys in an asymmetric encryption scheme.

In P-Grid routing tables and the index hold only these identifiers. Each peer p additionally has a cache

of mappings (Ei, addri, TSi) for peers that it already knows, including at least its routing table entries. TSi

denotes a timestamp which must be included to prevent replay attacks, i.e., the recording of transmitted

information by a malicious party and replaying it at a later time (the timestamp guarantees the freshness of

messages). When a peer joins or rejoins the network, it inserts a signed version of the tuple (Ei, addri, TSi)

in the overlays. This tuple is stored in the network at replicas (to recall from Chapter 3, <(κ) represents the

set of peers replicating the object corresponding to key κ) corresponding to a key generated from Ei, that

is at <(f(Ei)), where the function to generate the key f() can be any globally defined one-to-one mapping

function from the ID-space to the key-space (binary string). Inserts and updates within the replicas is done

using a push/pull-based gossiping communication primitive [51] which is explained in Chapter 9.

Peer (re-)joining the system.

1. p starts up and checks whether its addrp has changed. If not, the system already has the latest address.

Otherwise, the following steps are taken.

6.2 Self-referential directory service protocols 109

2. When peer p wants to (re-)join it sends an insert/update message (Ep, addrp, TSp, Dp(Ep, addrp, TSp))

to the P-Grid, i.e., a new mapping and a signature for this mapping. Multiple redundant insert messages

can be made in order to ascertain that multiple peers get the insert messages to form a probabilistic

quorum. Using such an approach, some simple faults and denial-of-service attacks can be avoided [50].

3. Upon receiving the update request, the responsible peer(s) ri ∈ <(f(Ep)) check the signature. Thus only

p can update its mapping. The new time-stamp is checked in order to prevent replay attacks. An error

message is returned if there is any discrepancy.

4. Each peer from <(f(Ep)) who gets the update request directly from p also initiates an unique gossip to

synchronize the replica subset using the aforementioned push/pull mechanism.

Some simple mechanisms of security can be augmented to this scheme. In order to make sure that

the update is correctly registered in presence of churn as well as some free-riding replicas who do not

initiate gossips, the peer p may actually also try to send the update message to several of the replicas

from <(f(Ep)), thus achieving a probabilistic quorum.4

Operation phase.

In the operation phase p is up and running, has registered an up-to-date mapping (Ep, addrp, TSp), and is

ready to process queries (issue, answer or forward them) and update requests.

1. p receives a request Query(κ, p) from some peer q.

2. In case p can answer Query(κ, p) locally, the result is returned to q. Otherwise p decides which peers

pf from its routing table it can forward the query according to P-Grid’s routing strategy. Then it checks

its routing table and retrieves (Epf
, addrpf

, TSpf
) which had been cached since the last successful

communication with pf .

3. p generates a random number ρ, contacts pf and sends Epf
(ρ). As an answer pf must send (Dpf

(Epf
(ρ)))

and p can check whether Dpf
(Epf

(ρ)) = ρ. If yes, pf is correctly identified, i.e., p really talks to the

peer it intends to, and Query is forwarded to pf .

4. If not, then pf has a new IP address (the case that somebody tries to impersonate pf is covered implicitly

by the signature check above), and p issues a new query to P-Grid to retrieve the current addrpf
using

f(Epf
) as the key. Since this query is a child query created while processing the original one, and in

fact can in turn lead to more children queries, we call this mechanism as recursive-query,5 and provide

the details of the recursive-query in Algorithm 6. Moreover, a maximum number of recursions can

be defined in order to restrict long or infinitely running recursions, though simulations for small-sized

networks did not need such a hard-coded restriction for depth of recursion and terminated successfully

rather fast.

4 Only very basic assessment of the security implications has been done [50].
5 Note that this notion of recursive query is completely different from the similar terminology (Section 3.4.4) used to describe the

actual way to process isolated query in an iterative or recursive manner.

110 6. A self-referential directory

5. In order to avoid chance errors because of replica inconsistency, p can use replies from multiple distinct

peers from <(f(Epf
)) and choose the latest time-stamped information.

6. Now p can proceed with step 3. In case this is successful, p updates its local cache with (Epf
, addrpf

, TSpf
).

Thus using the P-Grid itself as a directory service, the recursive-querying mechanism corrects stale rout-

ing entries arising from changes in peers’ physical address, i.e., the overlay network self-heals while

processing queries.

6.3 Processing queries using self-healing routing: An example

Figure 6.2 shows a typical snapshot of a P-Grid network, and how it is used as a self-referential directory.

Fig. 6.2. A self-referential directory realized using P-Grid: Before Query(01 · · ·) at p7

Peer pi is denoted by i inside an oval. Online peers are indicated by shaded ovals, offline peers by

unshaded ovals. Peers at the same leaf-node are replicas. For example, p1 and p7 are both responsible for

keys with prefix 000, i.e. <(000) = {p1, p7}. Without loss of generality we assume that Idp has a length

of 4 bits in this example. Thus, for instance, p7 holds the public key and latest physical address mapping

about p1 (updated by p1) because p7 is responsible for the paths 0000 and 0001. The shaded rectangle in the

upper-right corner of each peer shows the peer IDs that a peer is responsible for, i.e., whose public key and

physical address mapping it manages. There exists no dependency between the peer identity (idp7 = 0111)

and the key-space partition path it is associated with (π(p7) = 000). In its routing table p7 stores references

6.3 Processing queries using self-healing routing: An example 111

for paths starting with 1, 01 and 001, so that queries with these prefixes can be forwarded closer to the peers

holding the searched information. The cached physical addresses of these references may be up-to-date (for

example, p13’s) or be stale (denoted by underlining, for example, p5).

A peer pq decides that it has failed to contact a peer ps, if one of the following happens: (1) No peer is

available at the cached address (trivial case). (2) The contacted peer fails in the authentication as described

in the previous section on the operation phase of the algorithm (step 3). pq will use ps’s public key to verify

ps’s identity. Since only ps knows its private key which must have been used for the signature, it is the only

peer that can pass the identity test. In either of the above two cases an up-to-date mapping must be obtained

by querying the P-Grid. We have investigated two querying strategies:

Isolated-Query (with greedy routing): Upon receiving a query a peer checks whether it can answer the

request. If not, it forwards the query to at least one of the peers in its routing table according to P-Grid’s

greedy routing algorithm 1. If none of these peers can be contacted, the query is abandoned and fails.

Recursive-Query (with a self-healing variant of the greedy routing): If a peer fails to contact peers in its

routing table, it initiates a new query to discover the latest ID-to-IP mapping of any of those peers. If this is

successful it forwards the query.

Note that the Query operation in Algorithm 6 is an extension of the Retrieve Algorithm 1 which

was introduced in Chapter 3. Note also that we are overloading the notation Query(x, p) to also mean

Query(π(x), p) where x is a peer identifier, and using only Query(κ) when the context as to which peer

the query for any key κ is being processed is clear. Furthermore, the actual query may be for a normal key

corresponding to some data or for the ID-to-IP mapping, but here we mask the application level semantics,

and only focus on the routing.

The protocol in Section 6.2 will work as follows: While the P-Grid is in the state as shown in Figure 6.2,

assume that p7 receives a query Query(01 · · ·). p7 fails to forward the query to either of p5 or p14 since their

cache entries are stale. Here, the Isolated-Query algorithm fails immediately.

In contrast, the Recursive-Query algorithm would try to discover the latest addresses for the stale entries.

p7 initiates Recursive-Query(p5), using Query(0101), which needs to be forwarded to either p5 or p14.

This fails again. p7 then initiates Recursive-Query(p14), i.e., Query(1110), which needs to be forwarded to

p12 and (or) p13. p12 is off-line, so irrespective of the cache being stale or up-to-date, the query cannot be

forwarded to p12. p13 is online, and the cached physical address of p13 at p7 is up-to-date, so the query is

forwarded to p13. p13 needs to forward Query(p14) to either p2 or p12. Forwarding to p12 fails and so does

the attempt to forward the query to p2 because p13’s cache entry for p2 is stale. Thus p13 initiates another

sub-query, Recursive-Query(p2), i.e., Query(0010). Additionally, it may initiate Recursive-Query(p12). p13

sends Query(p2) to p5 which forwards it to p7 and/or p9. Let us assume p9 replies. Thus p13 learns p2’s

address and updates its cache. p13 also starts processing and forwards the parent query Recursive-Query(p14)

to p2. p2 provides p14’s up-to-date address, and p7 updates its cache.

112 6. A self-referential directory

Having learned p14’s current physical address, p7 now forwards the original query Query(01 · · ·) to p14.

This does not only satisfy the original query but p7 also has the opportunity to learn and update physical

addresses p14 knows and p7 needs, for example, p5’s latest physical address (we assume that peers synchro-

nize their routing tables during communication since this does not incur any overhead). In the end, the query

Query(01 · · ·) is answered successfully and additionally p7 gets to know the up-to-date physical addresses

of p14 and possibly of p5. Furthermore, due to child queries, p13 updates its cached address for p2. Figure 6.3

shows the final state of the P-Grid with several caches updated after the the completion of Query(01 · · ·) at

p7.

Fig. 6.3. P-Grid after Query(01 · · ·) at p7

We have not explicitly mentioned concurrency issues in the example above because those are either

addressed by the networking layer or do not cause problems since we support only lazy consistency. For

example, if the IP addresses change during authentication, the networking layer would drop the connection

and the authentication would start anew without causing security or concurrency problems. If the IP address

of a peer to be contacted would change after retrieving a mapping, i.e., a query would return a “stale”

entry, this would be recognized, because the authentication would fail upon contacting the peer present at

the retrieved address. Since only the owner can update a mapping, concurrency control is not needed here

and if replicas have not been updated correctly when being queried, this would also be recognized upon

contacting the peer and can be accounted for by re-issuing the same query. Additionally, we can assume that

IP addresses do not change at a high frequency (normally once a peer goes online it keeps the same address

6.4 Self-healing routing algorithm for a query (search) 113

for at least some hours in typical ISPs’ DHCP setups). However, other “hidden costs,” for example, updates

to the mappings and rectifying stale cache entries (self-healing) need to be taken into account as discussed

in the following sections.

6.4 Self-healing routing algorithm for a query (search)

Algorithm 6 shows the recursive query (search) algorithm in pseudo-code. To recall notations introduced in

Chapter 3, <(κ) denotes the set of peers (replicas) which has the result to a query for path κ. If a peer p

receives a query Query(κ) and p /∈ <(κ), then it tries to route (forward) the query to peers in its routing

table according to P-Grid’s routing strategy using the routing entries in ρ(p).

Algorithm 6 Query at peer p for an object corresponding to key κ: Query(κ, p)
1: if π(p) ⊆ κ i.e., p ∈ <(κ) then
2: reply to query; {p has the requested information}
3: else
4: ρch = {q ∈ ρ(p, l) ∧ q is contactable (using ping) at cached address for l s.t. π(p, l) = π(κ, l)}
5: if (ρch = ∅ and lazy repair strategy) or eager repair strategy then
6: {Only for the self-healing routing used by recursive queries, since they try to repair routes.}
7: for all p′′ ∈ ρ(p, l) ∧ p′′ /∈ ρch do
8: Query(Idp′′ , p); {The actual semantics of a child query is somewhat different depending on the object being searched,

but here we are interested in the involved routing process only.}
9: end for

10: Re-determine ρch as in step 4; {New entries expected because of repairs.}
11: end if
12: if ρch 6= ∅ then
13: Query(κ, p′) for some p′ ∈ ρch; {Query for κ forwarded to p′.}
14: else
15: return failure;
16: end if
17: end if

A family of route maintenance mechanisms can be realized by triggering the self-healing recursive

queries based on the number of unusable routing references (out of r possible) for any given level at a

peer. For the sake of simplicity, we consider the two extremes, where a recursive query is triggered when-

ever an unusable entry is encountered. We call this the eager repair or Correction on Use (CoU). The other

extreme is to trigger repairs only after all of the r references become usable, which we call - lazy repair

or Correction on Failure (CoF). These two recursive variants may trigger child queries at any stage in the

routing process until they succeed. The recursive strategies affect the rectification of stale caches at various

peers, thereby “self-healing” the overall routing network. To avoid cyclic recursions the queries bear unique

114 6. A self-referential directory

identifiers and recursion does not occur when it would apply to a reference that is under repair in a parent

query. Additionally, this helps to prevent concurrent repair requests for the same stale entry at one peer.

Deadlock situations, where none of the recursive queries terminates successfully and all entries at one

level are stale, may occur. But experiments show that their influence on performance decreases with an

increasing network size.

The pseudo-code in Algorithm 6 summarizes different variants of routing in the overlay including the

non-recursive isolated query (essentially Algorithm 1), as well as the lazy and eager recursive query strate-

gies as introduced above.

The non-recursive variant (isolated query) uses the standard greedy routing as used by most structured

overlays and thus provides a result for a query if at least one routing entry is up-to-date for each routing step

and the corresponding peer(s) are online. Thus it only works, if the routing tables are sufficiently redundant.

6.5 Analysis of the algorithms

6.5.1 Models for analyzing the overlay under churn

Prior and contemporary to our work, the models used to study overlays under churn included static re-

silience [75] and half-life [106]. However a more detailed study of the continuous and combined effect of

churn and maintenance operations which depends specifically on the maintenance strategy, provides a more

accurate performance/resilience versus cost metric of the dynamic system. To that end, we propose to study

the system’s time evolution. This is a general analysis framework adapted from cybernetics [85] and is used

not only in studying overlays under churn, but we will reuse the same basic framework in Chapter 8 for

studying P2P storage systems as well. In Section 8.4, we will recapitulate the models for analyzing P2P

(storage) systems under churn.

Static resilience: The basic question answered using a static resilience analysis is: If a certain fraction

of the peers has left the network and a corresponding fraction of information is unavailable, what is the

performance of the system? For example, in an overlay, what fraction of the queries can still be routed?

This model does not take into account the role of the maintenance operations, but provides a good idea

about the system’s resilience even without/before the maintenance operations.

∆-life: This model looks into the lower bound of the cost that is needed to completely repair the system

essentially answering the following: As the network membership changes over time, such that only ∆ (say

0.5) fraction of the original peers remain in the system, what is the minimal number of repairs that are

required to restore a fully consistent state (get all information up-to-date)? This model too does not look

into the performance of any given maintenance scheme.

Time-evolution: The Markov model [85] is traditionally used to study the dynamics of large probabilistic

systems. Any change (event) in the system is considered as a transition from one possible system state to

6.5 Analysis of the algorithms 115

another. We adapt this well established methodology in the context of studying the dynamics of P2P storage

systems under churn by modeling the system as a Markov process and looking into the time evolution of the

probability density function of all the possible states the system can be in, and hence to see if this distribution

function converges to a steady state/dynamic equilibrium in the long run. If such a steady state exists, then

it determines the operational state of the system under the given churn and adopted maintenance strategy,

which in turn is necessary to determine the performance vs. operational cost trade-offs in the system.

6.5.2 Analysis of an isolated search/query (static resilience of the overlay)

In the analysis of the algorithms, we use the following notation: Pon denotes the probability of peers being

online; Pdyn defines the probability that a randomly selected entry of a routing table is stale; µ is the prob-

ability that an isolated attempt to contact any particular peer pi by peer pj using its local cache information

fails; εh denotes the failure probability of forwarding a query to any other peer specialized for the other

half of the search-subtree; ε defines the failure probability of a query; |Π| is the number of leaves; r is the

number of references for the other half of the subtree in P-Grid routing tables for each depth. It is important

to note, that we can assume these r references to be independent due to the randomized construction process

of P-Grid. A (Aε) denotes the expected number of attempts (message exchanges) required for a query (along

with the achieved failure rate).

We first analyze the effect on P-Grid searches of peers going off-line and then rejoining the P-Grid with

a possibly different physical address. When a peer pq needs to forward a query Query(pi), it may fail to do

so, because all the peers in <pi,q, to which the query may be forwarded, are off-line or their cached physical

addresses are stale (or both). If the overall offline probability of peers is 1− Pon, and the probability that a

cache entry at pq is stale is Pdyn, then the probability that an isolated attempt at Pq to reach a particular peer

in <pi,q is successful equals 1−µ = Pon(1−Pdyn). Likewise, the failure probability of an isolated attempt

to forward a query equals µ = 1− Pon(1− Pdyn).

Thus µ represents the coupled probability that a peer is off-line and/or the physical address associated

with any peer ps cached at pq has changed. Consequently, when attempts are made to contact r random

peers from the references <pi,q at pq, the probability that all r attempts fail is µr. So, given a per-hop failure

tolerance εh, we need a minimum of r references to which a search may be forwarded, such that µr < εh.

Thus we need at least Aεh
= d log εh

log µ e references for the other half of the P-Grid subtree at any depth to

achieve a given εh (and vice versa).

With a εhi failure probability for query routing at hop i, the probability of successful routing to a desired

leaf node is
∏H

i=1(1 − εhi) where H is the expected number of hops to reach the particular leaf node in

question. If there are at least Aεh
references available at any hop then εh ≥ εhi∀i, and thus εh determines

the worst per-hop failure probability. We use this εh for all hops, thus determining a worst case average

performance in the remaining analysis. We thus obtain the effort for one hop of the non-recursive version

116 6. A self-referential directory

of the query as Aiso
h = Aεh

. The expected total cost to process a query in a balanced P-Grid is then Aiso =
log2 |Π|

2 Aiso
h .

If εh is achievable at every hop (enough references available) then the success probability is 1 − ε =

(1 − εh)H where H is the number of times the query needs to be forwarded to reach the leaf node. Thus,

the expected value of the achievable success probability is 1 − ε = EH [(1 − εh)H]. For a general P-Grid,

the distribution of H is not known and thus the expectation difficult to evaluate, but for a balanced P-Grid,

H is a binomial random variable of size log2 |Π| and parameter 0.5. Hence, 1 − ε = (1 − εh
2)log2 |Π|. This

analysis gives the static resilience of the network - given a certain state of correctness of the routing tables -

the probability of resolving queries successfully.

6.5.3 Recursive queries and dynamic equilibrium

While cached entries continuously get stale owing to network dynamics, they trigger recursive queries in

order to update the stale mappings. Hence the recursive version of querying in P-Grid has an inherent self-

healing property. With few stale mappings, there is hardly any deterioration in answering the queries, but

as the stale entries accumulate over time, they lead to more frequent recursions. Thus it is expected that the

system will reach a dynamic equilibrium, such that the rate of changes will equal the rate at which self-

maintenance is done due to recursions. If the rate of changes in the system is very high, then the system’s

self-maintenance will be unable to catch up with the changes, and the system breaks down. In this section, we

analyze if a dynamic equilibrium for a given rate of changes is achievable, thus determining the operational

zone with respect to the rate of change, and if such an equilibrium is achievable, we evaluate the system

behavior (dynamic resilience) at the equilibrium.

In the analysis and the results we quantify the rate of change considering two kinds of events in the net-

work. With probability rup an event consists of peers independently updating their address. With probability

1 − rup an event consists of peers issuing queries. Since updates necessarily imply the execution of one

query to locate a node to which the update is going to be stored, we assume that rup ≤ 0.5.

Eager recursion. In the eager recursion, all references are checked and the algorithm tries to rectify all stale

cache entries immediately. The effort for a single hop is Ah = Aiso
h +rµArec since an expected rµ recursions

will be initiated at each hop, even if the original query is forwarded, where µ = 1 − Pon(1 − Pdyn). The

effort for a recursive query is Arec = log2 |Π|
2 Ah. Thus the expected number of recursions Nrec = Arec

Aiso
h

=
1

1− log2 |Π|
2

rµ
.

A single hop fails when none of the references can be contacted, either because the recursive query fails

or the concerned peer is offline. If εh is the probability of failure of a single hop (forwarding) in the querying

process, then 1 − εr = (1 − εh
2)log2 |Π| (as derived in Section 6.5.2). The probability that a single hop fails

equals the probability that recursions are initiated and none of the r children responses are usable, either

6.5 Analysis of the algorithms 117

because the recursions themselves fail, or even if they do not fail, the concerned routing reference is offline.

Thus εh = Prec(1− (1− εr)Pon)r.

The dynamic equilibrium equation then is (1− rup)(Nrec − 1)Pon(1− εr) = rup(1−Pdyn)r log2 |Π|.
The left hand side is the rate at which successful repairs of stale routing table entries occur, due to the

Nrec− 1 additional recursive queries. Repairs can only lead to a successful update, if the peer to be repaired

is online, therefore an additional factor of Pon. This reflects the underlying assumption that queries and thus

repairs occur at a substantially higher rate than the peers are switching between offline and online state. The

right hand side is the rate at which routing table entries turn stale due to changes.

We solve the above equations numerically for Pdyn, εr and Nrec to determine the system performance

at the dynamic equilibrium given the system parameters Pon, rup, r and n. For the case Pon = 1 it is also

relatively easy to see from the equations that Nrec ≤ 1 + rup

1−rup
r log2 |Π|. This shows that eager recursion

exhibits also excellent scalability with |Π|.
Lazy Recursion. For lazy recursion we need to analyze the states of routing tables in more detail. There

are r routing table entries at each peer at each depth. Let Si denote the probability that i out of r routing

table entries at a given depth are stale. In the following we will also say that a routing table at a given depth

is in state Si.

When using lazy recursion, queries are triggered if a peer cannot use any of its corresponding routing

tables to forward a query. This happens either because the routing entries are stale and the latest ID-to-IP

mappings have to be found (using recursive queries) or because the concerned peers are offline. We assume

that in this case the peer issues parallel queries for all r references in order to minimize response time.

Recursive queries occur with a probability Prec =
∑r

i=0 Sr−i(1 − Pon)i where Pon is the probability that

any particular peer is online.

The effort to forward any query (one hop) is Ah = Aiso
h + rPrecArec, where Arec is the total effort in

terms of number of messages for a newly issued recursive query. From the properties of P-Grid, any query

requires log2 |Π|
2 forwarding steps on an average to successfully answer the query. Hence, Arec = log2 |Π|

2 Ah.

Solving these recursive equations, we obtain the total number of queries including the original and children

queries invoked per original (isolated) query Nrec = 1

1− rPrec log2 |Π|
2

.

As mentioned earlier, rup fraction of the network events are ID-to-IP mapping changes in comparison to

1−rup fraction of queries. Routing tables are created based on P-Grid’s randomized construction algorithm,

and each peer is equally likely to be a routing table entry for other peers. If there are N peers populating a

P-Grid with |Π| leaves (replication factor of N/|Π|), then each peer has on an average r log2 |Π| routing

references, r for each of the log2 |Π| depth of the search tree. Hence, each peer is used as a routing reference
Nr log2 |Π|

N = r log2 |Π| times in the whole P-Grid network. The probability that an update of a specific ID-

to-IP mapping affects a routing table entry with i stale entries then is rupSi
r−i
r r log2 |Π|, since the original

queries are uniformly distributed and r − i out of the r entries are susceptible to become stale.

118 6. A self-referential directory

The self-healing comes into action while processing the original queries, each of which leads to Nrec−1

recursive queries on average, and each of these recursive queries tries to update one routing reference. When

recursive queries are triggered in state Si, which occurs with probability Si(1−Pon)r−i, i out of the Nrec−1

recursive queries are initiated. Thus in state Si, the probability that self-healing occurs due to an initial query

is (1− rup) 1
Prec

Si(1− Pon)r−i 1
i (Nrec − 1).

However, recursive queries may not always succeed. If the recursion is triggered when i cached refer-

ences are stale and the r − i others are offline, then i/r fraction of references can be updated at most. If εr

is the probability that a recursive query fails, then
(

j
i−j

)
(1− εr)i−jεj

r is the probability that of the i possible

repairs, only i− j are successful, such that j ≤ i stale entries are left in the routing table even after recursive

queries. εh = (µ(1− (1− εr)Pon))r and 1− εr = (1− εh
2)log2 |Π| are derived as in Section 6.5.3.

For the dynamic equilibrium, the inflow to any state Si should equal the outflow from Si. Hence, the

dynamic equilibrium equation is

rup Si
r − i

r
r log2 |Π|

+ (1− rup)
r∑

j=i+2

1
Prec

Sj(1− Pon)r−j 1
j
(Nrec − 1)

(
i

j − i− 1

)
(1− εr)j−i−1εi+1

r

= rupSi+1
r − i− 1

r
r log2 +(1− rup)

1
Prec

Si+1(1− Pon)r−i−1 1
i + 1

(Nrec − 1)(1− εi+1
r)

The left hand side of the equation is the inflow into state Si+1 from Si as well as from Sj∀j > i + 1,

because of partial repairs. The right hand side is the outflow from Si+1. The outflow is caused by two factors:

The first is because additional entries turn stale; the second occurs whenever recursions are initiated and at

least one cached entry is repaired.

We solve the above equations numerically for Si, Nrec, Pdyn, εr and thus determine the system’s per-

formance (dynamic resilience) at the dynamic equilibrium given the system parameters Pon, rup, r and

|Π|.

6.6 Analytical and simulation results

We implemented the algorithms described in this chapter in order to verify the analytical models by simu-

lation and to demonstrate their scalability. We primarily report on results where Pon = 1, i.e., peers only

change their IP addresses but stay available, apart from some analytical results for the more general case of

Pon ≤ 1. As in the analysis, we do not consider the cost of establishing a quorum and refer the reader to

[50].

For the underlying storage, we construct P-Grid overlay networks of variable population sizes N =

128, 256, 512, and 1024 peers. We set the average replication factor to 8, such that the paths have an average

length of 4, 5, 6 and 7 (log2 |Π| where |Π| = N/8). At each depth of the routing tables we maintain r = 4

6.6 Analytical and simulation results 119

references. The simulation is performed in rounds, where in each round we issue a random query at a random

peer with probability 1− rup, and with probability rup we change the identity of a random peer and perform

the necessary update. To reach a dynamic equilibrium state, we run a sufficiently large number of rounds

(increasing from 25N to 100N for decreasing values rup) and take the mean over the last 25N rounds to

obtain values of the measured parameters.

For both the lazy and eager recursive query mechanisms we could show that the performance of the

simulated system matches the predicted performance very well. We summarize the results in Figure 6.4,

where we show the number of messages generated as a function of the frequency of updates, both when

using the eager and the lazy algorithm.

We see that the message cost in the simulation is slightly higher than the predicted cost. This is due to

the variation of the staleness of references. Since the message cost depends non-linearly on the staleness,

variations inevitably lead to an increase as opposed to our average case analysis.

0.025 0.05 0.075 0.1 0.125 0.15
r_up

20

40

60

80

Msg Eager rec., simulation vs. analysis Hp_on=1L

ana,N=1024
sim,N=1024
ana,N=512
sim,N=512
ana,N=256
sim,N=256
ana,N=128
sim,N=128

(a) Messages vs. rup, eager algorithm
0.025 0.05 0.075 0.1 0.125 0.15

r_up

20

40

60

80

Msg Lazy Rec., Mess. vs. r_up for p_on=1 Hn=Nê8L,

ana,N=1024
sim,N=1024
ana,N=512
sim,N=512
ana,N=256
sim,N=256
ana,N=128
sim,N=128

(b) Messages vs. rup, lazy algorithm

Fig. 6.4. Simulation based validation of the analytical model

We observe that for the lazy algorithm for small N (N = 128) the model starts to break down when

the value of rup grows. This is so because for very small networks combinatorial effects such as cycles and

deadlocks, which are not accounted for in the analysis, start to take effect, thus making the model inaccurate.

On the other hand, we see that for a larger network population the predictions are increasingly accurate, as

it is the case for any statistical model. The message cost scales gracefully. Thus for large networks our

analytical model can be used to reliably predict its performance. We also observe that the lazy algorithm

overall consumes slightly fewer messages than the eager algorithm.

Figure 6.5 shows the analytical predictions and the observed Prec values from simulations for varying

rup, which may also be used to verify the accuracy of the analytical model. For N=128, the probability of

recursion Prec starts to increase dramatically, which also implies increase in message cost, and the simula-

tion results deviate from the analytical predictions. Even for moderately large network sizes (N = 256 and

higher), the results obtained from both simulations and analysis match well, which shows that the indepen-

120 6. A self-referential directory

dence assumptions, and statistical results of the analysis are correct, once the system has a moderately large

peer population. This is as expected from any statistical model.

0.05 0.1 0.15 0.2 0.25
r_up

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p_rec Lazy Rec., p_rec vs. r_up for p_on = 1 Hn=Nê8L

ana,N=1024
sim,N=1024
ana,N=512
sim,N=512
ana,N=256
sim,N=256
ana,N=128
sim,N=128
sim,N=128

Fig. 6.5. Prec vs. rup, lazy

We use the analytical model to further explore the properties of the system in dynamic equilibrium. In

Figure 6.6(a) we show how Nrec varies with varying Pon for any rup value when using lazy recursion. We

observe that the algorithm is very robust, and the message overhead is stable for a wide range of Pon values.

This is so because for lower Pon values, even fewer stale entries render the routing table unusable, and

trigger recursions. The intuitive expectation will thus be an increase in Nrec. However, such recursions also

have the effect of quickly repairing the routing table, such that fewer recursions are triggered later. These

two opposite effects balance, hence the wide stretch of Pon values where the overhead stays stable.

Figure 6.6(b) shows how the overhead varies with increasing network dynamics (increasing rup), and we

observe that it is more sensitive to rup at lower Pon values.

While the use of recursion almost eliminates failures, tolerating even very low Pon values and moder-

ately high network dynamics (high rup), the incurred effort may not be affordable in a realistic network. In

Figure 6.6(c) we thus provide contour maps corresponding to Nrec values, with Pon in the X-axis and rup

in the Y-axis. The interpretation of the plot is that if a system (participating peers) is willing to incur an

Nrec fold increase of effort per query with respect to the ideal case (Pon = 1 and rup = 0), the network

will operate for all Pon, rup combinations below the curve, with the success probability being 1. If the sys-

tem is unwilling to use more than Nrec effort and if the system operates in the region above the curves of

Figure 6.6(c), there is a non-zero failure probability, which starts increasing with the increase of distance

from the curve. Figure 6.6(c) thus captures two important tradeoffs in the system. The first tradeoff is that of

efficiency versus probabilistic success guarantee of queries. The second tradeoff is the system’s resilience

against the two “demons” of the network, the network dynamics rup versus average availability of peers in

the network Pon.

Finally, we analyze the dependency on varying values of Pon. In Figure 6.6(d) we show the number of

messages for a fixed rup = 0.2 and path length 5. We see that for networks with more peers being online, the

6.7 Related Work 121

0.5 0.6 0.7 0.8 0.9
p_on

20

40

60

80

100

120

NrecOverhead with varying p_on

r_up=0.45

r_up=0.35

r_up=0.02

r_up=0.01

r_up=0.000001

(a) Nrec vs. Pon

0.1 0.2 0.3 0.4 0.5
r_up

20

40

60

80

100

120

Nrec Overhead vs. r_up for various p_on

p_on=0.5

p_on=0.6

p_on=0.8

p_on=1

(b) Nrec vs. rup

0.5 0.6 0.7 0.8 0.9
p_on

0.05

0.1

0.15

0.2

0.25

r_upOperational zone with atmost Nrec overhead

Nrec=25

Nrec=10

Nrec=5

Nrec=2

(c) Contour maps for Nrec

0.3 0.4 0.5 0.6 0.7 0.8 0.9
p_on

200

400

600

800

1000

1200

Msg Lazy vs. Eager rec.Hr_up=0.2, lg_2HnL=5L

Eager rec

Lazy rec

(d) Dependency on Pon

Fig. 6.6. Analytical results

lazy strategy is advantageous. The tradeoff is that the lazy strategy collapses earlier. Thus the eager strategy

is more resilient in the case of low availability. This suggests that combined adaptive strategies with various

degrees of “eagerness” are an interesting approach for environments with varying online characteristics.

6.7 Related Work

6.7.1 Identity management

For unstructured P2P systems such as Gnutella [40] and hierarchical systems such as FastTrack-based

(http://www.fasttrack.nu/) systems like Kazaa/Skype, dynamic IP addresses are less of a problem. For exam-

ple, Gnutella builds an unstructured graph of peers in which each peer typically has 4 permanent connections

to other peers. In the case that a connection drops, a peer simply tries to reconnect or tries to connect to an-

other peer, it has learned about implicitly through Gnutella’s routing process. Since no routing tables are

maintained no inconsistencies can occur. However, this comes at the expense of very high network traffic.

In hierarchical systems “routing tables” (in fact they are rather simple) can become inconsistent but their

scope is limited, so the effect can be compensated easily with existing methods.

122 6. A self-referential directory

Freenet [38, 39] suggests the use of a third-party DNS service that allows the peer to update its name-IP

mapping in special DNS domains. However, this introduces a dependency on a third-party service and an

element of centralization into the architecture which is in contrast to the principles of decentralization to

ensure scalability. Skype uses a central server to manage peers’ identity.

DNS’s original specification was extended by several RFCs (RFC2136, RFC2846, RFC2535), so that in

theory it could maintain dynamic IP addresses through secure nameserver updates. However, this is very

heavy-weight, requires very elaborate configurations, and is not intended for allowing a large number of

peers to change the DNS database. Also an alternative DNS-based approach presented in [90] is still way

too heavy for P2P systems and does not address security and unique identity of peers. To some extent our

approach for recursive queries is similar to DNS’s recursive lookup strategy which also updates caches dur-

ing a name lookup. However, DNS’s strategy is much simpler since DNS servers change their IP addresses

very infrequently and thus the tree structure is basically static which simplifies routing a lot. Additionally,

the number of participating DNS servers is considerably lower than the number of peers in a P2P system,

the depth of the DNS tree is small, and, in contrast to DNS, our approach is self-contained, i.e., does not

depend on a third-party infrastructure.

Other work using a DNS-like hierarchy without a single root has been done in the context of decen-

tralized identification, such that some peers authorize other peers to use particular resources they provide.

Any peer can authorize other peers to use its local resources as well as possibly delegate the authority to

authorize other peers to do so. Systems following this approach are [43] and [14] which are based on [163].

6.7.2 Security issues

For security we devise a self-organizing public key infrastructure [50] which is comparable to PGP [66]

which uses a similar, decentralized approach. PGP uses transitivity of trust, whereby, if PA trusts that KB is

PB’s public key, and also relies on PB (personally determined) to certify a third party’s public key, then PA

will use KC as PC’s public key, if PB certifies it. The strength of such chains is determined by its weakest

link and thus highly vulnerable. So [143] suggests to include multiple paths which, however, still offers

only limited liability due to intersecting paths. Thus additionally authentication metrics [144] are required

to quantify the reliability of such multiple paths. This approach, however, is heavy-weight, for example,

finding multiple paths, loads the network considerably and both the multiple paths and the metrics need to

be evaluated at each peer, and thus the effort is not shared. In contrast to that, our approach does not suffer

from these problems at all. In P-Grid random (independent) peers replicate identity information (mappings)

and thus our approach does not incur any costs in finding independent paths, the use of a quorum mitigates

malicious behavior, and storage and search costs are distributed among the peers and require substantially

lower computing and network resources. Additionally, since a subset of peers (to which searches are routed

efficiently) are responsible for a given key, it is also simple to revoke or update mappings which is superior

6.7 Related Work 123

to PGP-based schemes. Further discussions are provided in [50]. However, security being a complex issue,

and the security evaluation done so far being rather superficial with respect to the plethora of possible

attacks, we would like to emphasize that a more rigorous evaluation is necessary. Particularly, there are

other more critical attacks on the overlay, like Sybil attack [56], route-poisoning and Eclipse attacks. The

problems looked into in these studies presupposes the concept of peer identity as well. These are more

difficult attacks, and most proposed solutions require some centralized provisioning, particularly to prevent

multiple identities by the same peer. As previously noted, these issues were beyond the scope of the work

presented here.

6.7.3 Overlay route maintenance

The approaches of Chord [163], DKS [16] and Pastry [154] to deal with dynamic addresses of peers in an

overlay network are the closest one to ours. As discussed previously in Section 6.1, these approaches are

either more expensive; e.g., as in DKS where changes need to be immediately updated at all routing table

levels, or stale entries are replaced instead of correcting them, as in Pastry, or there may not be any explicit

notion of binding a peer to an identity over multiple sessions as in Chord.

The approach presented in [86] extends Tapestry [175] to address the joining and leaving of peers. In ab-

sence of self-healing, network maintenance is very expensive in this approach in terms of traffic (multicast-

based partial flooding of the network), and there are no results on how the approach will cope with network

dynamics (Pon and Pdyn).

The self-maintenance mechanism proposed and studied in this chapter is considerably different from

other route maintenance schemes in various respects: (1) Our proposal is the first one to apply a self-

contained directory and (2) we explicitly model and address two sources of unreliability of the network,

the dynamics of the underlying network (rup), and the average peer unavailability (1 − pon), and demon-

strate that the self-contained directory may be used to heal the stale routing entries and operate at a dynamic

equilibrium. (3) We propose a new family of reactive route maintenance schemes - the two extremes of

which are called the eager reactive strategy or Correction on Use (CoU) and lazy reactive strategy or Cor-

rection of Failure (CoF), which have lower overheads than existing (pro-)active strategies like Correction

on Change (CoC [163]) and proactive periodic correction (PC [112]). The essential idea in a correction on

change strategy is to immediately propagate the changes (because of peer leave or join) to all affected peers.

This is what is done in the self-stabilization algorithm of Chord. Periodic correction probes all routing en-

tries at each peer periodically, and tries to rectify them. The main difference between CoC and PC is that

typically CoC will be triggered by the node causing the change, or its immediate neighbors, who will then

propagate the change, while in PC, every node tries to detect the changes locally.

Since the ring needs to be always maintained correctly in a Chord-like system, updating the predecessor

and successor links immediately upon the occurrence of change is necessary. In P-Grid, as discussed previ-

124 6. A self-referential directory

ously (Section 4.5), new node joins do not require existing peers to change their routing entries. Similarly,

because of structural replication, even if a node leaves the network (temporarily), alternate routes are typi-

cally available in P-Grid, thus making the use of lazier changes possible. Thus nodes joining, rejoining or

leaving the network do not immediately affect the structure of the P-Grid network (key-to-peer associations

do not change) even if query forwarding paths change and adapt to changes in the network topology. It

has been noted in Chord as well as other ring-based topologies, that for the long-links the routing choices

are rather flexible, and hence there is no real need of reflecting the changes immediately either, which can

make use of lazier techniques possible (apart for the maintenance of the ring, which has to be corrected

immediately upon the occurrence of changes).

Figure 6.7.3 summarizes the qualitative difference of the various route maintenance schemes - PC (Proac-

tive or periodic Correction), CoC (Correction on Change), CoU (Correction on Use) and CoF (Correction

on Failure).

The simple probing mechanism (PC) of [112] is very inefficient if there are infrequent changes. In com-

parison, CoC which is used in Chord (for node insertions) is a pragmatic downright reactive mechanism.

CoC exploits the fact that if there are no changes, there is no need for corrections. CoC approaches devote

their effort uniformly to all changes in the network. More directed maintenance effort proportional to the

utility of a specific part of the network makes a more judicious use of resources. It calls for a reactive mecha-

nism like CoU which initiates route maintenance only if a reference is indeed required but stale. CoF is even

more pragmatic since it relies on the overlay’s routing redundancy (similar to [174]) and hence resilience

of the overlay, such that as long as a query may be answered, albeit with increased latency and effort, no

repair is done. CoU and CoF need some mechanism to rediscover usable routing entries, for which we can

use the self-contained directory. While CoF has the least overhead, and typically acceptable latency for a

wide range of network conditions, it is unsuitable in an environment where network reliability and query

frequency are very low. This is because, by allowing unusable entries to accumulate and not repairing them

as long as there is no failure, CoF allows the network to reach a “point of no return.” Intuitively, there is

a phase transition, and the network gets totally disconnected. Figure 6.6(d) shows the effect of increased

churn (by varying pon).

A relatively recent experimental empirical study [146] also observed the deterioration of one specific

reactive scheme in a variant of Pastry (named Bamboo) attributing the deterioration to positive feedback

cycles. The conclusion drawn there was that periodic stabilization/recovery is more efficient. In that context,

there are several things that needs to be pointed out here to disambiguate the results. First of all, this study

focussed on maintenance of essentially the ring structure - i.e, successors/predecessors nodes.6 In absence

of structural replication, maintenance of the ring is indeed critical, and use of an active strategy is indeed

desirable. Secondly, while our analysis is for a different class of reactive strategies, such a positive feedback

6 For redundancy and recovery, multiple successors are required in a ring.

6.7 Related Work 125

cycle is indeed observed for the case of CoF. In that respect the analysis in this chapter complements the

empirical study [146].

A recent radical approach to deal with possible changes in (long-range) routing table entries is to pre-

empt churn. So to say, try to speculate when a particular routing entry will potentially become unusable

(based on statistical and historical information) and replace it with an entry which is speculated to be more

reliable. This approach is used in a Kleinberg style small-world [98] choice of long-range links in a ring

based topology (Accordion [105]). Another novelty in this approach is to pre-allocate the bandwidth budget

for maintaining routing entries - which is used in order to determine the outdegree/indegree of individ-

ual peers. Simulations using synthetic work-loads show that the system provides better performance (in

terms of maintenance cost, query cost) for a wide range of environments (churn) in comparison to the self-

stabilization mechanism used in Chord. This approach is relatively new, and not compared with the existing

reactive maintenance schemes, and may in fact well be used complementarily with lazy repair strategies

in general. This is so because even while using a preemptive mechanism, unusable routes will be encoun-

tered. These (temporarily) unusable entries can then be repaired using a lazier mechanism. Moreover, none

of these other route maintenance schemes exploit and provide persistence of peer identifiers, and hence (as

mentioned previously) applications using meta-information about peers lose the opportunity to accumulate

and use such information.

From Figure 6.7 and the discussion above we conclude that none of the existing approaches is suit-

able for all network conditions and usage patterns. Hence hybrid mechanisms are required. The self-tuning

mechanism in [112] is an example where the probing period of PC is adapted based on the change rate,

thus realizing aspects of CoC. However, neither PC nor CoC exploit the fact that maintenance is needed for

only what is used, and incur higher overheads. Thus, from a route maintenance perspective, the family of

self-healing routing (a hybrid of CoU/CoF) based route maintenance mechanisms are promising candidates,

and complement well the recent preemptive mechanism [105].

6.7.4 Analysis of overlays under churn

Performance of overlays under membership dynamics has been of immense interest to overlay designers

since the early days. Early proposals like Chord [163] looked at the probability of queries failing because of

inconsistent routing tables. A more exhaustive work investigating the effect of the geometry of an overlay

on its static resilience [75] was an important step towards a formal study of overlays under churn. A lower

bound for overlay maintenance cost was also studied [106] prior to our work. These approaches do not look

at any specific maintenance strategy and hence do not quantify the actual performance of the overlay under

continuous effect of maintenance operations and membership changes. Our work pioneered the use of such

a dynamic equilibrium study for overlay networks, using the P-Grid overlay and studying the Correction

on Use and Correction on Failure based route maintenance schemes. Subsequently, similar to our dynamic

126 6. A self-referential directory

Network

Usage

Network

Unreliability

Legend:

(CoF) Lazy reactive (correction on failure)

(CoU) Eager reactive (correction on use)

(CoC) Active (correction on change)

(PC) Proactive (e.g., periodic correction)

High

Low

Low Moderate High

- PC (inefficient)

* CoC, CoU

+ CoF

- PC, CoC (inefficient)

* CoU

+ CoF

* PC, CoC, CoU

(relatively inefficient)

+ CoF

- CoC, PC (inefficient)

* CoU

+ CoF

- CoF (high latency,

eventual break down)

* CoC, PC (inefficient)

+ CoU

+ CoC, PC, CoU, CoF

Fig. 6.7. Route maintenance taxonomy and qualitative comparison. A preemptive strategy like [105] is excluded here, since it is not
exactly a route repairing strategy, but it can be used to complement any of the route maintenance strategies for the full spectrum of
network churn characteristics.

equilibrium analysis other works [101, 102] use formal tools from statistical mechanics (master-equations)

to study the Chord overlay under its self-stabilization algorithm. While the system parameters used in the

analysis in [101, 102] and the details of the analysis are somewhat different than ours, again, such a dynam-

ical equilibrium analysis accurately predicted the behavior of the Chord overlay under continuous churn and

maintenance, vindicating our original proposition of use of a dynamic equilibrium analysis methodology

to understand the dynamics of large-scale dynamic systems. It also exemplifies how, as we originally envi-

sioned, such analytical tools from complex systems will be more widely adopted in the context of distributed

systems in general, and particularly for peer-to-peer systems.

A critical decision when modeling and analyzing complex systems is to choose appropriate parameters.

The existing dynamic equilibrium studies [5, 102, 101] choose these parameters in an intuitive but ad-hoc

manner. A recent systematic modeling approach proposes the use of intensive variables [59]. Intensive vari-

ables is a concept inspired from physics. Intensive variables are system invariants which are not affected

with the system’s scale (as long as the system size is large enough to make statistical properties relevant).

For instance, density of an object is an intensive variable, unlike its mass. Intensive variables are empirically

obtained. In the context of computer science, an intensive variable is determined by proposing a hypothesis

and validating it with simulations based on whether a “data collapse” is observed or not. A data collapse

essentially encodes any functional relationship among different system parameters. The advantage of using

intensive variables to model, analyze and express system properties is that then the system is described us-

ing parameters which are independent of the scale, and it obviates the need to do an exhaustive enumeration

6.8 Conclusions 127

of the system properties for all parameters by eliminating redundancies because of functional relationships

among such parameters. Some early study to identify intensive variables, looking into the Chord overlay

network and its periodic stabilization algorithm has been done [59]. It has been shown in [59] that both

the node density on the identifier space as well as the ratio of perturbation (churn) to repairs are intensive

variables. It is not evident from this initial study if the intensive variables themselves change based on al-

gorithmic changes in the system. For instance, the current analysis was assuming periodic stabilization of

the Chord network. If peers adapt locally the period of stabilization itself (e.g., as proposed in [112]), this

may change the qualification of certain variables to be intensive or not. Nevertheless, such a systematic

approach to choose appropriate system model parameters based on intensive variables is generally inter-

esting for distributed systems research, and complements the analysis methodology of studying dynamic

equilibrium in overlays under churn by identifying appropriate modeling parameters systematically rather

than heuristically, as has been the practice so far.

6.8 Conclusions

This chapter described a decentralized, self-maintaining, light-weight directory service. We have demon-

strated that our algorithm is robust and applicable in unreliable environments such as current peer-to-peer

systems and that it operates well, even if we assume low online probabilities. Our approach has six major

contributions: (1) We separate identity from network properties and thus introduce the concept of logical

independence into overlay networks, (2) we provide a general approach to identify entities and to bind arbi-

trary information to them, (3) we demonstrate that the approach does not corrupt structural properties of the

used P2P system and retains existing knowledge and semantics, (4) we explicitly address security against

impersonation to guarantee the correctness of identities, (5) we have explored a P2P system’s dynamic re-

silience in the presence of changes in the underlying network, in contrast to other works that have only

addressed static resilience of P2P systems and (6) we proposed a novel family of reactive route maintenance

schemes exploiting structural replication of the overlay; Correction on Use and Correction on Failure being

two special (extreme) instances.

The directory service is based on the P-Grid P2P system and applied in P-Grid itself to mitigate the

problem of dynamic IP addresses. To prove the efficiency and applicability of our approach we have provided

an analytical model for the dynamic equilibrium case and have evaluated our algorithm based on this model.

Additionally, we have provided simulation results to verify the correctness of the model. Our infrastructure

offers a sufficient level of security against impersonation attacks.

128 6. A self-referential directory

7. Experimental evaluation on PlanetLab

“All models are wrong, but some are useful.” — George E.P. Box

7.1 PlanetLab as an experiment testbed

We used the PlanetLab infrastructure [37] to obtain results from moderately large-scale experiments based

on a real implementation of some of the algorithms introduced so far under realistic networking conditions

and to verify the validity of our theoretical predictions and simulation results.1

PlanetLab [37] (http://www.planet-lab.org/) is a global testbed for large-scale experiments with dis-

tributed systems. At the time of the experiments in the first half of 2005, PlanetLab consisted of approxi-

mately 530 computers (nodes) geographically distributed over the whole planet running a modified version

of Linux to support efficient administration and resource sharing for large-scale experiments. Nodes in Plan-

etLab are connected via a diverse collection of links.

In PlanetLab, computers are spread over different administrative domains and are subject to different

network adminstration policies and management. So PlanetLab is inherently indeterministic. It is not meant

to run controlled experiments to obtain reproducible results [161]. Nor does the PlanetLab topology reflect

the internet topology. Moreover, often multiple experiments are run simultaneously on the same comput-

ers influencing the results. Nonetheless, PlanetLab has recently become an interesting test-bed for deploy-

ment and experimentation with large-scale distributed system, because it provides a real geographically dis-

tributed environment where actual implementations using networking protocols can be deployed, not only

for bench-marking and performance evaluation but also to validate the functional correctness of prototype

and full-fledged softwares.

1 A disclaimer and an acknowledgement: The PlanetLab experiment results are based on the actual Java implementation of some
of the algorithms introduced in the previous chapters which have been integrated with the rest of the Gridella/P-Grid software.
The implementation as well as the experimentation is a joint work spearheaded by Roman Schmidt and substantially supported
by Renault John. Without their contribution neither the software nor the experiment results in a real internet environment would
have existed. I thank them both for the collaboration we had in developing the system from the conceptual embryo to the actual
functional software, and also for permitting me to include the experimental results. The PlanetLab experimental results have
been included in this thesis in order to show the practicality of some of the previously introduced algorithms.

130 7. Experimental evaluation on PlanetLab

7.2 Objectives and scope of the experiments

The deployment and experiments were conducted with a Java based P-Grid software implementation, which

incorporates several of the algorithms introduced earlier. Particularly the P-Grid construction algorithm

(recursive use of the adaptive eager partitioning (AEP) algorithm described in Section 4.3.1) and the basic

search/retrieve Algorithm 1 and range-query Algorithms 2&3 were tested, and the findings are reported

next.

Our experiments on PlanetLab ran on up to 300 computers depending on the number of available nodes.

Each node executed one instance of a P-Grid node. When interpreting the results presented in the following,

it is important to consider that PlanetLab is shared by a large number of research groups for experiments that

are executed in parallel and thus mutually influence the performance considerably especially with respect

to absolute latency. Absolute latency is also affected by the implementation artifacts like whether a proper

garbage collection mechanism is in place or if there are memory leaks. Subsequent to the experiments the

software has undergone several bug fixes and fine-tuning to improve performance as well as new features

based on other algorithms introduced in this thesis as well as others are being integrated.

7.3 Experimental setup for overlay construction by recursive re-partitioning

We deployed the P-Grid software, i.e., the peers, on all available nodes at the times the experiments were

conducted and assigned 10 keys chosen uniformly randomly from a real text collection (taken from the

Alvis information retrieval EU project [30]) to each peer. This relatively low number of keys was chosen

to speed up experiments and as we have already speculated based on simulation results, sample size has

little influence on load balancing. To validate our experiments, we also performed tests with larger numbers

(up to 2000 keys per peer) and used various distributions, including uniform random distribution and Pareto

distribution.

The time-line of the experiments was as follows: In an initial phase starting at time t, peers joined the

system by contacting a bootstrap peer (until t + 30min) and formed an unstructured overlay network (from

t until t + 45min) which was used later to replicate data a fixed number of times (from t + 45min until

t + 60min). In the replication phase peers randomly chose 5 peers from the unstructured overlay network

to replicate their data. Subsequently, from t + 60min to t + 300min, the structured overlay network was

constructed using the approach presented in Chapter 4. We were especially interested in evaluating the

bandwidth consumption during this phase and to verify whether the theoretically predicted load balancing

properties of the algorithm are achieved under realistic networking conditions. Then we ran queries on

the constructed overlay network (t + 300min to t + 400min) to analyze search performance. Each peer

performed a search every 1–2 minutes. In the final phase (t + 400min to t + 500min) network churn was

emulated to evaluate the resilience of the overlay network. Each peer independently decided to go offline

7.3 Experimental setup for overlay construction by recursive re-partitioning 131

for a duration of 1–5 minutes every 5–10 minutes which caused considerable churn that the system had to

withstand and compensate.

7.3.1 Experimental evaluation

We first verified that the system behavior matched the theoretical predictions and the simulations. The ex-

periment was performed with 296 peers and compared to simulation results using the same number of peers

and the same key set.

The quality of load balancing was evaluated as defined in Section 4.8.1 and was practically identical for

simulations and experiments, with an average of 0.38 for 10 simulations (the standard deviation is 0.05) re-

spectively a value of 0.39 for the experiment. This indicates that the theoretically predicted load distribution

properties were met quite accurately by the implementation even under realistic network conditions with

slow connections and communication failures.

We now report some system measurements that we made to evaluate the performance of the overlay

network, both during the construction phase, as well as in its operational lifetime both in a static situation

(no change in peer population) as well as under churn.

Figure 7.1 shows the number of peers in the overlay during the whole period of experimentation. We see

how peers first joined the network and the number of peers in the network increased to the maximal number.

Then during the construction phase this number was stable (approx. 300 peers) while decreasing again in

the final phase where we emulated network churn and a substantial dynamic fraction (around 25%-30%) of

peers became unavailable.

Figure 7.2 shows the aggregate bandwidth consumption of all peers (maintenance and queries) in

Bytes/sec. During the construction phase the bandwidth consumption reached a peak of 250 Bytes/sec

per peer. The maintenance consumption decreased quickly down to less than 100 Bytes/sec and became

negligible compared to the bandwidth consumed by queries.

Figure 7.3 shows the average query latency and its standard deviation. The absolute values were relatively

high and essentially reflected the poor response time of PlanetLab nodes. The response time was slightly

higher with a larger deviation under network churn because requested peers were sometimes offline which

had to be compensated by forwarding the queries to others.

We observed that the number of query hops per query was as low as theoretically expected, i.e, approx-

imately half of the mean path length, even under churn. The average path length was slightly below 6 and

the average number of query hops per query was approximately 3. Moreover after the construction phase

had led to full evolution of the overlay network, all peers discovered all their replicas, and the system had an

expected mean replication factor of 5, as intended, and success rate for queries was between 95% and 100%

even under network churn. Queries were mainly unsuccessful because of network problems such as lost or

corrupted messages.

132 7. Experimental evaluation on PlanetLab

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

Time [minutes]

pe
er

s

Fig. 7.1. Number of participating peers

Finally, we would like to point out that the presented experimental evaluation is still limited in the fol-

lowing sense: The moderate number of peers does not allow us to obtain significant results on the reduction

of latency during bootstrapping as predicted by our theoretical analysis in Section 4.4.4; which is one of the

main properties of our approach.

7.4 Experimental setup for evaluation of the range query algorithms

In the experiments to evaluate the min-max and shower range query algorithms which were introduced

in Section 3.3 we used a network of 250 peers each running on a dedicated physical PlanetLab node. We

inserted 2500 unique data items into the system and required an average replication factor of 5. Thus initially

we had a total of 5 ∗ 2500 = 12500 data items in the system and each peer was responsible for 52500
250 = 50

data items. The real number of the data items in the system in fact was higher as for load-balancing each

peer was required to manage a minimum of 50 and a maximum of 100 data items, and given the randomized

construction approach of P-Grid, each peer would thus hold on average 75 data items, i.e., the total number

of data items in the system was 250 ∗ 75 = 18750.

7.4 Experimental setup for evaluation of the range query algorithms 133

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

Time [minutes]

B
an

dw
id

th
 [B

ps
]

maintenance
queries

Fig. 7.2. Aggregate bandwidth consumption

To show that range query on P-Grid network is efficient for diverse data distributions, we used two very

different data sets, one uniformly distributed and one Pareto distributed (with a probability density function

of a ka

x1+a and parameters k = 1 and a = 2.0) as shown in Figure 7.4.

Pareto is a typical long-tail distribution which occurs frequently. We observed in the previous set of

experiments that P-Grid copes well with such distributions because of the underlying load-balancing algo-

rithm which balances both storage and replication load. We thus safely infer that if the results are good for a

Pareto distribution, the system will perform equally well for other distributions including other long-tailed

ones like Zipf distribution.

In the experiments each peer selected randomly 10 data items of a data global set according to one of

these distributions. The peers then constructed a P-Grid which had an average height of log2
2500
10∗5 = 5.6.

Then range queries which affected data from all partitions of the data sets were issued. The queries were

started from randomly chosen peers with random lower range bounds, and were constructed in a way, such

that they should ideally return 50, 100, 150, 200, 400, and 800 unique data items. For each of the six answer

set sizes, each of the two distributions, and each of the two algorithms, one query was issued by each of

the 250 peers, i.e., a total of 6 ∗ 2 ∗ 2 ∗ 250 = 6000 queries resulting in 250 values per data point in

Figures 7.5–7.8.

134 7. Experimental evaluation on PlanetLab

300 320 340 360 380 400 420 440 460 480 500
0

10

20

30

40

50

60

Time [minutes]

T
im

e
[s

ec
on

ds
]

standard deviation
average

Fig. 7.3. Query latency

0 0.5 1 1.5 2 2.5

x 10
4

0

50

100

150

200

250

300

data item index

oc
cu

re
nc

e

Uniform data distribution

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

data item index

oc
cu

re
nc

e

Pareto data distribution

Fig. 7.4. Data set distributions used for range query experiments

7.4 Experimental setup for evaluation of the range query algorithms 135

7.4.1 Experimental evaluation

There are several performance metrics of interest to evaluate the P-Grid system as well as the algorithms for

their suitability to support range queries. This includes load-balance characteristics (storage, replication, and

query load), data fragmentation, as well as message costs and latency for various data distributions. P-Grid’s

efficient multi-faceted load-balancing characteristics for diverse workloads have already been discussed.

This allows us to use order-preserving hashing to ensure low data fragmentation, while the underlying

network transparently takes care of load-balancing despite the skew in key distribution over the key-space.

Earlier in the chapter we already reported the load-balancing results for the implementation also.

Thus the main objectives of the experiments here was to demonstrate the cost/latency trade-off of the

range query algorithms, and to show that because of the use of a load-balanced trie-structured overlay

network, the cost of range queries is independent of the data distribution and the size of the range, but only

dependent on the used algorithm and the size of the answer set - as expected from the theory (Section 3.3).

From the experimental results presented in the following, we can observe that the cost and latencies are

indeed independent of the distribution and indirectly prove that the overlay network had good storage-load

balancing characteristics.

Figure 7.5 shows the costs incurred by range queries in terms of message latency (hops), i.e., the maxi-

mum number of messages required to hit each sub-partition of the range, i.e., one peer in each sub-partition.

Figure 7.5(a) shows a direct comparison of the experimental results for the four combinations (2 data dis-

tributions and 2 range query algorithms) and Figure 7.5(b) gives the standard deviations of each of the four

types of experiments as error bars.

On an average we needed 3 hops to reach first a peer responsible for some key-space within the range

for both types of algorithms. But the min-max algorithm suffers from the sequential traversal of the range

to reach all sub-partitions after having reached the peer responsible for the lower bound. This leads to

increasing hop counts with increasing range sizes whereas for the shower algorithm the number of hops

remained constant, i.e., it was rather insensitive to the size of the answer set as an increase in the number of

hops for this algorithm basically means that the range had exceeded one level in the tree and an additional

hop was necessary as the “shower” had to start at the next higher level. However, this benefit came at the cost

of an increase in the overall messages as shown in Figure 7.6. Figure 7.6(a) shows a direct comparison of the

experimental results and Figure 7.6(b) gives the standard deviations of each of the four types of experiments

as error bars.

The shower algorithm requires a slightly higher number of messages but improves latency as it sends

them to the responsible peers in parallel. Therefore all peers responsible for a range section were reached

after 3 hops (in the experiment’s setup) independent of the range size. Range queries with an answer set size

of 50 were answered mostly by one peer because peers on an average were responsible for 75 data items. It

can further be seen that both algorithms performed well for both data distributions and scaled as expected

136 7. Experimental evaluation on PlanetLab

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

size of answer set

ho
ps

shower, uniform
shower, pareto
min max, uniform
min max, pareto

(a) Comparison

0 200 400 600 800
0

5

10

15

size of answer set

ho
ps

shower, uniform

0 200 400 600 800
0

5

10

15

size of answer set

ho
ps

shower, pareto

0 200 400 600 800
0

5

10

15

20

size of answer set

ho
ps

min max, uniform

0 200 400 600 800
0

5

10

15

size of answer set

ho
ps

min max, pareto

(b) Standard deviation

Fig. 7.5. Message latency (hops)

7.4 Experimental setup for evaluation of the range query algorithms 137

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

size of answer set

m
es

sa
ge

s

shower, uniform
shower, pareto
min max, uniform
min max, pareto

(a) Comparison

0 200 400 600 800
0

5

10

15

20

25

30

size of answer set

m
es

sa
ge

s

shower, uniform

0 200 400 600 800
0

5

10

15

20

25

30

size of answer set

m
es

sa
ge

s

shower, pareto

0 200 400 600 800
0

5

10

15

20

size of answer set

m
es

sa
ge

s

min max, uniform

0 200 400 600 800
0

5

10

15

size of answer set

m
es

sa
ge

s

min max, pareto

(b) Standard deviation

Fig. 7.6. Message cost

138 7. Experimental evaluation on PlanetLab

from theory. An increase of the answer set size by a multiplicative factor of the average peer storage size

yielded an additional message on average which is the best possible result achievable with limited storage

available at the peers and again indirectly proves the effectiveness of the storage-load balancing.

Figure 7.6 also shows the total number of peers involved in a range query, i.e., the number of peers

forwarding or replying to a range query. For the min-max algorithm this number was equal to the number

of messages because only one message is first routed to the lower bound and then forwarded to the higher

bound. Therefore the number of peers forwarding a query to a peer of the desired range is smaller than for

the shower algorithm. More peers are involved during the shower algorithm because messages are sent in

parallel to reach desired peers.

In terms of query latency, it is interesting to see that the shower algorithm is almost insensible towards

answer set sizes, this can be seen in Figure 7.7, where the latency grows very slowly.

This can be explained by the fact that a considerable number of data items would have to be added before

the trie increases its height which is the dominant contribution to the latency for this algorithm. For the min-

max case the latency increased for obvious reasons as messages are forwarded sequentially which increased

the latency. Here an increase of the height of the trie has a much more dramatic influence as the min-max

algorithm heavily depends on the width of the interval. While increasing the height of the trie means only an

additional hop for the shower-algorithm which is processed largely in parallel, for the min-max algorithm

the number of sequential messages increases by a factor of 2 on average. Note that this is expected from

theory, since the height of the tree will increase by 1 only if approximately twice the data items are in the

same range, and in the min-max algorithm, both latency and message costs are proportional to the number

of data-items in the answer-set.

A side result which can be inferred from these plots is that the smallest range queries involving 3–5

peers took approximately 10–20 seconds on an average. Larger range queries using the min-max algorithm

took a multiple of that. This can be explained by the success and adoption of PlanetLab as an experimental

testbed, since a large number of experiments are conducted concurrently which considerably slows down

PlanetLab’s overall performance.

Finally, in Figure 7.8 we show what level of result completeness we could achieve with our range queries.

This measure represents the percentage of received data items as answers to a range query with respect

to the actual number of data items inserted (present) in the specific range. The result completeness is around

90% and is mainly independent of the range sizes and the data distributions.

We observed several problems during our experiments in respect to the PlanetLab environment, for ex-

ample, communication problems and crashes of PlanetLab nodes (not of the tested P-Grid system but the

physical PlanetLab computers), which explain the non-exhaustive results. Such failures because of unreli-

able peers are characteristic of any deployed P2P system, the relatively high success rate in fact demonstrates

the robustness of P-Grid under churn. Smaller scale experiments in a local environment with lower numbers

7.4 Experimental setup for evaluation of the range query algorithms 139

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

size of answer set

tim
e

[s
ec

on
ds

]
shower, uniform
shower, pareto
min max, uniform
min max, pareto

(a) Comparison

0 200 400 600 800
0

20

40

60

80

100

size of answer set

tim
e

[s
ec

on
ds

]

shower, uniform

0 200 400 600 800
0

20

40

60

80

100

size of answer set

tim
e

[s
ec

on
ds

]

shower, pareto

0 200 400 600 800
0

50

100

150

size of answer set

tim
e

[s
ec

on
ds

]

min max, uniform

0 200 400 600 800
0

50

100

150

size of answer set

tim
e

[s
ec

on
ds

]

min max, pareto

(b) Standard deviation

Fig. 7.7. Query latency (time)

140 7. Experimental evaluation on PlanetLab

0 100 200 300 400 500 600 700 800
85

86

87

88

89

90

91

92

93

94

95

size of answer set

su
cc

es
s

ra
te

 [%
]

shower, uniform
shower, pareto
min max, uniform
min max, pareto

Fig. 7.8. Result completeness of the range query algorithms

of nodes and fewer emulated node failures have proven the functional correctness of our implementation

and provided a 100% success rate. To increase the success rate on PlanetLab or in a real-life deployment

we need to increase the replication factor, i.e., data is replicated more often, and thus node failures could

be possibly compensated better. This will increase the maintenance overhead but should provide better re-

sults. However, due to the duration of the experiments and the lack of possibility to assess the conditions on

PlanetLab that caused a certain experimental result and behavior, we have no experimental evaluation using

higher replication yet. In the experiments discussed above we used a replication factor of 5 on average. Each

key space partition (and hence data item) was actually replicated between 1 and 10 times. Taking this into

account and the very dynamic situation on PlanetLab a success rate of 90% seems reasonable. In future

work, we will explore the possibility to adapt replication to the dynamic situation on the physical network,

apart integrating the structural replication re-balancing algorithm introduced in Section 4.6 to improve the

overlay’s resilience and performance.

7.5 Conclusion

The evaluation of the actual implementation based on some of the algorithms presented in this dissertation

not only shows the practicality of the algorithms, the experimental evaluations also provide a final validation

of some of the analytical predictions. The implementation and the experiment results thus help covering

the full spectrum starting from system design and analysis and finally culminating in an implementation

and evaluation in a realistic environment. The deployment of full-fledged functional software in a highly

7.5 Conclusion 141

distributed environment (like PlanetLab) also is a stepping stone towards making the software available to a

wider audience of end users as well as developers of other systems and applications that may use some of

the functionalities provided by the systems designed in this dissertation.

Part III

Content management in internet-scale systems

143

8. Efficient redundancy maintenance in storage systems

“I think you’re begging the question,” said Haydock, “and I can see looming ahead one of those terrible

exercises in probability where six men have white hats and six men have black hats and you have to work

it out by mathematics how likely it is that the hats will get mixed up and in what proportion. If you start

thinking about things like that, you would go round the bend. Let me assure you of that!” — Agatha Christie,

The Mirror Crack’d

8.1 Introduction

In the recent years there has been an increasing trend to use resources at the edge of the network - typically

desktop computers interconnected across the internet provide services and run applications in a peer-to-

peer manner, as an alternative to the traditional paradigm of using dedicated infrastructure and centralized

coordination and control. Similar services in a relatively more dedicated infrastructure like PlanetLab [131]

is also a growing trend. One such extensively studied application is that of collaborative storage systems,

where free storage space of individual computers is used in order to realize persistent and highly available

data storage [25, 46, 80, 103, 145, 168]. Such collaborative storage systems can be used by a wide range of

applications - as backup service for individual users [42], public services like digital library or an internet

archive [114] or file systems [46] - to name a few. Moreover, the peer-to-peer paradigm need not necessarily

be used only out in the open in the internet. Private enterprises spread geographically over various sites

can use the same peer-to-peer paradigm for a cost effective automated back-up service within their own

corporate intranets with dedicated and much more reliable infrastructure.

Large-scale systems in general, and peer-to-peer systems in particular, are prone to the unreliability of

individual participants. Particularly in a peer-to-peer environment, individual peers often leave and rejoin

the network for relatively shorter session times over a long period of time (lifetime), before leaving the

network permanently. Also, some peers may become temporarily unreachable from other peers because of

communication network problems. Irrespective of such autonomous and whimsical behavior of individual

participants, for any practical usability, it is necessary to design systems which are stable and reliable, even if

the individual participants are unreliable. Such reliability is achieved using redundancy. In order to maintain

the redundancy over a long period of time, it is also necessary to continuously compensate for the lost

redundancy in presence of continuous membership dynamics (churn). The maintenance operation needs to

146 8. Efficient redundancy maintenance in storage systems

be sufficiently aggressive in order to provide a minimal redundancy and resilience, but at the same time

the maintenance overheads need to be kept low. This needs prudent design of the maintenance scheme to

better explore the cost-performance tradeoffs. If the system is to be deployed in diverse environments, or to

operate in an environment where the dynamics can change substantially over time, it is also desirable that the

system adapts automatically to the environment, with as less human administration to tune the parameters

as possible.

In this chapter we propose and analyze such an adaptive self-organizing maintenance algorithm for

collaborative storage systems which is both efficient in terms of maintenance cost as well as robust so that

the storage system can tolerate a wide range of churn as well as rarer but likely correlated failures.

The algorithm we propose is a randomized lazy maintenance scheme which has quantitatively superior

resilience against both a wide range of churn level as well as rarer but inevitable (in large-scale distributed

systems) correlated failures than known maintenance scheme [25]. Our maintenance scheme achieves this

resilience at a comparable (and often lower) maintenance overhead. The basic idea is to probe randomly for

a minimal number of redundant fragments of the stored content. Depending on the current available redun-

dancy the sample size thus automatically adapts, as does the effort to replace the detected lost redundancy.

So to say, as availability decreases replacement rate increases smoothly for our scheme.

We evaluate our maintenance scheme analytically, validating the results using simulations. To that end

we study time-evolution and steady state characteristics of storage systems under churn by introducing an-

alytical tools used in the study of dynamical systems [85]. We use a Markov model for studying P2P storage

systems under churn [47], similar to our analysis of structured overlays under churn [5]. We specifically in-

vestigate whether, given a specific amount of churn and a chosen maintenance mechanism the system works

in a steady-state and if so, how stable is the steady state to additional failures (possibly caused abruptly by

correlated failures) and what is the maintenance cost.

Despite the immense interest in building reliable P2P storage systems, the issue of churn for storage

systems is not properly studied, apart resorting to simulations [168] which do not capture the interplay

between - churn, specific properties of the kind of redundancy used and the specific maintenance oper-

ations. OceanStore [103, 169] looks only into resilience against disk failures, and is not designed for a

dynamic setting as is more likely in a peer-to-peer setting. Other systems like CFS [46] and Glacier [80]

eagerly maintains redundancy - which however does not explore the trade-offs of cost and resilience. To-

talRecall [25] proposed a heuristic lazy maintenance scheme to reduce the maintenance cost, and used

simulations to demonstrate the tremendous cost savings using their heuristic in comparison to the use of

eager repairs. Buoyed by our successful use of steady-state analysis for overlays under churn, we wanted to

reuse the analysis methodology for P2P storage systems. Our analysis of the existing (deterministic) lazy

maintenance scheme [25] not only provided an exact picture of the interplay of churn and repair operations,

but also prompted us to design a better (randomized) lazy maintenance scheme. While our pragmatic lazy

8.2 Redundancy mechanisms: Replication, Erasures and Digital Fountains 147

scheme could have been designed accidentally, historically the fact remains that it was inspired by the anal-

ysis based precise understanding of the system’s dynamics, moreover the analysis provided a framework

for quantitative evaluation of each of these schemes as well as comparative study (similar to the case of

structured overlays as studied earlier in Chapter 6).

From such a comparative study, we determine that the (randomized) lazy maintenance scheme we pro-

pose achieves substantially better resilience against churn as well as correlated failures than the existing

(deterministic) lazy maintenance scheme [25] for comparable maintenance overhead averaged over time.

Our randomized lazy maintenance scheme exploits the advantage of continuous eager repair strategies by

spreading the maintenance effort over time, while still doing only partial repairs (based on randomization)

thus enjoying low maintenance overheads.

This chapter is organized as follows: In Section 8.2 we discern the subtle differences in the kind of

redundancy one can have for content storage, and the practical implications of these subtle differences.

We describe in Section 8.3 the specifics of the maintenance strategies that can be employed to maintain

the redundancy of the stored content, and introduce our randomized lazy maintenance scheme. In Sec-

tion 8.4 we review the various models for analyzing churn and advocate the use of time-evolution analysis

- a well established methodology (developed and used in diverse domains including physics and cybernet-

ics [85]) for studying large dynamic systems. In Section 8.5 we describe the specific model of churn which

we study in this chapter. In Section 8.6 we perform the time evolution analysis for our randomized lazy

maintenance scheme and that of the existing deterministic lazy maintenance scheme. We present our re-

sults in Section 8.7 where we show how our randomized lazy maintenance scheme outperforms the existing

maintenance scheme. We summarize some ongoing and future work in Section 8.8 before concluding in

Section 8.9.

8.2 Redundancy mechanisms: Replication, Erasures and Digital Fountains

Redundancy is essential to fault-tolerance. Moreover, in a peer-to-peer setting characterized by churn, un-

availability of any individual peer is more the rule than the exception. Irrespective of the behavior of individ-

ual peers, collaborative storage systems endeavor to provide reliable - i.e., highly available and persistent,

storage.

Storage redundancy is typically realized by either purely replicating objects (e.g., CFS [46]), or using

erasure codes (e.g., RAID [129]). Hybrid strategies in order to improve access efficiency using replication

while providing persistence in a memory efficient fashion using erasure codes is also a standard practice

(e.g., HP AutoRAID [172]), which has more recently been used in a P2P setting in various systems like

Oceanstore [103] and TotalRecall [25].

Erasure codes (e.g., Reed-Solomon codes [142]) have the property that any M out-of N fragments can

be used to decode and reconstruct an object O. At a storage overhead slightly more than N/M (since

148 8. Efficient redundancy maintenance in storage systems

in practice size of the object |O| is slightly smaller than size of M fragments) erasure codes provide much

better redundancy than what may be achieved using the same storage overhead if pure mirroring (replication)

is used [28, 169]. There are however performance trade-offs in actively accessing data [152], and hence

erasure coded redundancy is practical only for providing persistence to relatively larger objects in a storage

efficient manner, both because of the direct overheads of decoding (reconstructing the object) as well as other

practical considerations in such collaborative storage systems - for instance, managing the information about

all the fragments and accessing them, among others [168].

Moreover, even though in principle replication is a special case of erasure codes: 1 out-of N, there is

a subtle practical difference typically ignored in the existing analyses [24, 169]. Note that for non-trivial

erasure codes, any M (but) distinct fragments are required. Thus, if a node goes offline and rejoins, and

in the meanwhile the missing fragment has been replenished by the system’s maintenance operation, this

replica of the erasure coded fragment does not enhance the availability of the whole object.1 In contrast,

in a pure replication based system, obviously the duplicates indeed enhance the availability. In that respect

rateless or Digital Fountain (DFs) codes [110, 157] is more like replication. Using DFs lead to generation

of random and unique fragments, so that whenever a particular fragment is lost/unavailable, there is neither

any need to identify specifically which one fragment is missing, nor is there any risk of having duplicate

fragments if and when the missing fragment returns to the system (because of peer rejoins).

The above discussion highlights the subtle differences in redundancy realized by replication, traditional

finite rate erasure codes and rateless digital fountains. This has implications on the time-evolution. The

current work is a first steop to bridge the gap in existing literature. We’ll restrict our analysis to only tradi-

tional finite rate erasure codes. For pure replication or DF based redundancy, the same analytical tool can

be reused, however the precise details of the analysis will differ, since unlike the case of finite rate erasure

codes, using either of pure replication or DFs implies we can potentially have infinite redundancy, even if

that’s neither necessary nor practical.

While the precise details of the analysis thus depends on the specific properties of the kind of redundancy

used, the qualitative results are not expected to be affected. Which is to say, the randomized lazy maintenance

scheme we propose will in all cases be more efficient and resilient than the deterministic lazy maintenance

scheme.

1 It potentially can be exploited to enhance the availability of individual fragments but that would lead to higher implementation
complexity as well as operational overheads, the benefits of which may be marginal or even detrimental. Or else the duplicate
needs to be garbage collected. Whichever be the case, the issue is relevant for system implementation but can be abstracted out
in our steady-state analysis, where we use availability of individual distinct fragments (whichsoever way the specific implemen-
tation deals with duplicate fragments).

8.3 Maintenance strategies 149

8.3 Maintenance strategies

Since individual participants in a peer-to-peer system can autonomously leave the system - either temporarily

or permanently, just storing an object with some redundancy is not sufficient. A minimal redundancy needs

to be maintained for that object as long as we’d like it to persist in the system, irrespective of whether

the original peers which stored the object (fragments) stay or not. This necessitates a suitable maintenance

strategy.

Existing P2P storage systems employ either an eager repair strategy, or a deterministic lazy repair strat-

egy [25], as elaborated below. The existing lazy repair strategy outperforms the eager repair strategy in

terms of maintenance cost, however, as we’ll subsequently show, this strategy actually is rather vulnerable

against churn and correlated failures. We propose a randomized lazy maintenance scheme. For the same

redundancy (same M out-of N erasure code) and comparable maintenance cost to the deterministic lazy

mechanism, our maintenance strategy provides much better resilience against both regular churn, as well as

has better resilience against correlated failures. Next we explain what the existing eager and deterministic

lazy maintenance strategies do. Then we introduce our randomized lazy maintenance scheme.

Eager repair: In this strategy the storage system periodically probes for availability of each peer, and

replaces any (possibly and most likely temporarily) unavailable data. Such a proactive maintenance mech-

anism means the system always operates in a state where redundancy level remains constant apart from

temporary reduction between repair periods. However as expected intuitively, and has also been observed

using simulations by others [25], such a maintenance strategy is very expensive.

Deterministic lazy repair (Strategy-A): The life-time of participants in a peer-to-peer network is often

much longer than its session times - that is to say peers often leave the system temporarily only to rejoin

back. Consequently, it is not necessary to always replace all fragments which appear to be unavailable (of a

stored object) as done in a eager repair strategy, and instead lazier repair strategies can be used - particularly

for large objects where periodic repairs is prohibitive. TotalRecall [25] exploits this to propose a lazy repair

strategy which we call “deterministic procrastination”. In order to exploit the returning peers and use lazy

maintenance, it is necessary to be able to locate these peers even if they change their physical address. The

self-referential directory introduced earlier in Chapter 6 can be used for that.

In the Deterministic procrastination approach all peers storing fragments for an object are probed peri-

odically. Repairs are triggered only when a certain threshold Ta of nodes (and corresponding data) becomes

unavailable for that specific object. Thus to say, when an object has no more than Ta > M fragments avail-

able in the system, then a repair process for the object is initiated so that at the end of the repair process all N

fragments are again available. This maintenance strategy is proposed and simulated for the TotalRecall [25]

system but the dynamics has not been analyzed. This strategy allows a significant loss of redundancy be-

fore triggering many repairs all at the same time. This is undesirable because by waiting before losing a

significant amount of redundancy, the system becomes vulnerable to sudden multiple (correlated) failures.

150 8. Efficient redundancy maintenance in storage systems

Randomized lazy repair (Strategy-B): An alternative strategy, which we introduce and call sampling

random subsets, is to probe only a fraction of the stored fragments randomly (uniformly), until a minimal

Tb ≥ M number of live fragments are detected. Thus a random number Tb + X of probes (determined ac-

cording to a probability distribution which depends on the actual number of live fragments) will be required

to locate Tb live fragments. Then X fragments which were detected to be unavailable are replaced by the

system. Note that X can be (and as we’ll see from the analysis that it actually is) typically much smaller

than the total number of unavailable fragments at that instant.

The advantages of our randomized lazy strategy include:

(i) The repair process is continuous and adaptive, and does not have knee-jerk reactions. When fewer

fragments are available, more repairs take place, while when more fragments are available, fewer probing

and repair operations are required. Thus this strategy repairs all object all the while a little bit adaptive to

the rate of churn, unlike the deterministic procrastination Strategy-A, which repairs objects less frequently,

but needs to do a lot of repair work every time it is repairing an object. We’ll see in the following that such

an approach makes Strategy-A much more vulnerable to both churn and correlated failures.

Note that even though our approach repairs continuously, it does so for only a small subset of unavailable

fragments. The rate of repair smoothly adapts to the degree of unavailability. Thus it has the advantage of

lazy maintenance strategy - lower maintenance cost, even as it also has the advantage of using the network

resources spread over time and providing much better resilience against churn and correlated failures than

the existing lazy maintenance approach (for comparable repair cost averaged over time).

(ii) Reduction in the number of probe messages even though cost of probing is not that critical a load on

the system.

Obvious extensions of the sampling random subsets based maintenance strategy will include self-tuning

the threshold as well as adapting the probing period, but we do not investigate such variants here. Also note

that the eager repair strategy is a special case of either of the lazy strategies (corresponding to Ta = N or

Tb = N).

In principle, if less than M fragments of an object are left in the system, there is no more guarantee

that the object will persist in the system. However there are two obvious out of band mechanisms apart

the normal maintenance operations. (a) Owner of the object or any other user who has previously used the

object and has a local copy may reintroduce it in the system. (b) In any practical implementation of the

maintenance operations, the prober(s) for a specific object will keep a local cache of the object in order to

optimize the repair process, which can still be used to reintroduce the lost object as well.

However, particularly since we are looking at a scenario with high churn, we ignore these out of band

mechanisms, since the original source may be (even permanently) away from the system, as well as over

time, different peers will act as the prober of an object since the previous ones might be off-line.

8.4 Markovian time-evolution analysis 151

Hence, we will look into only the resilience that is guaranteed by the stand alone maintenance schemes

themselves. Implementation issues, particularly which participant of the distributed system is responsible

for the maintenance of a specific object is an orthogonal issue.

8.4 Markovian time-evolution analysis

Existing literature on P2P storage systems under churn fail to use a proper analytical tool to objectively de-

termine the performance of the system given a churn and any specific maintenance strategy. Thus, a proper

theoretical framework to compare two strategies too is non-existent, leaving no recourse to the P2P stor-

age system researchers apart resorting to simulations. For instance, Bhagwan et. al [25] looks into system

designing where they introduced the deterministic lazy maintenance mechanism and evaluate the system

performance based on simulation as well as prototyping, however they [25] do not provide any new analyti-

cal insight into the system’s behavior under continuous churn and repair processes. Similarly Weatherspoon

et. al’s recent work [168] benchmarks several existing storage systems through simulation experiments for

some specific churn levels, but does not delve into analysis of the systems’ dynamics. This leaves an impor-

tant void in the objective understanding of such storage systems’ behavior under churn, despite an abundance

of empirical results from simulations and prototypes [25, 80, 168].

In order to evaluate our maintenance scheme, following our general approach we identify and develop

the right analytical tools based on Markov model of the storage system and looking for a steady-state cor-

responding to a given churn rate and maintenance strategy, and validate the analytical predictions with

simulations.

Churn has been more exhaustively studied in the context of peer-to-peer overlay routing networks using

various models as we explained earlier in Section 6.5.1 - (i) Static resilience e.g., Gummadi et. al [75], (ii)

Half-life e.g., Liben-Nowell et. al [106] and (iii) Markovian time-evolution analysis, e.g., Aberer et. al [5].

In the following we argue why the later is the only way to comprehensively compare maintenance schemes.

Existing analyses [24, 169] (also reused in [25, 80, 152]) of P2P storage systems at best study the sys-

tem’s static resilience. Weatherspoon et. al [169] look into permanent disk failures as the dominant model

for unavailability, and hence completely ignore temporal effects of churn. Thus it is actually Bhagwan et.

al [24] who investigate the static resilience of the system. This model essentially looks at a snap-shot of

the system, completely ignoring any new failures or repairs. Since this model does not at all look into the

repair/maintenance process it is not suitable to compare different maintenance schemes.

As previously argued for studying overlays under churn, we study the storage system’s time-evolution

particularly looking into its long run steady state/dynamic equilibrium behavior under continuous churn for

any specific maintenance scheme. If such a steady state exists, then it determines the operational state of the

system under the given churn and adopted maintenance strategy, which in turn is necessary to determine the

performance vs. operational cost trade-offs in the system.

152 8. Efficient redundancy maintenance in storage systems

We evaluate and compare our proposed randomized maintenance scheme with the existing deterministic

maintenance scheme by studying the time-evolution of the system for both of these maintenance schemes.

We also validate our analysis with simulations.

In that respect, apart proposing a better maintenance scheme, we also employ the time-evolution analysis

in the context of P2P storage systems. Having such an analytical model has several other benefits. (a) Wider

parameter ranges can be explored accurately much faster than running experiments. (b) Unlike simulation

results which are vulnerable to implementation artifacts and whose interpretation is essentially open to

speculation, the analysis provides a precise cause-and-effect picture of the system dynamics.

Its worth mentioning that even for the existing empirical studies [25, 80, 168], where the information

must have been available, no one looked into the frequency distribution of the system states but only at the

mean value. This is possibly a consequence of the fact that without a proper abstraction (as is required for

the analysis), even obtainable information has been ignored in the existing literature, simply because it was

not well understood as to what to look for and how to use this information.

8.5 Churn model

We model churn according to an exponential lifetime distribution for each online session of any peer as well

as the period a peer stays off-line (for a given total peer population). Thus we assume that irrespective of

the history at any time instant t, an online node will become unavailable with a probability δ↓ at time t + 1.

Similarly an offline peer will rejoin the system with all its locally stored content at time t+1 with probability

µ↑. The fraction of available (online) peers is then given by pon = µ↑
µ↑+δ↓

. Only this average availability is

used in existing analysis [24] to study the effect of churn on static resilience in storage systems. Instead

we take into account the dynamicity of the system, particularly studying its time evolution using a Markov

model.

New peers joining the system will also bring additional storage space (and new objects to be stored),

however these peers would not “bring back” the lost fragments, and hence not explicitly accounted for in

the analysis. So to say, even if µ↑ = 0, the overall network size may stay stable or shrink or even expand,

depending on the rate of new peer arrivals. While these new peers do not bring back missing fragments, the

continuous maintenance operation will of-course exploit these new peers storage space while replenishing

lost redundancy. Similarly peers departing permanently from the network will no more influence the system

or its dynamics. Thus the above expression for the parameter pon needs to be understood in the context:

roughly speaking, it is the average availability of the existing peers in the network for a mid-term future (in

comparison to the period for maintenance operations). Thus, the implicit assumption is that even if all the

current peers eventually leave the network in the long run, the maintenance operation will in the meanwhile

replace the stored objects at the newly arriving peers. This in turn implicitly assumes that there is actually

sufficient storage space in the network. If the network capacity does not increase over time (which is likely

8.5 Churn model 153

since there will be only limited number of nodes, each with storage limitations) but the content volume

increases (with proliferation of various devices to produce huge volume of digital content this is also quite

likely), the overall storage capacity of the network can become a bottleneck. This is however a more general

problem for p2p storage systems and applications designer and is completely orthogonal to the focus of this

chapter where we only look at the impact of continuous and simultaneous churn and maintenance operations

on the performance, and specifically availability/durability of the stored content. One practical way to deal

with exhaustion of storage capacity is to lease storage space for a specific time-span and the storage layer

provides availability and persistence of the stored object only for this lease-period, after which the object is

gradually garbage collected. The application layer is responsible for lease renewal.

Since the existing maintenance operations (whichever strategy) are invoked periodically, the real time

is disentangled from the analysis - more frequent maintenance operations will mean lower perceived churn

and vice-versa. Though not done by existing systems like Glacier [80] or TotalRecall [25], one can expect

future generations of P2P storage systems to adapt the period of maintenance operations adapted to actual

churn conditions, as well as differentiating the importance of various stored objects and various application

requirements (while using the same underlying storage system). In these terms, such a disentanglement from

the real time provides us the right abstraction, so that the analysis stays generic and only the system param-

eters µ↑ and δ↓ would be different for different scenarios. This approach is similar in spirit to physicists’ use

of intensive variables (i.e., scale invariant metrics) to study large scale systems, and has also been used in

studying the properties of overlay routing networks under churn [59].

There may be some concerns with the churn model we use, but we argue why these are not critical: (i)

This model does not look into the effect of permanent departure of nodes from the system nor new peer

joins. In the context of storage systems, new peers joining the system do not change availability of already

existing objects. But if we assume that the mean session time of a peer is relatively smaller than its life-time

in the system, then the availability is threatened more by temporary departures. Since the system’s repair

mechanism will replenish the lost redundancy, we assume that relatively infrequent permanent departures

do not influence the system’s availability, particularly since the maintenance scheme will use other peers to

compensate for the gradual permanent departures. Such an assumption is justified by measurement studies

(such as [23]) on mean life-time and session-time. (ii) In reality, the rate of churn itself varies over time.

In such a situation, the system continuously tries to converge to the corresponding steady state. Even then

our simplistic analysis continues to provide a holistic insight into the system’s behavior - particularly the

interplay of churn and maintenance operations and the system’s stability and performance for a chosen

maintenance strategy. Qualitative comparison of different maintenance schemes hold irrespective of the

peculiarities of churn. Particularly, even if churn varies over time, the general relative inferences of lower

maintenance cost or better resilience of one strategy over another are expected to hold, and hence such a

study provides an objective framework to compare maintenance schemes.

154 8. Efficient redundancy maintenance in storage systems

8.6 Analysis: Erasure code based redundancy, lazy maintenance

In order to quantify the performance and compare maintenance schemes, we are typically interested in:

“What is the operational cost of such a system vis-à-vis its resilience?”

To answer this, we need to better understand the system’s dynamics: “What is the ensemble state of

the system (e.g., the time evolution of the probability density function of actual redundancy of the stored

objects)?” and “Whether it converges to a steady state?”.

We’ll restrict our study to only finite rate erasure code based redundancy (M out-of N erasure code).

Analysis for other redundancy mechanisms - replication and rateless (Digital Fountain) erasure codes - as

well as more sophisticated strategies, e.g., with self-tuning probing periods and repair thresholds, remain as

part of our future work, but will rely on the same analysis methodology.

Implicit assumptions: The probing is done according to the maintenance strategy periodically, repre-

sented as discrete time t. As previously mentioned, the churn in the system is defined by two parameters: δ↓
and µ↑, representing the probability that an online peer goes off-line or an off-line peer rejoins the system

between time t and t+1. Fluctuations because of any peer going offline and returning within this period (or

vice-versa) is of course transparent to the maintenance operation. Furthermore, we assume that the main-

tenance operation of different objects is synchronized, and the whole system goes cyclically through two

distinct phases: churn and maintenance. Beside the simplification of the analysis, such an approach provides

a modular model discerning the separation of concerns in the analysis, such that we obtain two sets of equa-

tions: one dependent solely on the churn model, another dependent only on the maintenance strategy, hence

making them reusable in the overall analysis when only one aspect of the system (say maintenance strategy)

changes. Time for reconstruction of fragment is ignored in our model. This can induce a physical limitation

on the repair period which in turn will naturally lead to a minimum amount of churn the system will have to

tolerate irrespective of however aggressive a repair strategy one may wish to implement.

Notation and terminology: We say that an object is in state i at any given time if i out of the N erasure

encoded fragments of the object are available at that given time. We define Si(t) as the probability that i out

of the N possible fragments of any object are online at time t just after the maintenance operations. S̃i(t)

is the probability that i fragments of any object are online at time t just before the maintenance operations

(and after churn since time t − 1).
∑

i Si(t) = 1 and
∑

i S̃i(t) = 1 are the standard normalization for

probability distributions. We also define Ŝi(t) = (Si(t) + S̃i(t))/2 as the average of these two states. In

reality, since churn is continuous and repair of different objects can not be synchronized, nor is it necessary

and in fact undesirable since its better to use the network all the while to maximize its use, we expect that

when repairs are indeed not synchronized, the system will actually reside in this state instead of oscillating

between the two artificially introduced (before and after churn/maintenance) phases for analytical simplifi-

cation and modularity. We revert back to this issue while validating our analysis in Section 8.7 (particularly

Figures 8.1(c) and 8.1(d)).

8.6 Analysis: Erasure code based redundancy, lazy maintenance 155

Note that the whole system state is defined by these variables (Si,S̃i). It does not matter how the system

reaches a specific state till any time t, the system’s time evolution from this point can then be modeled as

a Markovian process. In particular, a recursive relationship between Si(t)s and S̃i(t)s can be defined as

follows.

8.6.1 Effect of churn

Irrespective of the maintenance mechanism in use, because of churn (our specific model parameterized by

δ↓ and µ↑) we obtain the following recursive relationship.

S̃i(t + 1) = Si(t)

−Si(t)

i∑

l=0

(
i

l

)
δl
↓(1− δ↓)i−l

N−i∑

g=0;g 6=l

(
N − i

g

)
µg
↑(1− µ↑)N−i−g

 (8.1)

+
i∑

j=0

j∑

l=0

Sj

(
j

l

)(
N − j

g

)
δl
↓(1− δ↓)j−lµg

↑(1− µ↑)N−j−g where g=i-j+l (8.2)

+
N∑

j=i+1

Min[N−j,i]∑

g=0

Sj

(
j

l

)(
N − j

g

)
δl
↓(1− δ↓)j−lµg

↑(1− µ↑)N−j−g where l=j-i+g

(8.3)

In the equation above, the term (8.1) represents the outflow from state i because of churn. This happens

for any object in state i when any l of its i online fragments go off-line, and any g 6= l of its N − i off-

line fragments come online. The term (8.2) is the inflow into state i from states j ≤ i, where the number of

fragments for the corresponding state j that go offline (l) and the number of fragments that come back online

(g) are mutually related such that g = i − j + l. The corresponding object ends up into state i from states

j ≤ i. When i < j, similar combinatorial arguments hold - term (8.3). In addition, i−g = j−l ≥ 0 ⇒ g ≤ i

and g ≤ N − j determine the possible values of the number of fragments coming online (g) from states

j > i which can still cause inflow into state i because of simultaneous losses. The corresponding loss l is

mutually related to g such that l = j − i + g.

8.6.2 Lazy Maintenance Strategy-A: Deterministic Procrastination

We have the following recurrence relationship for the deterministic procrastination based lazy maintenance

Strategy-A introduced earlier in Section 8.3. We consider Ta to be the threshold defined in this maintenance

strategy.

SN (t + 1) = S̃N (t + 1) +
Ta∑

j=M

S̃j(t + 1) (8.4)

156 8. Efficient redundancy maintenance in storage systems

For Ta ≤ i < N , Si(t + 1) = S̃i(t + 1), while for M ≤ i < Ta we have Si(t + 1) = 0 since if there are

more than M − 1 but less than Ta fragments available, all fragments will be repaired, and for i < M we

have Si(t + 1) = S̃i(t + 1) since normal repair operations can not reproduce and repair a data with fewer

than M of its fragments available in the system. Some out-of-band mechanism to reintroduce the fragments,

like by the owner of the object, is beyond the scope of this analysis. Some objects will always go to such

states with a positive, even if very small probability. Thus, there is a “leak” in the probability mass, such that

eventually all objects will be lost, unless we consider existence of such an out-of-band mechanism. Thus

we normalize the probability distribution in each time round, compensating for the small nonetheless finite

loss. This normalization process can also be viewed as if the probability distribution function we obtain

from the analysis corresponds to the probability distribution corresponding to only the available objects

in the system. Despite such a “trick”, our analytical model successfully captures the system behavior as

validated in subsequent simulations. Particularly refer to the discussions in Sections 8.7.3 and 8.7.5.

The cost of repair operations per object per repair period at a time t is then:

Cr
a(t) =

Ta∑

j=M

Ŝj(t)(N − j) (8.5)

We use Ŝi = (Si + S̃i)/2 for calculating the cost since in a realistic setting with non-synchronized repair

operations for different objects, the system will reside in such a mean state. Though, alternatively one may

well use S̃i in order to obtain a more pessimistic estimate of the costs.

Cost of probing per object per repair period is Cp
a(t) = N .

8.6.3 Lazy Maintenance Strategy-B: Sampling Random Subsets

For this case we have the following recurrence relationship. We assume Tb as the threshold defined in this

strategy.

SN (t + 1) = S̃N (t + 1) +
N−Tb∑

r=1

S̃N−r(t + 1)PN−r(x = r) +
Tb−1∑

j=M

S̃j(t + 1) (8.6)

For Tb ≤ i < N :

Si(t + 1) = S̃i(t + 1)− S̃i(t + 1)
N−i∑

r=1

Pi(x = r) +
i−Tb∑

r=1

S̃i−r(t + 1)Pi−r(x = r) (8.7)

where Pi(X = j) is the probability that Tb + j fragments are randomly (and sequentially) accessed in

order to find Tb available fragments (after which the probing is stopped in that time round), when i out of

the possible N fragments are actually available.

Pi(X = j) = (j+Tb−1
j)

i!
N !

(N − Tb)!
(i− Tb)!

(N − i)!
(N − i− j)!

(N − Tb − j)!
(N − Tb)!

(8.8)

8.6 Analysis: Erasure code based redundancy, lazy maintenance 157

This expression comes about because, of the first Tb + j−1 fragments probed exactly Tb−1 must be online

(the Tb + jth fragment probed is also online, which is why the probing terminates). They might have been

probed in any interleaved sequence along with the j offline fragments probed. There are

(
i

Tb

)
possible

ways of choosing the Tb live fragments out of a total of

(
N

Tb

)
ways of choosing Tb fragments. Similarly,

the j off-line fragments are chosen from the N − i off-line fragments, while they could actually have been

chosen from any of the other N − Tb fragments.

For M ≤ i < Tb we have Si(t + 1) = 0 since if there are more than M − 1 but less than Tb fragments

available, all fragments will be repaired and for i < M we have Si(t + 1) = S̃i(t + 1) since normal repair

operations can not reproduce and repair a data with fewer than M of its fragments available in the system.

The cost of repair operations per object per repair period at a time t is then:

Cr
b (t) =

Tb∑

j=M

Ŝj(t)(N − j) +
N−1∑

j=Tb+1

Ŝj(t)
N−j∑

r=1

rPj(x = r) (8.9)

Cost of probing per object per repair period can be given as2:

Cp
b (t) = N

Tb∑

i=0

Ŝi(t) +
N∑

i=Tb+1

N−i∑

j=0

(Tb + j)Ŝi(t)Pi(x = j) (8.10)

8.6.4 Correlated failures

Apart from being resilient to regular and continuous churn, a persistent storage system should also be able

to deal with rarer nonetheless inevitable correlated/catastrophic failures.

A way to model correlated failures is to assume that a fraction fcorr of the peer population are affected

by the correlated failure. However, since the different fragments of the same object are stored at randomly

chosen peers, each fragment is lost because of the correlated failure with a probability fcorr independently

of each other. This model for correlated failure has been used in studying Glacier [80].

In such an event, an object which had i live fragments available before the correlated failure affecting

fcorr fraction of peers will survive the correlated failure with a probability
∑i−M

j=0

(
i

j

)
f j

corr(1−fcorr)i−j .

Thus the overall probability for a single object to survive a correlated failure while using a specific lazy

maintenance scheme under normal churn is given as:

D1 =
N∑

i=M

Ŝi(t)
i−M∑

j=0

(
i

j

)
f j

corr(1− fcorr)i−j (8.11)

2 Note that the actual cost of probing is in any case negligible in comparison to the cost of fragment replacement is thus not
critical. Also if more than Tb fragments are available, the cost of probing is Tb + Cr

b (t).

158 8. Efficient redundancy maintenance in storage systems

Finally, an end-user of such a storage system storing x objects will be concerned about not only the

persistence of a single object with high probability, but also that none of the x objects are lost Dx = (D1)x

assuming that fragments for all the x objects are stored at different peers. Without this assumption, we’d

have a higher probability of not losing any of the x objects, however, when objects will be lost, many objects

will be lost simultaneously.

8.7 Results

We validate our model with exhaustive simulations and briefly report some of the results here. We compare

the two lazy maintenance schemes and observe that the sampling of random subsets based lazy maintenance

strategy (Strategy-B) proposed by us has better performance than the deterministic procrastination based

existing lazy maintenance strategy (Strategy-A). What is important in the simulations is to respect the in-

dependence of object fragments availability. This implies a large enough peer population, but that apart the

peer population itself does not play any role. For the statistical properties to hold, we need at least a moder-

ate number of objects to do the averaging across these objects in order to determine an observed distribution

function of the states of the objects. Unless otherwise specified, our default experimental setting for the

results presented subsequently was as follows:

We considered 200 distinct stored objects. The simulations were run for 200 time units (maintenance

cycles) though the steady state is approached within a much shorter time span. Moreover the observed

distribution is bound to fluctuate a bit from one time round to another, thus we average the simulation results

over a time window of 5 time units. Even for such a small time-window for averaging led to a fairly stable

probability distribution over time, demonstrating the low deviation of the system from the steady-state. We

use a 8 out-of 32 (rate 0.25) erasure code. We used Ta = 16 in Strategy-A and Tb = 12 in Strategy-B. These

parameters are chosen such that both the parameters have comparable maintenance cost over time. The

experiments were conducted for both settings: synchronized as well as the more realistic non-synchronized

repair cycles (but the same periodicity) for different objects. For churn, we typically used δ↓ = 0.2 and

µ↑ = 0.1. The results obtained from the simulations matched well with the prediction from our analysis.

8.7.1 Validation of the analytical model

Based both on our analysis (equations solved numerically) and simulations, we observed that the proba-

bility distribution functions Si(t) and S̃i(t) converge over time (and in fact fast) to the steady-state values,

demonstrating that all other things being same, particularly the parameters determining the churn, the system

indeed converges to a steady operational state3. We show some results from our analysis and experiments

for deterministic procrastination Strategy-A (Figures 8.1(a),8.1(c) and 8.1(f)) and sampling random subsets

3 Thus we’ll use only the steady-state distributions Si and eSi in the following, without anymore referring to the time t.

8.7 Results 159

5 10 15 20 25 30
i

0.05

0.1

0.15

0.2

0.25

0.3

Si Prob. density function

After churn HSimL

After churn HAnaL

After repair HSimL

After repair HAnaL

(a) Simulation with synchronization of repairs
(Strategy-A)

5 10 15 20 25 30
i

0.05

0.1

0.15

0.2

Si Prob. density function

After churn HSimL

After churn HAnaL

After repair HSimL

After repair HAnaL

(b) Simulation with synchronization of repairs
(Strategy-B)

5 10 15 20 25 30
i

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Si Prob. density function

No Sync. HSimL

Avg. HAnaL

After churn HAnaL

After repair HAnaL

(c) Simulation with no synchronization of repairs
(Strategy-A).

5 10 15 20 25 30
i

0.05

0.1

0.15

0.2

Si Prob. density function

No Sync. HSimL

Avg. HAnaL

After churn HAnaL

After repair HAnaL

(d) Simulation with no synchronization of repairs
(Strategy-B).

5 10 15 20 25 30
i

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Si Prob. density function

delta=.4; mu=.2

delta=.3; mu=.15

delta=.2; mu=.1

delta=.1; mu=.05

(e) eSi for different δ↓ and µ↑ for same pon = 1/3

(Strategy-B)

0.05 0.1 0.15 0.2 0.25 0.3
delta

1

2

3

4

5

6

fragments replaced

Strategy-B Hmu=0.1L

Strategy-A Hmu=0.1L

(f) Maintenance overhead (fragments replaced) per
maintenance cycle

Fig. 8.1. Simulation based validation of the analytical model (a,b,c,d) and some analytical results (e,f)

160 8. Efficient redundancy maintenance in storage systems

Strategy-B (Figures 8.1(b), 8.1(d), 8.1(e) and 8.1(f)). The x-axis in the plots corresponds to the states i -

the number of available fragments for any object out of the possible N . In Figures 8.1(a) to 8.1(e) the y-

axis shows the probability mass associated with the corresponding states, just after repair operations are

performed Si, and just before maintenance operations are performed S̃i i.e., after the churn phase. Figure

8.1(e) shows only S̃i for various churn levels. A first setting of our simulation adhered to the analysis model

where the repair operations for all objects were synchronized. This led to the two distributions for each state

- one after the repair phase and one just before it (Figures 8.1(a) and 8.1(b)), and we see that the analytical

prediction of the system state concurs with the experimental results. In practice, such synchronization will

not be realistic, and thus the repair operations (replacement of unavailable object fragments) as well as churn

(loss or regain of object fragments) will be continuous and randomly interleaved. We simulated the system

where there’s no synchronization of the repair operations for different objects, and compared it with the

result obtained by averaging the two distributions obtained from the analysis. As can be seen from Figures

8.1(c) and 8.1(d), the simulation based result from the model without synchronization of repair operations

matched very well with the average obtained from the analytical prediction (averaged).

These results validate that despite the simplifications, particularly with respect to the separation of con-

cern of the effects of churn and repairs, we have an appropriate analytical model capturing the system

dynamics.

8.7.2 Static resilience versus steady state analysis

Previously we had noted that pon = µ↑
µ↑+δ↓

is the fraction of online peers, and hence corresponds to the

average peer availability in the system. In Figure 8.1(e) we show the S̃i analytically obtained for various

µ↑ and δ↓ but the same pon = 1/3 (using maintenance Strategy-B). The more the probability mass shifts

leftwards (lower values of i), the more vulnerable the system is. From the figure its clear that even if the

peers’ average availability is the same, with higher churn (characterized by higher values of µ↑ and δ↓),

the system is less robust. Such inferences on the system’s dynamic resilience is not captured by the static

resilience study [24], since it fails to distinguish two systems with same average behavior but different

dynamics. The system’s actual state in turn has pronounced implications, and the dynamic equilibrium

analysis provides us a better glimpse of the system’s inner working and hence its actual resilience.

8.7.3 Overheads of lazy maintenance mechanisms

Sampling of random subsets always needs less (or at most same) probes per object as the deterministic

procrastination, which always probes for all fragments. However the probing cost is not a dominant cost in

the system and hence we do not show it here. The replacement of fragments is however expensive.

In Figure 8.1(f) we show the average number of fragments that are replaced for a churn represented by

the parameters µ↑ = 0.1 and varying δ↓ for the two maintenance schemes. The actual effort in terms of

8.7 Results 161

consumed bandwidth and CPU usage will of course depend on the size of the stored objects as well as the

particulars of the implementation. In the plot we show for each maintenance strategies only the range of δ↓
for which

∑M−1
i=0 S̃i ≤ 10−4. This condition guarantees that the availability of individual objects under the

given churn and chosen maintenance strategy stays higher than 0.9999. The choice of the number 10−4 is

arbitrary, and something else could have been chosen as well. However this number needs to be sufficiently

small, both in order to ensure good availability guarantee of stored objects, as well as to ensure that the

normalization argument used in Section 8.6 is rational. We’ll revert back to this issue also in Section 8.7.5

while explaining results corresponding to Figure 8.3.

From Figure 8.1(f) we can infer two things. First of all, while the two maintenance strategies have very

similar average cost of repairing fragments per maintenance round, deterministic procrastination has some-

what lower overheads only at very low churn rate (δ↓) while mostly sampling of random subsets has lower

average fragment replacement overhead. In fact the maintenance scheme parameters Ta and Tb for these

results were chosen such that the two maintenance schemes have comparable expected repair overheads, so

that the resilience achieved can then be compared.

This is because once the churn is high enough, repairs are triggered frequently enough by the determin-

istic procrastination based scheme, it is just that it does the repairs for each object in impulses - repairing

between N − M to N − Ta fragments for the same object in a single maintenance round, because it first

lets many fragments to become unavailable. In contrast, the sampling of random subsets based mechanism

naturally has to sample and repair more fragments for high churn and fewer for low churn (sample size is

determined by the probability distribution as determined in Equation 8.8). Since the repair process for each

object is continuous, that is, some of the unavailable fragments are replaced in each maintenance round, the

same effort is more evenly distributed over time per object.

A consequence of such a continuous but lower effort per object per round is that almost all objects always

retain much better redundancy, that is, the system is “healthier” and has a better resilience against churn.

Thus for same µ↑ = 0.1, Strategy-A guarantees a 0.9999 availability for each object only for δ↓ ≤ 0.2 while

Strategy-B tolerates churn till δ↓ ≤ 0.33.

Apart from higher resilience against normal churn, this also has implications on the robustness of the

system against correlated faults, as is discussed next.

8.7.4 Surviving correlated failures while using lazy repairs

Glacier [80] uses a proactive repair strategy and high redundancy to deal with normal churn. Proactive strate-

gies, particularly for large objects (which is exactly where use of erasure codes make sense) however have

prohibitive maintenance cost, which motivated the use of a lazy maintenance scheme in TotalRecall [25].

However, the deterministic procrastination (Strategy-A) used in TotalRecall leaves it very vulnerable to even

a small degree of correlated failures, an aspect not accounted for in its design (nor evaluated). In contrast, the

162 8. Efficient redundancy maintenance in storage systems

0.2 0.4 0.6 0.8
fcorr

0.2

0.4

0.6

0.8

1

Durability Correlated failure H1 objectL

Strategy-B

Strategy-A

(a) Durability of any single object (D1)

0.1 0.2 0.3 0.4 0.5
fcorr

0.2

0.4

0.6

0.8

1

Durability Correlated failure H100 objectsL

Strategy-B

Strategy-A

(b) Durability of all “100” objects (D100)

Fig. 8.2. Durability under correlated failure fcorr in addition to regular churn (µ↑ = 0.1, δ↓ = 0.2)

8.7 Results 163

randomized sampling based maintenance Strategy-B we introduced in this chapter, while having the benefits

of being lazy also provides much better resilience against correlated failures. A lazy mechanism can never

compete with an eager one in terms of resilience, but still, the randomized lazy maintenance mechanism

provides a much a better compromise between maintenance cost and resilience, unlike the deterministic

procrastination based scheme which has marginal tolerance against correlated failures. In Figure 8.2 we

show the durability of any individual object, as well as the durability of a collection of 100 objects (that is,

the probability that none of these 100 objects are lost) for the two lazy maintenance schemes.

The stark difference in resilience of the two lazy maintenance schemes despite similar repair costs (un-

der regular churn) is readily explained from the the probability distributions Ŝi corresponding to the two

maintenance strategies as observed in Figures 8.1(c) and 8.1(d). Deterministic procrastination allows a large

number of objects to concentrate close to the state Ta, while randomized sampling keeps the system far away

from the edge even while spending comparable maintenance effort even for a smaller Tb (than Ta) during

normal churn. This essentially means that using the randomized sampling based scheme, the system has a

much better “health” and hence has greater resilience against regular churn as well as occasional correlated

failures.

8.7.5 Convergence, uniqueness and stability (of the system) and validity of the model

Finally, we show some simulation results to look into the fraction of data that survive normal churn as

well as investigate the settings for which our model is appropriate, and when the simplifying assumptions

that we made no more hold. The simulations are for µ↑ = 0.1 and varying δ↓. The x-axis in these plots

is δ↓, and the y-axis is the durability of the objects - fraction of objects which stay available for the whole

simulation period. For each setting, the experiments were conducted 5 times, and the worst performance

was chosen. Moreover, even as durability and availability are strictly different, we considered the worst

availability during the whole simulation as the indicator for the durability under the premise that if a specific

object is once unavailable, it may never be recovered using the maintenance schemes themselves (even

though some re-joining nodes may make the object available again).

We observe in Figure 8.3(a) that Strategy-B is more robust (tolerates larger δ↓) than Strategy-A. We also

run the experiments for various period, measured in terms of maintenance cycles, to ensure that the system’s

behavior is correctly captured. In Figure 8.3(b) we show results corresponding to the use of Strategy-B for

various simulation durations.

From these results shown in Figure 8.3 we also observe that the system exhibits a threshold (phase-

transition) behavior at a certain churn value. Beyond this threshold which depends on the maintenance

scheme, the system is unstable, and given the chosen maintenance scheme and the churn conditions, stored

objects would be lost. The analyses presented earlier in this chapter cease to hold beyond this threshold

simply because the transition probabilities and the normalization trick (described in Section 8.6.2) does not

164 8. Efficient redundancy maintenance in storage systems

0.1 0.2 0.3 0.4 0.5 0.6
delta

0.2

0.4

0.6

0.8

1

Durability Fraction of surviving data Hmu=0.1L

Strategy-B

Strategy-A

500 maintenance cycles

(a) Comparison of the two maintenance strategies

0.1 0.2 0.3 0.4 0.5 0.6
delta

0.2

0.4

0.6

0.8

1

DurabilityFraction of surviving data HStrategy-B, mu=0.1L

Sim time: 5000

Sim time: 500

Sim time: 50

Time: Maintenance cycles

(b) Simulation run for 50, 500 and 5000 maintenance cycles

Fig. 8.3. Threshold (phase-transition) behavior observed by simulations.

8.8 Ongoing and future work 165

hold good anymore in practice. Thus to say, we speculate that the same threshold determines the breaking

point of the actual system as well as of the analytical model. However, from the perspective of most applica-

tions, the region of interest is indeed before the threshold (so that no object is lost) and the analysis provides

the exact behavior of the system in this desirable zone of operation. Moreover its easy to estimate the cor-

rectness of the analysis based on the obtained result as already also explained in Section 8.7.3. In fact the

condition “
∑M−1

i=0 S̃i ≤ 0.0001” used there to make sure that the availability of an individual object is more

than 0.9999 is a rather conservative estimate (so far as the validity of the analytical model is concerned),

as the simulations show that the threshold is close to but somewhat larger than the churn levels considered

there. The fact that the threshold observed in the simulations are indeed close also validate our approach of

using
∑M−1

i=0 S̃i as a metric to judge the breaking point of the system, hence making the analytical model

itself useful (without having to simulate always to validate results and verify whether the system is stable or

not). Both out of academic interest as well as a more precise estimate, we look forward to extend the present

theory in order to hopefully analytically derive the threshold point. Determining analytically the precise

threshold may require ideas and tools from percolation theory, but admittedly, that is just a speculation at

this juncture.

Simulations also showed that starting from various arbitrary initial conditions (where data objects were

still available), and given a churn and maintenance scheme, the system always converged to the correspond-

ing unique dynamic equilibrium state. This also means if churn changes over time, the system will try to

move from the dynamic equilibrium state to a new one corresponding to the new churn rate.

8.8 Ongoing and future work

As pointed out in the previous section, it’ll be interesting to be able to predict precisely and analytically

the breaking point of the system. We speculate the need of percolation theory in order to derive the critical

churn corresponding to a maintenance strategy. However, as discussed in Section 8.7.5 the current theory

already provides (heuristically using
∑M−1

i=0 S̃i) an approximate estimate, which is already a good indicator

for systems design.

We hope that as a direct implication of this work, systems like TotalRecall can benefit by using the

randomized sampling based maintenance scheme.

In the meanwhile, we are developing a separate storage system (tentatively called Digit4), where we use

our randomized subset sampling based lazy maintenance scheme for large objects. That apart, Digit4 uses

Digital Fountain (rateless) erasure codes. This has several practical benefits. First of all, we do not need to

keep track of which specific fragments are lost and replace precisely the same one, but only need to replace

same number of fragments. Digital Fountain codes ensure that these new blocks introduced will be unique

with respect to the previously inserted fragments. This also means that even if we do unnecessary repairs

and fragments do come back, we’ll only have increased redundancy. If finite rate erasure codes are used

166 8. Efficient redundancy maintenance in storage systems

there will be duplicates of the same fragment (thus not adding any extra diversity), which in fact makes

management and garbage collection tasks more complicated. With the use of Digital Fountain codes as our

chosen erasure code and using the randomized sampling based maintenance scheme, we thus aim to realize

a storage system with good resilience and maintenance cost as well as lower implementation complexity.

8.9 Conclusion

We proposed a randomized lazy repair strategy, which has much better performance in terms of resilience

against churn and correlated failures for comparable (and mostly lower) repair costs in comparison to the

existing lazy (deterministic procrastination) strategy.

It is relatively simple to determine the static resilience of a system [24], and was an important first

step while choosing design parameters for a system. Static resilience however does not properly capture

the dynamics of the system, nor give a clear picture of its resilience and performance under continuous

churn and repair operations. In fact, as we observed, for the same average system state, the particulars of

the dynamics can still greatly influence the system properties. Since static resilience completely ignores the

dynamics, it is not useful for comparing different maintenance schemes.

Only studying the time evolution of the system, particularly measuring the probability mass/distribution

function of the possible states gives a precise quantification of the system properties. We use Markov time-

evolution analysis based on which we observed that the system arrives at a steady state for a given churn. We

employed this analysis methodology to do a case study by comparing the two lazy maintenance schemes and

evaluate precisely the performance and costs. We also validated these results with simulation experiments.

While in real life churn itself varies over time, so that the system will try to move from one corresponding

steady-state to another, the steady-state analysis for a given churn still provides an objective framework to

understand the interplay of churn and maintenance as well as qualitatively compare maintenance schemes.

The quantitative comparison also holds over periods when the level of churn is relatively static.

In particular, from system’s perspective, the immediate implication of our work is that the randomized

lazy maintenance scheme we proposed here has significant performance benefits and can be easily integrated

to existing systems given its simplicity.

9. A push/pull gossiping primitive for unstructured sub-networks

“It is perfectly monstrous the way people go about nowadays saying things against one, behind one’s back,

that are absolutely and entirely true.” — Oscar Wilde

9.1 Introduction

In most peer-to-peer (P2P) systems data is assumed to be rather static and updates occur very infrequently.

For application domains beyond mere sharing of static files, for example, sharing files which can be changed

over time, trust management [9] or managing ID-to-IP mappings (Chapter 6) or for managing overlay (e.g.,

P-Grid’s structural) replicas storing pointers to actual stored objects at the directory service realized using an

overlay, such assumptions do not hold and updates in fact may occur frequently. Other typical applications

where new data items are added, deleted, or updated frequently by multiple users are bulletin-board systems,

shared calendars or address books, e-commerce catalogues, and project management information.

To improve fault-tolerance and response time data is heavily replicated in most P2P systems and the

system must take into account that peers are autonomous and may be offline frequently and that no global

knowledge on the system exists.

Thus, the assumption is that the replicas of a specific (set of) object(s) form an unstructured replica sub-

network. The structural replicas of P-Grid is one special case of such replica subnetwork. But the gossiping

primitive we study can be used as the mechanism to communicate updates in any arbitrary group of replicas

of a wide range of size and having diverse degree of membership dynamics. To meet the challenges imposed

by a high replication factor, lack of global knowledge, and peers being online only with a very low prob-

ability, we exploit epidemic algorithms under the assumption that probabilistic guarantees instead of strict

consistency is sufficient and such an approach can indeed be used in a decentralized and self-organizing

environment.

Our proposed update algorithm is based on rumor spreading. We modify existing message flooding

algorithms to achieve lower communication overheads but provide similar probabilistic guarantees and low

latency. Since we assume that peers are mostly offline, we propose a hybrid push/pull algorithm so that

offline peers can inquire for updates that they had missed when they come online again. In the push phase the

algorithm uses a new mechanism, apart from traditional feedback and probabilistic methods to propagate a

rumor, to avoid many duplicate messages by propagating a partial list of peers to which a particular message

168 9. A push/pull gossiping primitive for unstructured sub-networks

has already been sent. It also employs this list in conjunction with the number of duplicate messages received

at a particular node as a local metric to estimate the extent to which a message has spread globally, and

thereby provides an opportunity to tune the probabilistic parameters of the generic algorithm locally.

We assume logical connectivity of the replica subnetwork. The algorithm is disentangled from the un-

derlying network/physical connectivity. Consequently, the propagation of messages in the physical network

and the implementation of applications is an orthogonal issue.Though this work was initially motivated

by the need to maintain structural replicas in P-Grid, the algorithm is generic and can be applied for any

group of replicas which are mutually connected according to a random graph. Our modifications to existing

message flooding algorithms and other results may as well be applied to other search/update algorithms or

broadcast/multicast schemes which employ flooding.

Another significant contribution of this chapter is an analytical model of the gossiping algorithm based

on a Markov model for the spread of a gossip. Since our algorithm is generic as argued above and subsumes

several previous flooding and gossip schemes (for which only experiment or simulation studies existed), the

analytical model is valid for these variants and so are the results of our analysis.

9.2 Motivation and problem statement

We look into the communication mechanism required to propagate updates among a relatively large popu-

lation of individually unreliable peers.

Various global storage systems have been proposed, for example, Freenet [39], OceanStore [148], Pastry

[154], and Farsite [29]. Their main goal is to provide distributed storage that scales to very large numbers

of users and data sets. Additionally, they may exhibit certain specializations that stem from their intended

application domains. For example, Freenet wants to support free speech and anonymity on the Internet,

whereas OceanStore focuses on distributed archival storage, which requires special system support.

From the viewpoint of data management these systems should address two critical areas:

1. Efficient, scalable data access which is provided more or less by all approaches, and

2. Updates to the data stored, especially with respect to replication and low online probabilities.

Many of the access schemes are based on some mechanism that associates peers logically with a par-

tition of the search space by means of a distributed, scalable index structure (P-Grid, OceanStore) and use

replication to improve responsiveness and fault-tolerance.

Some of the systems support updates. For example, OceanStore, uses classical schemes for updating

replicas and assumes high availability of servers, whereas in the systems we envision the peers are fairly

unreliable. Our assumptions are:

– Peers have low online probabilities and quorums cannot be assumed.

– Eventual consistency is sufficient.

9.3 System model 169

– Since we do not target database systems update conflicts are rare and their resolution is not necessary in

general.

– Probabilistic success guarantees for search are sufficient.

– Consecutive updates are distributed sparsely.

– The required communication overhead is the critical measure for the performance of the approach.

– The typical number of replicas may be substantially higher than assumed normally for distributed

databases but substantially lower than the total network size.

– The connectivity among replicas is high and the connectivity graph is random.

The replicas can comprise of structural replicas of the overlay network, which is relatively small in num-

ber. The replicas can also be the peers which store a specific object. Depending on popularity or availability

requirements for the object, the replica subnetwork size can vary from tens to thousands. This is typically

determined at the application layer or end-users.

Statistics from some of the early music file sharing systems show that on average 200 to 250 replicas of

same files are available, not counting the replicas that are not shared [167] (but may still be interested in the

updates). This requires devising a scheme which scales at least beyond the hundreds to thousands.

If the replica subnetwork is small, each replica may know all the other replicas. But in order to have a

communication primitive that can be used in diverse settings we assume that each replica knows only a frac-

tion of the complete set of replicas uniformly randomly, so that the connectivity among them is a random

graph.1 Even when peers potentially know a large fraction of the complete replica population the use of

rumor spreading bears a number of advantages as compared to immediately contacting the complete neigh-

borhoods for updates: distribution of update propagation load, reduced delay due to parallel propagation,

improved robustness against changes in the peer network and requirement of only partial knowledge of the

neighborhood.

9.3 System model

As observed in [127] we assume a very low rate of conflicts. Indeed, many applications, for example, music

file sharing or news dissemination, have such a profile where, if data is altered, it may be treated as distinct

and coexists as different versions. Similarly, deletions may use conventional tombstones and death certifi-

cates. These issues are relatively orthogonal to the communication mechanism used to convey the updates
1 If not enough replicas are known to a particular node, they can be efficiently discovered. For overlay replicas a peer can query

the overlay (P-Grid) starting at a random peer for any key it itself stores, and thus discover a replica peer. The query may get
routed to the peer itself with a small but finite probability depending on the replication factor, but this scenario can be easily
dealt with, either preemptively by minor modification in the routing message so that the query is not routed to itself, or based
on post-processing, and repeating the query. The actual implementation in P-Grid uses the later. For replicas of stored object, if
a directory service with pointers to all the replicas of an object is available, then the set of pointers provides the set of replicas.
Additionally replicas have the opportunity to get mutually known through the update mechanism discussed in this chapter.

170 9. A push/pull gossiping primitive for unstructured sub-networks

among the replicas. Further, in a decentralized system, such as P-Grid the “data” may indeed be meta-

information about the system (peers), e.g., the ID-to-IP mapping of peers (as studied in Chapter 6). Most

of these systems operate with a relatively high degree of imperfect knowledge, which is why probabilistic

guarantee of information dissemination in such application scenarios is sufficient.

We assume a decentralized setting, i.e., all peers are equal and no specialized infrastructure, e.g., hier-

archy, exists. No peer has a global view of the system but base their behavior on local knowledge, i.e., its

routing tables, replica list, etc. The peers can go offline at any time according to a random process that mod-

els the behavior when peers are online. Physical connectivity and topology are ignored which can provide

opportunities for optimization which we admittedly overlook in the gossiping algorithm we propose for ana-

lytical simplicity. In an actual implementation exploiting some of such information heuristically is relatively

straightforward, e.g., favoring replicas from the same ISP when making a random choice, or using the same

subset of replicas with which the peer had recently successfully communicated. We also assume that if two

peers are online a communication channel may be established between them. This assumption does not have

any critical impact, since if two peers may not communicate with each other, they will simply perceive each

other to be offline. It is primarily the erratic behavior of online availability and the lack of global knowl-

edge, as well as the absence of any centralization, which prompts us to call this environment unreliable.

Potentially limited resources, particularly bandwidth (and power in wireless/mobile environments), and the

varying degree for tolerance of latency makes the environment even more challenging.

Our update propagation scheme has a push phase and a pull phase which are logically consecutive but

may overlap in time. A new update is pushed by the initiator to a subset of replica peers it knows, which

in turn propagate it to replica peers they know similar to a constrained flooding scheme. In our analysis

of the push phase in the next section we assume a synchronous model which is a standard assumption for

analyzing epidemic algorithms [96].

Peers that have been disconnected (offline, disruption of communication) and get connected again, peers

that do not receive updates for a long time (locally determined), or peers that receive a pull request, but

are not sure to have the latest update, enter the pull phase to synchronize and reconcile. The pull scheme

is similar to anti-entropy [54], in the sense that the pulling party tries to synchronize itself with the pulled

party. Since the pulled party itself may be out of sync, it is preferable to contact multiple peers and choose

the most up to date peer(s) among them.

Push phase of the update algorithm:. When a peer p receives an update request (U, V, Rf , t) from a peer f ,

where U is the updated data item, V its version,2 t is a counter which counts the number of push rounds that

2 This actually is a vector of version identifiers of the form (V ersionId1, V ersionId2, . . . , V ersionIdn). Version identifiers
are universally unique identifiers computed locally by applying a cryptographically secure hash function to the concatenated
values of the current date and time, the current IP address and a large random number. Also, depending on the type of
information being updated, the update message may be somewhat different, e.g., for updating ID-to-IP mappings we used
(Ep, addrp, TSp, Dp(Ep, addrp, TSp)) in Chapter 6.

9.4 Analysis 171

have already been executed for the update, it also receives a partial (flooding) list Rf , to which the same

update has been sent (not necessarily received by all peers in Rf). Then p chooses a random set Rp of its

known replica peers and forwards the request (U, V, Rf ∪ Rp, t + 1) with a probability PF (t) to the set

Rp\Rf . PF (t) can be any function, and is potentially a self-tuning parameter to be determined locally by

p. Another benefit of propagating Rf is that p possibly discovers replicas unknown to her.

Algorithm 7 Push phase at replica p upon receiving Push(U, V, Rf , t)
1: if ProcessedUpdate(U, V, Rf , t) == FALSE then
2: Select a random subset Rp of replicas with |Rp| = R ∗ fr;
3: With probability PF (t): Push(U, V, RfunionRp, t + 1) to Rp Rf ;{PF(t): deterministic or self-tuning function}
4: ProcessedUpdate(U, V, Rf , t) = TRUE;
5: end if

Since any replica pushes the update at most once (to multiple replicas3), the local termination decision

is trivial. The number of push rounds gives the latency of propagating the update to all online replicas.

Pull phase of the update algorithm:. When a peer gets connected again because it was offline or suffered

from a communication disruption, received no update for some time, or receives a pull request but is not

sure whether it is in sync, then it enters the pull phase and inquires for missed updates, e.g., based on version

vectors.

Note that peers use logical identifiers to communicate with each other. Over sessions, peers may change

their physical address. To be able to communicate with such peers it is essential to locate their latest physical

address. While the push phase is relatively insensitive to communication failure, the pull phase is more

sensitive. In any case, over a period of time, such information need to be refreshed at peers. We assume

in this work that peers refresh the physical address of other replica peers in the gossip network using an

extrinsic background process, which may be realized by querying the self-referential directory introduced

earlier in Chapter 6.

9.4 Analysis

9.4.1 Setup and notation for the analysis

The goal of our update algorithm is not to achieve complete consistency but rather to know what is the

probability of a correct answer given certain model parameters for the gossiping scheme. We assume that

every peer knows a subset of all replicas that replicate the same data. We consider the replica network to be a

3 Such a one time push model also makes sense for geographically constrained systems like sensor networks etc. where the
neighbors stay the same any way, but the connectivity is not random graph in such network, so the results are not directly
applicable.

172 9. A push/pull gossiping primitive for unstructured sub-networks

small P2P network itself but with no specific internal structuring. It handles updates/requests for a partition

of the key-space.

In the analysis we start from a completely consistent state, analyse a single update request, and evaluate

the number of messages and time (rounds of message exchange) required to reach a consistent state again.

Since most of the replicas are offline most of the time, our notion of consistent state is more related to the

online population Rτ
on at a given time τ rather than the whole set of replicas <. Though our analysis is

generic, we evaluate the algorithm for realistic scenarios: availability of the peers to be a random process

with expected value of being online between 10% to 30%. The replication factor is assumed to be between

100 to 1000 and though scalability might not be a major issue for such moderately small numbers, larger

replication factors too have been investigated. Table 9.1 shows the notation used in our analysis.

Notation Explanation
R Cardinality of the set of replicas <
t Number of the push round for a particular update
U The update message or its size (notation depends on the context)
ML(t) Size of messages in round t

L(t) Normalised size of the partial list of replicas which have the update in round t. This is equal to the number of
entries in the list divided by R.

Ron(t) Number of replicas online in round t

σ Probability that a peer stays online in the next push round
fr Fraction of replicas to which peers initially decide to forward the update message
newreplicas(t) Number of new replicas receiving update in round t

msg(t) Number of messages in round t, including messages to offline replicas
f4aware(t) Increment in fraction of online replicas which are aware of the update after round t

faware(t) Total fraction of online replicas which are aware of the update at the beginning of round t.
PF (t) Probability that a peer pushes an update in round t if it received it in round t− 1.
B Size of data required to describe one replica (e.g., 10 bytes).

Table 9.1. Notation used in the analysis

When an update U is initiated for a set < of replicas with cardinality R, in general the online population

in push round t will be Ron(t) = Ron(t−1)∗σ+[R−Ron(t−1)]∗ε2 where σ = 1−ε1 and Ron(0) = Rτ
on if

the update starts at time τ . ε1 is the probability of an online peer going offline in one push round and ε2 is the

probability of an offline peer coming online in a push round. These values are typically small and may vary

in different push rounds. For the sake of simplification, we will initially ignore the effect of replicas coming

online, and will further assume a constant σ, hence we have Ron(t) = Ron(t−1)∗σ. Neglecting the effect of

positive ε2 is justified because peers coming online need to execute pull any way, and thus do not contribute

to the push phase. Even if some peers come online during a push phase and receive update through push,

they will not contribute to the push phase and thus not make any difference to the whole system’s behavior

9.4 Analysis 173

or the analysis of the same. The assumption of a very small ε1 is justified because a single push round will

take a very small time (network delay for a single message), and unless there is any kind of catastrophic

failure, a very small number of peers will suddenly decide to go offline. Having said that, we still evaluate

the performance of the push phase for rather wide range of values of σ to study the robustness of the gossip

algorithm. Further, we choose a discrete time model for the rumor spreading algorithm, just like most other

rumor algorithms. This in itself does not mean that we need synchronous rounds. It is indeed possible that

because of variation in network latency, messages of different push rounds live in the network at the same

instant of time. Instead of treating t strictly as time, it needs to be interpreted as the round number, and

the replicas which get infected by that round are effectively replicas that eventually gets updates from this

round. Thus t does not in itself define an ordering of receiving updates among all peers in the system.

Typically the parameters, such as fr, σ, R, Ron(0), may vary over time. But for the purpose of analysis

we may assume that they remain constant throughout a single update push phase. In Section 9.6 we will give

some indication of how the parameters can adapt over time to the varying network conditions.

The choice of two parameters PF (probability of forwarding an update) and fr (fraction of total replicas

to which peers initially decide to forward an update) rather than defining only one parameter which couples

both of them together is because we wanted to study the effects of both these factors in limited flooding

algorithms. For example, a protocol like Gnutella [40] uses flooding with a fixed fanout, but uses no notion

of PF . Actually its use of time-to-live (TTL) for messages effectively means that PF is 1 for TTL rounds,

and 0 after that. Some other systems, for example one using gossip for ad-hoc routing [79], on the other

hand uses probability of forwarding rumors as a design parameter. In order for our analysis to be general

enough, such that all these variations of limited flooding can be reduced to special cases of our model, we

included the notion of both fanout and probability of forwarding.

9.4.2 Analysis of the push phase

The expected number of replica peers which receive an update in a given round depends on the number of

newly infected replicas in the previous round, as does the total coverage. Thus the spread of the gossip in

the push round can be modeled to have the Markov property. The absorbing state corresponds to peers who

have already received and gossiped the rumor, and the absorbing state is when all (online) peers have been

reached by the gossip.

Round 0.

The replica initiating the update propagation sends U to fr fraction of replicas. Thus we obtain a total

number of messages, msg(0) = R∗fr (including messages to offline replicas). The number of new replicas

which receive the update is newreplicas(0) = Ron(0)fr. The number of online replicas without update is

Ron(0)(1− fr). The message length in this round is ML(0) = U + R ∗B ∗ fr

174 9. A push/pull gossiping primitive for unstructured sub-networks

Round 1.

Assuming message flooding, where every replica which received an update message decides with probability

PF (1) to forward it to R ∗ fr replicas, we have:

msg(1) = Ron(0)σPF (1)Rf2
r (1− fr) (9.1)

The expression may be explained as follows. Ron(0)fr of the online population received the update

in the previous round, a fraction σ of these replicas continue to stay online in the present round, a PF (1)

fraction of these replicas decide to forward the message. Each of the Ron(0)frσPF (1) peers decide to push

the update, forwarding it to R(fr − f2
r) replicas, since it knows that the update has already been sent to

f2
r of the fr fraction of randomly chosen replicas. Actually, in case a replica receives update information

from more than one replica, it can use the list of ‘updated replicas’ in each of those messages, and hence the

number of messages can be further trimmed, at an additional computational cost.

newreplicas(1) = Ron(0)σ(1− fr) ∗
[1− (1− fr)Ron(0)frσPF (1)] (9.2)

The expression may be explained as follows: Of the Ron(0)σ(1−fr) uninformed online peers, a fraction

(1−fr)Ron(0)frσPF (1) peers continue to stay uninformed when each of the Ron(0)frσPF (1) informed peers

forward (push) to fr fraction of random peers. The others receive the update after this round. For the message

length we have:

ML(1) = U + R ∗B ∗ (fr + fr(1− fr))

= U + R ∗B ∗ (1− (1− fr)2) (9.3)

Round t ≥ 2.

The results may be generalized as follows:

newreplicas(t) = Ron(t− 1)(1− faware(t− 1))σ ∗
(1− (1− fr)Ron(t−1)f4aware(t−1)σPF (t)) (9.4)

Thus we obtain the fraction f4aware(t) and faware(t) as:

f4aware(t) = (1− faware(t)) ∗
(1− (1− fr)Ron(t−1)f4aware(t−1)σPF (t)) (9.5)

9.4 Analysis 175

Then,

faware(t) = faware(t− 1) + f4aware(t− 1)

= 1− (1− faware(t− 1)) ∗
(1− fr)Ron(t−2)f4aware(t−2)σPF (t−1) (9.6)

Note that this is a recursive relationship and faware rapidly grows to 1. The expression for faware may

exceed the value of 1, but that will have no physical relevance, and thus the function needs to be determined

using a ceiling function and f4aware too needs to be reevaluated accordingly in the final push round. Also

note that PF (t) can be any arbitrary function of t, which individual nodes can define in an ad-hoc manner,

and we will see that this parameter can be tuned for the push phase in order to significantly reduce duplicate

messages.

It is subtle to determine the number of messages and length of these messages. If the partial list of

replicas, to which the update has already been transmitted along with the update information U, is ignored,

we have

msg(t) = Ron(t− 1)f4aware(t− 1)σPF (t)Rfr (9.7)

since each of Ron(t−1)f4aware(t−1)σPF (t) replicas (these replicas received the update in the previous

round, and continued to stay online, and decided to forward the same) forward the update to Rfr replicas.

If the partial list of replicas is accounted for, then the number of messages decrease to

msg(t) = Ron(t− 1)f4aware(t− 1)σPF (t) ∗Rfr(1− fr)t (9.8)

and the length of each message in round t is given as

ML(t) = U + R ∗B ∗ (1− (1− fr)t+1) (9.9)

We now prove the two equations above by induction. Let the normalized length of the partial list of

replicas in a message be denoted by L(t). The normalized length of the partial list is the fraction of the total

replicas that the partial list contains. Then ML(t) = U + R ∗B ∗ L(t).

Induction hypothesis: L(t) = 1− (1− fr)t+1

Now L(t + 1) = fr + L(t) − frL(t), since the Rfr replicas chosen randomly are independent of the

replicas in the partial list. Now, if our hypothesis is true then,

176 9. A push/pull gossiping primitive for unstructured sub-networks

L(t + 1) = fr + 1− (1− fr)t+1 − fr(1− (1− fr)t+1)

= 1− (1− fr)t+1 + fr(1− fr)t+1

= 1− (1− fr)t+2 (9.10)

Thus the hypothesis is consistent. Since the hypothesis is true for t = 0, 1, using induction, we conclude

that L(t) = 1− (1− fr)t+1 where ML(t) = U + R ∗B ∗ L(t). Thus,

msg(t) = Ron(t− 1)f4aware(t− 1)σPF (t)R ∗
fr(1− L(t− 1))

= Ron(t− 1)f4aware(t− 1)σPF (t)Rfr(1− fr)t (9.11)

As may be observed, L(t) increases with round number t and a legitimate question to ask is its effect on

the resource (Memory/CPU/Bandwidth/Power) available at each of the replicas. A way to deal with increas-

ing L(t) may be to chose a normalized threshold length Lmax(t) such that L(t) = min(Lmax(t), L(t)∗)

where L(t)∗ = L(t− 1) + fr −L(t− 1)fr. This can be achieved by discarding either random entries or the

head or tail of the partial list. In this case, msg(t + 1) = Ron(t)f4aware(t)σPF (t + 1)Rfr(1− Lmax(t)).

f4aware and faware stay unchanged, since the extra messages generated by reducing the L(t) are all

duplicate messages. Thus the nodes which push the update in the later rounds pay the penalty of forwarding

extra messages without enhancing the coverage.

Note that the case where Lmax(t) is zero for all replicas corresponds to the case where no list is prop-

agated, and will enhance the number of duplicate messages, without any improvement in coverage of un-

reached replicas.

9.4.3 Analysis of the pull phase

If a replica p comes online at a random time (after the push phase is over), then it will (very likely) find

the update information from any of its online replicas. The underlying assumption for such an optimism is

that any replica that came online in the meantime must have pulled the update information by the time the

concerned peer p came online. This justifies the eagerness of the Update Pull algorithm.

What is more interesting is what happens if p comes online while a push of an update is underway. If

faware fraction of the replicas Ron are already aware of the update, the probability of a replica p getting the

update in a attempts is

1− [1− (Ronfaware/R)]a (9.12)

which implies that a constant number of pull attempts should give the update information with high

probability. Since updates are propagating by push as well, the above term gives a worst case estimate.

9.5 Analytical results 177

Indeed if f4aware (refer to push phase analysis) fraction of online replicas received updates in the previous

push round (t− 1), then (if they continue pushing) the probability of getting a push is

1− (1− fr(1− L(t)))Ron(t−1)f4aware(t−1)σPF (t) (9.13)

9.4.4 Query (request)

Servicing requests under (possibly relatively frequent) updates is similar to the Pull phase of updates. For

simple servicing of requests, we may indeed use the same analysis as in the Pull section. Since requests

are more sensitive (updates can be lazy, and strong consistency is not our goal, however we intend to return

correct and most recent result for any query) we may define some majority logic, or use a version scheme for

identifying latest updates, or a hybrid of the two. The specifics can depend on the application requirement

- for example, for ID-to-IP mapping information, only the owner can make a change, and can strictly order

these updates (using a local timestamp) and this timestamp can be used as the basis to choose the latest

information.

9.5 Analytical results

Based on the analytical model developed in the previous section we investigated for various environmental

parameters the performance of the push phase of the propagation of a single update. For the evaluation of

the recursive analytical functions a C-program had been developed.

Our performance criterion for this analysis is primarily the number of messages that are generated as

part of a single update, compared to the extent to which the update propagates among the online population.

As a simplifying (and for IP networks, realistic) assumption we ignore message size, as a single or very few

messages can accommodate the messages of maximal size that can occur in our setting, alternatively we can

terminate the piggy-backed meta-information based on the IP packet-size constraints.

In the following result plots (e.g., Fig. 9.1) we will show on the y-axis the number of messages generated

per member of the initial online population. As assumed in the previous section peers coming online subse-

quently are not participating in the propagation. Ignoring the fact that peers may go offline throughout the

push phase makes this estimate more pessimistic. On the other hand since other approaches do not account

for peers going offline, we chose the simple metric of comparing to the initial population size, in order to

enable comparisons to related approaches. On the x-axis we will give the percentage of the online peers that

have become aware of the update. Since the analysis is made in rounds the plot is discrete, and the marks

(points) on the curves indicate the discrete steps. From the number of points on the curves it can be seen

how fast the rumor spreads (latency), but our main interest is the communication cost involved in updating

all online peers.

178 9. A push/pull gossiping primitive for unstructured sub-networks

9.5.1 Impact of the initial online population size

In this analysis we studied the impact of varying the initial online population for the plain flooding scheme.

If the initial population size is too small as compared to the total population, the probability that a peer

to which a message is sent is available is too low, and the rumor will not spread. Varying initial online

replicas Ron(0) between 1 to 100% it is observed in Fig. 9.1(a) that without a significant initial online

population(< 5%), it is difficult to make all online peers aware of an update. In case there is a significant

initial online population, the message overhead is relatively independent of the online population, as seen in

the Fig. 9.1(b) for a variation from 5-100% of total population. However, message overhead is very high for

this plain flooding scheme, around 80 messages per online peer.

9.5.2 Impact of varying fanout (fr)

Since flooding is exponential in nature, a limited fanout is sufficient to spread the update to a complete

population. A large fanout will cause unnecessary duplicate messages. Varying fr it is inferred in Fig. 9.2

that the intuitive expectations are true, and it is not necessary to push to too many replicas, since it does not

significantly enhance the update propagation, however creates eight to ten times more duplicate messages.

Thus it is sufficient, and indeed desirable to have a small fanout.

9.5.3 Impact of departing peers (σ)

Even if the environmental parameter σ (probability of online peers staying online in consecutive push

rounds) varies, and is quite low, Fig. 9.3 demonstrates that the algorithm is quite robust to replicas go-

ing offline (without forwarding the update) after receiving the update. Indeed, typically σ will be larger than

0.95. We investigated lower values of σ, because curiously the message overhead decreases significantly if

several replicas ‘fail’ to forward the update. This was an additional reason that prompted us to introduce

PF (t) in our analysis, and is discussed next.

9.5.4 Impact of probability of forwarding (PF (t))

With the progress of the push rounds, a large population will become aware of the update (exponential

growth initially), and a very small population will be left unaware. Consecutively, if all newly aware peers

decide to continue gossiping, a large number of messages are generated, for a small target audience. Thus

even if a small fraction of the newly aware peers gossip, it is sufficient to reach out all uninformed peers,

and using a substantially lower number of messages. Fig. 9.4 indicates that the best strategy is to reduce

the probability of forwarding updates with the increase in number of push rounds, which eliminates many

unnecessary messages. On the downside, it is essential to properly tune PF (t), lest the update is not propa-

gated to the whole population. We will briefly describe tuning of PF (t) in Section 9.6 for optimizations and

self-tuning of parameters in a decentralized manner using only local information.

9.5 Analytical results 179

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.2 0.4 0.6 0.8 1

T
ot

al
 m

es
sa

ge
s/

R
_o

n[
0]

F_aware

Sigma = 0.95
PF = 1
R_on[0] = *
F_r = 0.01

R_on[0]/R = 100/10000

(a) Online population < 5%

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

T
ot

al
 m

es
sa

ge
s/

R
_o

n[
0]

F_aware

Sigma = 0.95
PF = 1
R_on[0] = *
F_r = 0.01

R_on[0]/R = 100/10000
R_on[0]/R = 500/10000

R_on[0]/R = 1000/10000
R_on[0]/R = 3000/10000

R_on[0]/R = 10000/10000

(b) Significant online population (> 5%)

Fig. 9.1. Results with varying initial online replicas Ron(0) between 1 to 100%

180 9. A push/pull gossiping primitive for unstructured sub-networks

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1

T
ot

al
 m

es
sa

ge
s/

R
_o

n[
0]

F_aware

Sigma = 0.9
PF = 1
R_on[0] = 1000
F_r = *

F_r = 0.005
F_r = 0.01
F_r = 0.02
F_r = 0.05

Fig. 9.2. Impact of varying fanout (fr)

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

T
ot

al
 m

es
sa

ge
s/

R
_o

n[
0]

F_aware

Sigma = *
PF = 1
R_on[0] = 1000
F_r = 0.01

Sigma = 1
Sigma = 0.95

Sigma = 0.8
Sigma = 0.7
Sigma = 0.5

Fig. 9.3. Impact of departing peers (σ)

9.5 Analytical results 181

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

T
ot

al
 m

es
sa

ge
s/

R
_o

n[
0]

F_aware

Sigma = 0.9
PF = *
R_on[0] = 1000
F_r = 0.01

PF = 1
PF = 0.8

PF(t)=1-0.1t assuming t<10
PF(t) = 0.9^t
PF(t) = 0.7^t
PF(t) = 0.5^t

Fig. 9.4. Impact of probability of forwarding (PF (t))

9.5.5 Scalability

As stated previously, scalability has not been our principle concern with replication factor between 100-

1000, but our push scheme also scales well, as observed for a total population varied between 104 to 108

with Ron/R = 0.1, σ = 1, PF (t) = 0.8 ∗ 0.7t + 0.2 and fr chosen such that a message is sent to ten

online peers, i.e., Ron ∗ fr = 10. The results are shown in Fig. 9.5. As may be observed the total number of

messages per initially online peer has a decently low value. With the increase in total population, the number

of messages per online peer is decreasing, for all other parameters kept fixed. For a small population, we do

not need a fanout of ten online peers, and choosing a smaller fanout increases the number of push rounds

but decreases the message overhead as shown in Section 9.5.2.

Thus we conclude that for a very large range of total population, the message overhead can be, with

proper choice of fanout and probability of continuing the push, limited to around 20 messages per initial

online peer. Given the fact that this is so when there is no knowledge as to which replicas are actually online,

and thus the best that can be done is to use on an average ten messages (for Ron/R = 0.1), we conclude

that our simple (look and implementation wise) push algorithm is quite robust, as well as scalable.

9.5.6 Comparison with simple flooding (like in Gnutella) and variants

Since our Push phase algorithm uses Gnutella-like limited message broadcast (flooding with some specific

fan out), which is known to have scalability problems [151, 162], it is imperative to point out the im-

182 9. A push/pull gossiping primitive for unstructured sub-networks

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 m

es
sa

ge
s

/ I
ni

tia
l o

nl
in

e
po

pu
pl

at
io

n

F_aware

R_on/R = 0.1
f_r such that 10 online peers expected
Sigma = 1
PF(t) = 0.8*0.7^t+0.2

Total population: 10000
Total population: 100000

Total population: 1000000
Total population: 10000000

Total population: 100000000

Fig. 9.5. Scalability of the push algorithm

provement achieved by very minor changes, since similar modifications may be made even in the Gnutella

message flooding schemes to make it more efficient.

Though flooding (Gnutella) has been amply analysed by many researchers and music file sharing en-

thusiasts, the ping and pong messages required to establish such a connectivity/neighbourhood are mostly

ignored, which makes Gnutella worse. Assume a random distribution for the replicas to stay online, with

a probability pon. We have avg(Ron) = ponR. Then the expected number of peers that are reached in A

attempts when actually K replicas are online is (K ∗A)/R. Thus the expected number of attempts to reach

S online replicas ES(A) =
∑R

S
R∗S∗P (K)

K . Assuming peers stay online according to a Poisson process, i.e.

P (K) = e−Rpon (Rpon)K

K! we have

ES(A) ≈ S/pon[1− exp(−R ∗ pon)
∑S

0 (R ∗ pon)K/K!]

We then use fr = ES(A)/R. Then the expected messages required in pure flooding (without du-

plicate avoidance) may be obtained from the geometric sum 1 + (R ∗ fr) + (R ∗ fr)2 + ... + (R ∗
fr)RequiredPushRounds−1. In the case of Gnutella like duplicate avoidance, the total number of messages

created per update will be exactly the average fanout multiplied by number of peers online, that is to say,

there will be on an average fr messages per online peer and the propagation of update will incur the same

latency as in the case if flooding without duplicate avoidance, since duplicate avoidance only reduces the

number of redundant messages without any effect on the spread of the update itself.

A variant of pure flooding has been proposed by Haas et.al. [79] called G(p, t) for the “Ad-hoc On

Demand Distance Vector (AODV)” routing algorithm. There, for the first t rounds it follows a pure flooding,

9.6 Potential optimizations and self-tuning 183

while in the next rounds t′ > t, each node decides to continue flooding with a probability p. Simulation

results have shown that such an approach reduces message overhead by a quarter to a third, as compared

to pure flooding. Since this scheme is strictly a special case of our algorithm, it is obvious that with proper

parameter choices out algorithm will perform at least as well. In Table 9.2 we summarize the comparison

in terms of total messages per initially online peer and latency (number of rounds). Our analytical result

agrees with the simulation result of [79], as it may be seen in Table 9.2 that using G(0.8, 2) eliminates

substantial unnecessary messages as compared to duplicate avoidance like in Gnutella or even with partial

list. However improvements with our scheme are dramatic with appropriate parameter choices, either when

the whole population is online or when only 10% of them are online, and is significantly better even than

G(p, t)[79], with a marginal drawback of an additional push round (latency) in each case.

Scheme Msgs
Ron(0)

Push rounds

Gnutella 4 7
Using Partial List 3.92 7

Haas et.al.’s G(0.8,2) [79] 3.136 7
Our Scheme, PF (t) = 0.9t 2.215 8

Ron/R = 103/103; σ = 1; Fr = 0.004(fanout = 4)

Scheme Msgs
Ron(0)

Push rounds

Gnutella 40 5
Using Partial List 35.22 5

Haas et.al.’s G(0.8,2) [79] 28.49 5
Our Scheme, PF (t) = 0.8t 16.35 6

Ron/R = 102/103; σ = 1; Fr = 0.04

(Expected Effective fanout = 4)

Table 9.2. Comparison of flooding and gossip mechanisms with the push phase of our algorithm

In conclusion, what may be argued is that once neighbours are located in Gnutella, there is no need

to repeat this exercise. However since this scheme is meant for propagating updates, which are relatively

infrequent, and using efficient indexing schemes such that message flooding is not required for searching,

it is incorrect to assume that established online replicas continue to stay online. It is primarily this kind of

unreliable environment, which had prompted us for our push/pull scheme.

9.6 Potential optimizations and self-tuning

Apart from using certain optimization techniques like directional gossiping [107], we may use certain heuris-

tics to reduce the total bandwidth usage.

184 9. A push/pull gossiping primitive for unstructured sub-networks

Foremost we can use an acknowledgement (ack) that replica p sends back to replica f if p receives

an update from f . Here p may adopt a policy to reply back only to the first or first k random replica f1,

from which it receives the update. Consequently, f1 will have better chances to find online replicas in

future updates. Since most of the messages are wasted in locating online replicas, this strategy may help.

Furthermore, if there are other replicas fi which had forwarded an update to p, they will assume (from the

lack of an ack) that p is offline, and hence may decide not to send future updates, thereby reducing the

number of duplicate messages sent to p. This strategy will only be effective for short time intervals, since

over a period of time, p is expected to be online according to a random distribution for all the replicas.

Moreover it is desirable that fi again forwards updates to p in remote future since it is possible (quite likely)

that f1 is no more online.

The number of duplicate messages received by a replica p also provides an essential, locally available

metric that p may utilize to tune parameters PF (t) and fr. In the case that replicas adopt a policy of sending

multiple acks then the number of acks may be used similarly. Though we have used deterministic PF (t), it

can be assigned an ad-hoc value as well without affecting the general inferences drawn from such simplistic

functions. Most importantly, PF (t) should be reduced significantly with increment of t, specially since

there are fewer unaware replicas as t increases, and hence the need to propagate message is lesser. Another

information available to the replicas is the message length L(t) which provides an estimate of the extent of

propagation of update message, and hence to tune fr and PF .

Similarly, we may significantly decrease the number of Pull messages. It is not necessary for a replica

p coming online to instantaneously pull updates. It can wait till it receives push based update from some

replica f and pull updates from f . This saves the unnecessary messages which are otherwise wasted to find

an up to date online replica. However this lazy and optimistic approach has a performance tradeoff during

queries. This is because if there is a query Q that p recieves, then it will not be able to answer the query

(since it is not aware whether it has an up to date information), but instead will itself have to initiate a pull.

9.7 Related work

Updates in the presence of replication is a widely studied topic. This section positions our approach with

respect to the research done in the areas of database systems, group communication, and P2P systems.

Most of the related work has been done in the context of database systems. Recently, group communication

techniques (lazy epidemic algorithms) have been investigated for this purpose as well. Only little work on

replication and updates is available from the P2P domain.

9.7.1 Replication and updates in databases

Several recent approaches exist that attempt to address some of the problems given in Section 9.2, but cannot

meet all requirements. For example, iAnywhere Solutions [68, 89] propose a central server-based scheme for

9.7 Related work 185

mobile data management with wireless and offline data access. Clearly, such centralized schemes do not suit

a peer-to-peer environment. [97] describes hierarchy-less distribution of data, but the approach is confined

to highly available sites. [78, 141] propose optimistic replica management schemes in a peer-to-peer way

(or using hybrid schemes), and primarily address mobility through reconciliation techniques which may be

considered as variants of anti-entropy. They use a pull-based reconciliation scheme which thus exhibits lim-

ited consistency guarantees. In Xerox PARC’s Bayou project [166], a weakly connected replicated storage

system, update conflict management has been addressed through tentative and committed writes to provide

best effort consistency, along with anti-entropy based conflict resolution. It is similar to the approach pre-

sented in [74]. However, it assumes significantly less replicas, less updates (and hence conflicts), and while

the system supports frequent temporary network partitions, it assumes that disconnections are rather short.

Data replication in Mariposa [158] uses economic measures to determine when to replicate data and

uses unidirectional periodic reconciliation techniques and rule-based conflict resolution. Other economic

paradigms to maintain distributed data replicas include [87, 88, 126] where a primary copy model is used

to provide one-copy serializability. These approaches optimize resource usage but inherently assume the

availability of the resources and replicas in general. The Ficus [127] replicated Internet-file system tries to

scale to large numbers of users and files. It uses optimistic P2P-based file replication based on the assumption

that in file sharing systems, conflicts are rare, and can often be resolved.

9.7.2 Group communication and lazy epidemic schemes

Many conventional database replication schemes and file sharing schemes often use either group communi-

cation methods or rumor concepts to propagate updates [35], assuming that such primitives are in themselves

robust enough. Group communication primitives typically can tolerate a specific number of faults but are

not applicable in such highly unreliable environments that we assume. Even gossip-based approaches, for

example, probabilistic broadcast [27], are insufficient, and a hybrid push/pull scheme is required. The novel

approach of our work is the use of push/pull in the context of replicas being offline long and frequently, and

in the significant reduction of message overhead in the push phase. Our approach may be considered as a

generic version of [79].

Randomized rumor spreading algorithms may be categorized [54] by the gossip termination decision

criteria used by peers. The first category is defined by whether nodes use feedback from other nodes (for ex-

ample, whether they already know the rumor or not) and thus decide on their future course, or not (generally

called “blind” then). The second category of algorithms uses either probabilistic (coin flipping) or determin-

istic (counter) measures to determine when to stop. Many rumor spreading algorithms are hybrids of these

two categories and results indicate that feedback and counters improve the latency of rumor spreading.

186 9. A push/pull gossiping primitive for unstructured sub-networks

By using the partial random list of replicas to which a rumor has been sent, we are also sending informa-

tion about replicas hitherto unknown to certain nodes, thus gradually propagating global information, and

the idea is similar to work done in the context of resource discovery, called the name dropper scheme [82].

The directional gossiping approach [107] exploits knowledge of the logical connectivity/topology of the

system to minimise the number of messages required for update distribution. Unfortunately, this approach

cannot be applied in the scenarios we address because replicas go online/offline frequently which changes

the topology considerably so that topological knowledge cannot be exploited.

In another analysis of randomized rumor spreading [96], it has been shown that a hybrid push/pull algo-

rithm has performance benefits since push grows fast (quadratically in the beginning, and then exponentially)

when there are very few nodes with the rumor, and a very large target audience, while pull is efficient when

most nodes already have a rumor, and very few still need it. Their algorithm, besides being very complex

assumes continuous availability of all peers, and can tolerate a limited number of permanent failures, but

does not deal with fluctuating (online/offline) behavior. However, their hybrid push/pull scheme motivated

us to employ a similar strategy. In our work we exploit the advantage of push/pull, though there is a subtle

difference of objectives. We exploit the exponential nature of push to achieve a rapid spread of updates

among online nodes, so that any node coming online later may easily pull the same.

9.7.3 Peer-to-peer systems

Generally state-of-the-art P2P systems consider the data they offer to be very static or even read-only. Un-

surprisingly, most of them thus do not address updates. Typically, centralized (or hierarchical) P2P systems,

such as was Napster, can maintain a centralized index of data items available at online peers. If an update

of a data item occurs this means that the peer that holds the item changes it. Subsequent requests would get

the new version. However, updates are not propagated to other peers which replicate the item. As a result

multiple versions under the same identifier (filename) may co-exist and it depends on the peer that a user

contacts whether the latest version is accessed. The same holds true for most decentralized systems such as

Gnutella [40].

The Freenet [39] P2P system uses a heuristic strategy to route updates to replicas which is uncertain to

guarantee eventual consistency. Searches replicate data along query paths (“upstream”). In the case of an

update (which can only be done by the data’s owner) the update is routed “downstream” based on a key-

closeness relation. Since the routing is heuristic, the network may change, and no precautions are taken to

notify peers that come online after an update has occurred, consistency guarantees are limited.

In OceanStore [148] every update creates a new version of the data object (versioning). Consistency is

achieved by a two-tiered architecture: A client sends an update to the object’s “inner ring” (some replicas

who are the primary storage of the object and perform a Byzantine agreement protocol to achieve fault-

tolerance and consistency) and some secondary replicas that are mere data caches in parallel. The inner

9.8 Future work 187

ring commits the update and in parallel an epidemic algorithm distributes the tentative update among the

secondary replicas. Once the update is committed, the inner ring multicasts the result of the update down

the dissemination tree. There is no specific analysis or evaluation of the latency, overheads and consistency

guarantees for this update scheme.

In many overlays, particularly those which use the overlay partitioning to determine object location and

store the actual content (rather than pointers) replicate the content in a globally determined small fixed

number of replicas at peers located deterministically, e.g., consecutive peers on the ring in DHASH [46] and

hence can support read/write operations [123]. Updates of these few deterministically located replicas is

algorithmically trivial, however, such an update mechanism is not more generally applicable. Our approach

provides the flexibility to deal with diverse replication mechanisms and arbitrary sizes of replica networks.

9.8 Future work

Tuning the push phase may not only be done through feedback mechanisms (to determine when to stop

pushing), but also by a speculative (feed-forward) mechanism. In this chapter, we have used heuristics to

find proper parameters, but we plan to explore the possibility of both feed-back and feed-forward to evolve a

proper mechanism of parameter tuning using local knowledge. It may be interesting to look into bimodal be-

havior [27, 79] in the specific low online probability environment we considered. Bimodal behavior denotes

a reliability model which corresponds to a family of bimodal probability distributions, i.e., the traditional

“all or nothing” guarantee becomes “almost all or almost none.” Also the effect of non-uniform online prob-

ability of peers needs to be explored. In such a scenario a relatively reliable network backbone would exist

and thus would make possible further performance improvements. Apart focussing on improving the com-

munication primitive, dealing with updates in peer-to-peer systems with multiple writers for same object,

conflict resolution, etcetera still remain open problems. We speculate that instead of relying on a generic

underlying mechanism, these issues will be better handled at application layer tailored to meet application

requirements.

9.9 Conclusions

This chapter described an efficient, generic push/pull gossiping algorithm for highly unreliable, replicated

environments. It provides an analytical model to demonstrate the significant reduction of message overhead

using certain optimizing techniques (partial lists) and proper tuning of the gossiping (push) phase which in

consequence improves the scalability of the algorithm. The analytical model for the gossiping algorithm is

a significant contribution in contrast to most of the literature in this area which relies on simulation results.

Our algorithm subsumes several existing gossip schemes, hence the analytical model and results are valid

188 9. A push/pull gossiping primitive for unstructured sub-networks

for those variants of flooding algorithms. We have demonstrated that our algorithm is robust and applicable

in unreliable environments such as current peer-to-peer systems, and it has been integrated as an integral

part of the P-Grid software. Another major advantage of the algorithm is that it is totally decentralized and

uses no global knowledge but exploits local knowledge instead. This makes it suitable for state-of-the-art

systems in the P2P domain as well as potentially for mobile and ad-hoc networking environments.

Part IV

Conclusion

189

10. Conclusion

“The appearance of the wheels and their work was like unto the colour of a beryl; and they four had one

likeness; and their appearance and their work was as it were a wheel within a wheel.” — Ezekiel 1:16 (from

the Old Testament)

10.1 Interplay of peer-to-peer systems

Complex peer-to-peer systems are more than just how a set of peers interact and interdepend but also how

different such systems comprising numerous peers (may be the same physical peers participate in different

such P2P systems) interact and interdepend to perform and provide wide range of functionalities.

The main focus of this dissertation was to look at four fundamental functionalities which are required

by P2P storage systems, apart many other systems and applications which too may use some of these -

(i) discovery of resources; (ii) address independent communication; (iii) maintaining availability of stored

content; and (iv) a gossip based robust communication primitive for replica updates. In designing these, from

a system designer’s perspective we come across intriguing interdependences of these systems. In addition,

we explore other ideas to enable such intertwined systems as well as to use such systems to create derivative

applications.

These fundamental building blocks (substrates) can be, and in fact are used in numerous other peer-

to-peer systems and applications. We summarize such dependencies and inter-dependencies in Table 10.1,

particularly referring to existing systems and applications which make use of our systems.

Some of these derivative applications like a decentralized public key infrastructure [50] using a self-

referential directory as an alternative to web-of-trust models (like in PGP [66]) are our direct contributions.

Many other endeavors including that of managing social relationships and meta-information about peers

(trust/reputation [9]), semantic overlays [3], peer-to-peer information retrieval [134] among others have

been pursued separately but using the substrates designed in this dissertation as building blocks. One may

expect many more interesting applications that can be derived based on some of these.

Both the substrates themselves, as well as other applications using them exploit some of the salient

features like the good multi-faceted load-balancing under dynamic workload as well as their low-cost fault-

tolerance and adaptivity to network dynamics.

192 10. Conclusion

Self-organizing Substrates at large

System/Application

Sys/App Name Functionality Substrate(s) used

Contributions of the author

P-Grid [8] Load-balanced structured overlay Self-referential directory (for overlay maintenance)
(based on original proposal (internet-scale distributed index) Updates (for structural replication maintenance)
of the data-structures [1])
Complex queries Range queries [52] P-Grid’s order preserved indexing

Similarity queries [95] (by others)
Self-referential directory [5] The overlay used to maintain information P-Grid (for discovery)

about the overlay itself. Updates (for propagating latest information)
Updates [51] Keep arbitrary set of replicas synchronized P-Grid/Self-referential directory

(to re-locate replica peers)
Persistent storage system [47] To provide highly available P-Grid (to access stored content)

and persistent storage Self-referential directory (to exploit content already
stored at returning peers)
Updates
(potentially, for new objects or new versions)

Decentralized PKI [50] As an alternative to web-of-trust to store P-Grid/Self-referential directory
(preliminary work) and retrieve peers’ public keys securely.

Used by others

Managing peers’ Manage meta-information about peers P-Grid/Self-referential directory
social relationships e.g., Trust/reputation management [9] (to locate peers across sessions)

Semantic overlay network (GridVine [3])
Information systems P2P information retrieval [134] P-Grid’s indexing

XPath query processing [159]
Content distribution network Caching [45] P-Grid’s overlay routing structure
Back-up system To preserve data of individual users Persistent storage
(potential use) from disk or other failures

(like virus attack)

Table 10.1. Use of self-organizing substrates in various systems and applications, including mutual dependencies of some of these
generic substrates (fundamental building blocks) - namely - indexing (P-Grid [8]), peer meta-information management using self-
referential directory [5], persistent storage [47] and update [51] propagation mechanism within unstructured replica sub-networks.
Though not too many usages of highly persistent and available storage have been explicitly shown here, any application dealing
with content will preferably need such a reliable storage primitive. Here we indicate direct usages of the substrates, but because of
the interdependencies, indirectly almost all the P2P applications use all these fundamental building blocks. Furthermore, many of
these applications rely on the substrates’ good multi-faceted load-balancing and fault-tolerance properties for good performance.

10.2 We build upon our tools 193

During the design and evaluation of these substrates which in their own right are full-blown P2P systems,

we have not shied away from occasional use of heuristics, however we have made a conscientious effort

to better understand the fundamental behavior and dynamics of such large-scale systems. In that pursuit,

we have used the general practice from cybernetics of modeling such systems as Markov processes, and

studied the time-evolution of such systems to look into the absorbing or equilibrium states in order to predict

the long-run behavior of such systems and accordingly design (parameters) to achieve certain desirable

properties - ranging from load-balancing to fault-tolerance.

In the fast-paced (often heuristic) research area of peer-to-peer systems, some significantly radical results

have come about based on such an objective pursuit. Moreover the analysis has revealed potential ways to

design better algorithms. That is to say, the algorithm design and analysis have strong mutual influence as

well.

For example, buoyed by the dynamic equilibrium analysis of overlay networks and design of cost-

efficient maintenance mechanisms we wanted to understand the dynamics of lazily maintained storage sys-

tems. Apart from the successful reuse of the basic dynamic equilibrium analysis1 for such systems, we

could propose a simple randomized variant of existing lazy repair algorithm which has substantial perfor-

mance gains in comparison to the existing mechanism in terms of the storage system’s resilience for same

communication overhead.

The significance of reduction of maintenance and administrative cost for such large-scale systems while

providing provable (probabilistic metrics) resilience guarantees under wide range of dynamic environment

can not be overstated.

Similarly, we are arguably the first to come up with a mechanism for fast construction of overlay, and

only one while taking into account the possibility of arbitrary skew in load-distributions. Multi-faceted load-

balancing as offered by our overlay, along with the salient features of the possibility to rapidly deploy it,

make it suitable for data centric as well as a wide range of network and communication applications.

Such better algorithmic (re-)designs resulting in better system performance is a direct benefit of using

the analysis methodology that we have pursued in this dissertation. We briefly explore this idea next.

10.2 We build upon our tools

We can discern a significant contrast in the systems design style we have pursued in this dissertation in

comparison to the traditional practice.

Most (P2P) systems designs and corresponding algorithms have concentrated on achieving some invari-

ants deterministically. For example, in the design of the Chord system, the self-stabilization algorithm fo-

cuses on maintaining the global ring invariant. In the design of the TotalRecall storage system, the invariant
1 While the philosophy is the same, both the involved dynamics and the details of the dynamic equilibrium analyses are of course

different for the two different systems.

194 10. Conclusion

to maintain was a threshold redundancy. In the design of OceanStore, quorums based on classical distributed

algorithms are used to maintain replica consistency, explicitly assuming a rather reliable environment with

predetermined bound of limited faults in the inner ring.

The performance evaluation of systems designed to meet invariants deterministically came a posteriori.

In other words, somehow the systems determine the analysis. While using such an approach to design

systems, failure to strictly meet the system invariants are expected, even as a design objective, to render it

useless, at least until the invariants are reestablished.

In contrast, we often looked first at the impact of local behavior of peers on the convergence of the

system as a whole to some global properties. The “legal zones” of operation for the systems we design are

then those where the global properties are such that the system invariants (e.g., connectivity of the overlay

network; coverage of replicas or availability of stored content) are also met, but often only probabilistically.

The system algorithms are designed such that they adapt the local behaviors so that the system as a whole

is “safely” within such a legal zone of operation for diverse environments. This provides the opportunity

for a more graceful performance degradation in an adversarial situation, as well as better exploration of

performance cost trade-offs in general.

It is possible that some of the systems and algorithms we designed could have been invented by chance.

Nevertheless, causally, the analysis methodology we employed strongly influenced in the design of these

systems. Based on this confessedly limited experience, we speculate a strong influence of the employed

tools (more specifically, analysis techniques) on the salient properties of the resulting systems.

Throughout the history of human civilization, we have built upon the tools we have (and employed). This

brings us to the somewhat philosophical, nevertheless very practical question relevant to systems designers,

“Do the analytical tools we employ determine some fundamental characteristics of the systems we design?”

10.3 Analyzing self-organization

We summarize the concepts from probability theory which we used within the context of our general analysis

methodology of using Markov models for analyzing self-organization. In particular, we discuss how the

analysis can be generally classified as (i) transient versus steady-state analysis; and (ii) mean value versus

density (distribution) function based analysis.

10.3.1 Transient versus steady-state analysis

We mentioned at the beginning of this dissertation that the emergent behavior of the self-organizing sys-

tems correspond to the equilibrium or absorbing states of the Markov chains with which the system are

described. We worked under this premise to analyze and find the “attractors” of self-organization for the

various systems studied here.

10.3 Analyzing self-organization 195

A dynamic equilibrium of a system is studied by looking into a possible stationary distribution of the

corresponding Markov process. This was the case for our studies of overlay networks as well as storage

systems (redundancy) maintenance, under continuous churn and maintenance.

A transient analysis is employed in order to study if the system converges to some absorbing states. This

was the model chosen to analyze a single step of the key-space partitioning process, where absorbing states

corresponded to peers deciding on one of the two possible partitions. Similarly, in the push phase of the

gossiping primitive, the absorbing state corresponded to peers already receiving the gossip, i.e., in epidemic

algorithm terminology, infected.

The ensemble system state does not change once the system arrives at either a steady-state (If one of

the external factors, like rate of churn is changed, the system will be perturbed out of the steady-state.)

or absorbing states, but there is a fundamental difference between these two kinds of “attractors” of self-

organization.

Once the system reaches an absorbing state, there is no more dynamics in the system. The interaction

process is over. In contrast, a steady-state is a continuous process, where individual participants continue

to change their (microscopic) local properties, even while the system’s ensemble (macroscopic) properties

stay the same, unless one of the external forces is changed, in which case the system is perturbed out of the

steady-state again.

Next we look into the two class of probabilistic analysis that can be generally be found in the literature.

10.3.2 Mean value versus density (distribution) function

We observe that in general two different analysis techniques can be found in the literature for studying the

stochastic behavior of probabilistic systems (which is what self-organizing systems inherently are): (i) The

first approach can be broadly termed as a mean value analysis (MVA), where the evolution of the mean state

is studied assuming that the system always actually resides in the mean state. (ii) The second approach looks

at the probability distribution function of the system states at any time instance, thus studying the evolution

of the (probability mass) distribution function (EoDF).

The former approach (MVA) simplifies the analysis and is a convenient tool for system designers to

understand the expected behavior of the system, but at the cost of losing potentially important information

like the deviation, the stability and the convergence of the system. This is because MVA collapses the

problem into two dimensions - time and design parameters, with the system state assumed to have a singular

value (corresponding to the mean) at any point of time. That is to say, the system state is averaged first,

and then the time evolution of such an average-state approximation of the system is studied. Because of the

reduction of the whole system states into a single (averaged) value, the resulting analysis is simpler, and for

a desired resulting system state, the design parameters can be determined analytically.

196 10. Conclusion

EoDF on the other hand results in a more complicated model since it looks into the time evolution of the

probability distribution of the system states for any choice of parameters. Moreover, solving the resulting

equations is computationally more intensive. The reward is that it yields detailed information of the deviation

of the system behavior from the mean behavior, among other properties. EoDF is also accurate, unlike MVA

which may not hold for non-linear systems.

The single step of key-space partitioning process was studied earlier in Section 4.3.2 using MVA. We

provide an EoDF analysis of the process to observe the deviation from the mean in the Appendix A.1. Such

an EoDF analysis also helps ascertaining the correctness of the MVA which, as mentioned above, may not

always (particularly for non-linear systems) hold.

For the analysis of the overlay networks as well as storage systems (redundancy) under churn and main-

tenance, we actually used a hybrid analysis. We looked into the probability density of the different system

states; e.g. how many routing entries are usable, or how many redundantly stored blocks are available. How-

ever, the probability corresponding to any specific state itself is bound to vary over time. We (implicitly)

considered instead that this value resides at the mean value. In fact, as observed from simulations for each of

these systems, the value does fluctuate from the mean value, but only slightly, so that studying how the mean

value of the probability distribution function (MVA of the EoDF) evolves over time was sufficient for our

purpose. It may however be, that looking at the probability distribution in stead the mean value of how the

system’s states evolve over time can reveal more information about the stability of the steady-states, which

we could validate only using simulations so far.

For analyzing the gossip scheme we employed MVA, since we were primarily interested in looking into

the communication overhead. It has been shown that gossip mechanisms generally have bimodal behav-

ior [27], i.e., it either spreads to the whole network or dies without infecting almost any member in the

gossip group. Such bimodal behavior is typically studied using EoDF analysis. We assumed that the param-

eters chosen were aggressive enough so that the gossip is expected to spread, and calculated the expected

latency and the expected number of messages for the gossip to spread.

10.4 Future directions

The first half of this first decade of the century saw the rebirth and rapid growth of the peer-to-peer computing

paradigm. Some of the fundamental barriers to develop dependable scalable systems and applications are

more or less crossed. These included development of internet-scale index structures, storage systems and

communication mechanisms which perform reliably even though the individual participants act unreliably

(though collaboratively). Together these provide the basic infrastructure on which to build other peer-to-peer

systems.

Research to refine the existing ideas and systems will continue, e.g., our initiative to build more flexible

structured overlays for heterogeneous environment and workloads [69, 70] using Kleinberg [98] style small-

10.5 A blend of systems and theory for peer-to-peer research 197

world topology; query-adaptive partial indexing [99]; or our recent work studying how distinct overlays can

be merged gracefully [48].

Loose ends in either refining existing systems or developing the understanding of the dynamics of such

systems (or both) also remain. Details of such impending future works were already indicated in place wher-

ever we studied various systems in this dissertation. While there is still room for improvements, working

solutions providing peer-to-peer infrastructure with decent performance and reliability guarantees are al-

ready in place. The stage is set for the next steps; e.g., to invent other interesting peer-to-peer applications

and services and proper business models to be built on top of these basic building blocks.

As more and more such P2P applications and services proliferate our daily lives and economy, they will

also increasingly become susceptible to selfish or malicious users. Various aspects of security as well as

mechanisms to provide incentives or other means to enforce collaboration, as well as conflicting goals of

accountability and privacy, among others will become increasingly important. While there has been some

initial work in these general directions, unlike the infrastructural issues, the solutions to meet security con-

cerns for such P2P infrastructures are far from practicable yet.

Even as the infrastructure to store and access resources get mature, making the diverse resources usable

by end users poses another serious challenge. To take a simple example, different set of users may represent

information in different formats. Even when using the same technology, say XML, these may use different

schemas, or may not even follow a well defined schema. Dealing with such heterogeneous and “dirty” re-

sources to make them globally usable is another busily researched area which will continue to both challenge

and enthrall researchers. Composing services, enabling distributed work-flows, etcetera are many other such

avenues which will need further developments to enable usage in a P2P fashion.

In this thesis we had a first glimpse of how different (but still rather similar) large-scale systems inter-

mingle together. As more and more large-scale systems from diverse domains are developed and deployed,

a natural next step will also be to integrate these diverse large systems into an amalgamated system.

Such an amalgam may comprise of sensor networks gathering information and feeding it to peer-to-

peer overlays for storage, dissemination and (stream) processing, and access by end users through different

physical channels - wired or wireless, as well as new information triggering automated response like further

processing of some information.

Thus to say, in the mid-term future, there is a plethora of possibilities for large scale distributed systems,

and these are some of the general directions we can envisage the P2P research community to pursue.

10.5 A blend of systems and theory for peer-to-peer research

This dissertation looked into the design of some of the basic P2P systems, employing tools from cybernetics,

particularly employing Markov analysis to understand the self-organizational processes and exploit this

198 10. Conclusion

understanding to refine the systems themselves. The contributions of this dissertation to P2P systems design

and development is thus two pronged. Firstly the dependable scalable systems with interesting and useful,

and sometimes unique (with respect to the contemporary systems) properties and functionalities themselves,

which can in turn be used by end users as well as developers of other systems. Secondly, this thesis provides

significant insight into the dynamics of such large-scale systems and adapts some standard tools from other

well established research areas like cybernetics to suit the study of peer-to-peer systems. We also see how

often the system’s design and the analysis have had strong mutual influence.

In the long run, we expect such a methodology to also be used more widely in distributed systems design,

analysis and development in general and in particular for large-scale dynamic systems like P2P systems.

REFERENCES 199

References

[1] K. Aberer. P-Grid: A self-organizing access structure for P2P information systems. In Proceedings

of the Sixth International Conference on Cooperative Information Systems (CoopIS), 2001.

[2] K. Aberer. Efficient search in unbalanced, randomized peer-to-peer search trees. Technical report,

2002.

[3] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. van Pelt. Gridvine: Building internet-scale

semantic overlay networks. 2004.

[4] K. Aberer, A. Datta, and M. Hauswirth. The Quest for Balancing Peer Load in Structured Peer-to-Peer

Systems. Technical report, 2003. EPFL Technical Report IC/2003/32.

[5] K. Aberer, A. Datta, and M. Hauswirth. Efficient, self-contained handling of identity in peer-to-peer

systems. IEEE Transactions on Knowledge and Data Engineering, 16(7), 2004.

[6] K. Aberer, A. Datta, and M. Hauswirth. Multifaceted Simultaneous Load Balancing in DHT-based

P2P systems: A new game with old balls and bins. Self-* Properties in Complex Information Systems,

“Hot Topics” series, LNCS, 2005.

[7] K. Aberer, A. Datta, and M. Hauswirth. P-Grid: Dynamics of self-organizing processes in structured

P2P systems. (Book chapter) Peer-to-Peer Systems and Applications, State-of-the-art Survey series,

LNCS 3485, 2005.

[8] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing data-oriented overlay networks. 31st

International Conference on Very Large Databases (VLDB), 2005.

[9] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Information System. In Proceedings

of the 10th International Conference on Information and Knowledge Management (ACM CIKM).

ACM Press, 2001.

[10] S. Abiteboul, I. Manolescu, and N. Preda. Constructing and Querying Peer-to-Peer Warehouses of

XML Resources. In SWDB, 2004.

[11] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and E. Pavlov. A generic scheme for building

overlay networks in adversarial scenarios. In In Proceedings of IDPDS03, 2003.

[12] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data management for asym-

metric communication environments. In SIGMOD Conference, 1995.

[13] E. Adar and B. Huberman. Free Riding on Gnutella. First Monday, 5(10), 2000. http://firstmonday.

org/issues/issue5 10/adar/index.html.

[14] S. Ajmani, D. E. Clarke, C.-H. Moh, and S. Richman. ConChord: Cooperative SDSI Certificate

Storage and Name Resolution. In Proceedings of the 1st International Workshop on Peer-to-Peer

Systems (IPTPS ’02), number 2429 in LNCS. Springer, 2002.

[15] Akamai. Akamai Content Delivery Network. http://www.akamai.com.

200 REFERENCES

[16] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N,k,f): A Family of Low Communication,

Scalable and Fault-Tolerant Infrastructures for P2P Applications. In 3rd IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGRID), 2003.

[17] L. O. Alima, A. Ghodsi, and S. Haridi. A Framework for Structured Peer-to-Peer Overlay Networks.

In Post-proceedings of the Global Computing Conference, LNCS. Springer Verlag, 2004.

[18] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: an experiment in

publicresource computing. Commun. ACM, 11(45), 2002. http://setiathome.berkeley.edu/.

[19] D. Angluin, J. Aspnes, J. Chen, Y. Wu, and Y. Yin. Fast construction of overlay networks. In SPAA,

2005.

[20] J. Aspnes and G. Shah. Skip graphs. In Fourteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 384–393, Baltimore, MD, USA, 2003.

[21] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. On-line load balancing of tempo-

rary tasks. Journal of Algorithms, 22:93–110, 1997.

[22] A.-L. Barabási. Linked: The New Science of Networks. Perseus Publishing, 2002.

[23] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In Proceedings of the 2nd

International Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

[24] R. Bhagwan, S. Savage, and G. M. Voelker. Replication Strategies for Highly Available Peer-to-Peer

Storage Systems. Technical Report CS2002-0726, UCSD, 2002.

[25] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker. Total recall: System support for

automated availability management. In Proceedings of Symposium on Networked Systems Design

and Implementation (NSDI), Mar. 2004.

[26] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: supporting scalable multi-attribute range

queries. SIGCOMM Comput. Commun. Rev., 34(4):353–366, 2004.

[27] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast. TOCS,

17(2), 1999.

[28] C. Blake and R. Rodrigues. High Availability, Scalable Storage, Dynamic Peer Networks: Pick Two.

In Ninth Workshop on Hot Topics in Operating Systems (HotOS-IX), 2003.

[29] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed file

system deployed on an existing set of desktop pcs. In SIGMETRICS, 2000.

[30] W. Buntine and M. Taylor. ALVIS: Superpeer Semantic Search Engine. In European Workshop on

the Integration of Knowledge, Semantic and Digital Media Technologies, 2004. http://www.alvis.

info/alvis/.

[31] C. Buragohain, D. Agrawal, and S. Suri. A game theoretic framework for incentives in p2p systems.

In Proc. 3rd Intl. Conf. on Peer-to-Peer Computing, 2003.

REFERENCES 201

[32] J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for distributed hash tables. In

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[33] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Security for structured peer-to-

peer overlay networks. In In Proceedings of the Fifth Symposium on Operating Systems Design and

Implementation (OSDI’02), 2002.

[34] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and decen-

tralised application-level multicast infrastructure. IEEE Journal on Selected Areas in Communica-

tions (JSAC), 20(8), 2002.

[35] S.-W. Chen and C. Pu. A structural classification of integrated replica control mechanisms. Technical

Report CUCS-006-92, Dept. of CS, Columbia Univ., 1992.

[36] V. Cholvi, P. Felber, and E. W. Biersack. Efficient search in unstructured peer-to-peer networks. In

Proceedings of the Sixteenth Annual ACM Symposium on Parallel Algorithms (SPAA), 2004.

[37] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman. Planet-

Lab: An Overlay Testbed for Broad-Coverage Services. ACM SIGCOMM Computer Communication

Review, 33(3), July 2003.

[38] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and B. Wiley. Protecting Free Expression Online

with Freenet. IEEE Internet Computing, 6(1), 2002.

[39] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous information

storage and retrieval system. In Designing Privacy Enhancing Technologies: International Workshop

on Design Issues in Anonymity and Unobservability, number 2009 in LNCS, 2001.

[40] Clip2. The Gnutella Protocol Specification v0.4 (Document Revision 1.2), Jun. 2001. http://www9.

limewire.com/developer/gnutella protocol 0.4.pdf.

[41] B. F. Cooper. An optimal overlay topology for routing peer-to-peer searches. In ACM/IFIP/USENIX

6th International Middleware Conference, 2005.

[42] L. Cox, , C. D. Murray, and B. Noble. Pastiche: Making backup cheap and easy. In In Proceedings

of Fifth USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2002.

[43] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using a Peer-to-Peer Lookup Service. In

Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS ’02), number 2429 in

LNCS. Springer, 2002.

[44] A. Crespo and H. Garcia-Molina. Semantic overlay networks for p2p systems, 2002.

[45] P. Cudré-Mauroux and K. Aberer. A Decentralized Architecture for Adaptive Media Dissemination.

In IEEE International Conference on Multimedia and Expo (ICME 2002), 2002.

[46] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with

CFS. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP ’01),

2001.

202 REFERENCES

[47] A. Datta and K. Aberer. Internet-scale storage systems under churn - A steady state analysis. In The

6th IEEE International Conference on Peer-to-Peer Computing (P2P), 2006.

[48] A. Datta and K. Aberer. The challenges of merging two similar structured overlays: A tale of two

networks. In International Workshop on Self-Organizing Systems (IWSOS), 2006.

[49] A. Datta, S. Girdzijauskas, and K. Aberer. On de Bruijn routing in distributed hash tables: There and

back again. In The 4th IEEE International Conference on Peer-to-Peer Computing (P2P), 2004.

[50] A. Datta, M. Hauswirth, and K. Aberer. Beyond “web of trust”: Enabling P2P E-commerce. In IEEE

Conference on Electronic Commerce (CEC’03), 2003.

[51] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Replicated Peer-to-Peer Sys-

tems. In Proceedings of the 23rd International Conference on Distributed Computing Systems, 2003.

[52] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer. Range queries in trie-structured over-

lays. In The Fifth IEEE International Conference on Peer-to-Peer Computing (P2P), 2005.

[53] A. Datta, W. Nejdl, and K. Aberer. Optimal caching for first-order query load-balancing in decentral-

ized index structures. In Databases, Information Systems and Peer-to-Peer Computing (DBISP2P),

2006.

[54] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and

D. Terry. Epidemic algorithms for replicated database maintenance. In PODC, 1987.

[55] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In Pro-

ceedings of the 13th USENIX Security Symposium, 2004.

[56] J. Douceur. The sybil attack. In Proc. of the IPTPS02 Workshop, 2002.

[57] A. O. (ed.). Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly & Associates,

2001.

[58] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient broadcast in structured p2p networks.

In IPTPS, 2003.

[59] S. El-Ansary, E. Aurell, and S. Haridi. A physics-inspired performace evaluation of a structured peer-

to-peer overlay network. In IASTED International Conference on Parallel and Distributed Computing

and Networks (PDCN), 2005.

[60] P. Felber, K. W. Ross, E. W. Biersack, L. Garcés-Erice, and G. Urvoy-Keller. Structured Peer-to-Peer

Networks: Faster, Closer, Smarter. IEEE Data Engineering Bulletin, 28(1), 2005.

[61] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, and S. Diot.

Packet-level traffic measurements from the Sprint IP backbone. IEEE Network, 16(6), 2003.

[62] M. J. Freedman, E. Freudenthal, and D. Mazires. Democratizing Content Publication with Coral. In

1st USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI), 2004.

[63] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online Balancing of Range-Partitioned Data with

Applications to Peer-to-Peer Systems. In VLDB, 2004.

REFERENCES 203

[64] L. Garcés-Erice, E. W. Biersack, K. W. Ross, P. Felber, and G. Urvoy-Keller. Hierarchical Peer-To-

Peer Systems. Parallel Processing Letters, 13(4), 2003.

[65] L. Garcés-Erice, P. A. Felber, E. W. Biersack, G. Urvoy-Keller, and K. W. Ross. Data Indexing in

Peer-to-Peer DHT Networks.

[66] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, 1994.

[67] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric replication for structured peer-to-peer systems. In

DBISP2P, 2004.

[68] E. Giguère. Mobile data management: Challenges of wireless and offline data access. In ICDE, 2001.

[69] S. Girdzijauskas, A. Datta, and K. Aberer. On Small-World Graphs in Non-uniformly Distributed

Key Spaces. In 1st IEEE International Workshop on Networking Meets Databases (NetDB), 2005.

[70] S. Girdzijauskas, A. Datta, and K. Aberer. Oscar: Small-World Overlay For Realistic Key Distribu-

tions. In Databases, Information Systems and Peer-to-Peer Computing (DBISP2P), 2006.

[71] Gnutella. Gnutella file sharing network. http://en.wikipedia.org/wiki/Gnutella.

[72] P. B. Godfrey and I. Stoica. Heterogeneity and load balance in distributed hash tables. In INFOCOM,

2005.

[73] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher. Adaptive replication in peer-to-peer

systems. In The 24th International Conference on Distributed Computing Systems, March 2004.

[74] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers of replication and a solution. In

SIGMOD, 1996.

[75] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact of dht

routing geometry on resilience and proximity. In SIGCOMM ’03: Proceedings of the 2003 conference

on Applications, technologies, architectures, and protocols for computer communications, pages 381–

394, New York, NY, USA, 2003. ACM Press.

[76] A. Gupta, B. Liskov, and R. Rodrigues. One hop lookups for peer-to-peer overlays. In Ninth Workshop

on Hot Topics in Operating Systems (HotOS-IX), pages 7–12, Lihue, Hawaii, May 2003.

[77] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips: Building an efficient and

stable P2P DHT through increased memory and background overhead. In Proceedings of the 2nd

International Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

[78] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and G. Popek. Rumor: Mobile data access through

optimistic peer-to-peer replication. In Workshop on Mobile Data Access, 1998.

[79] Z. Haas, J. Y. Halpern, and L. Li. Gossip-based ad hoc routing. In INFOCOM, 2002.

[80] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly durable, decentralized storage despite

massive correlated failures. In Proceedings of the 2nd Symposium on Networked Systems Design and

Implementation (NSDI’05), May 2005.

204 REFERENCES

[81] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The Piazza Peer Data

Management System. TKDE, 16(7), 2004.

[82] M. Harchol-Balter, T. Leighton, and D. Lewin. Resource discovery in distributed networks. In PODC,

1999.

[83] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay net-

work with practical locality properties. In In proceedings of the 4th USENIX Symposium on Internet

Technologies and Systems (USITS ’03), Seattle, WA, March 2003.

[84] F. Heylighen. The science of self-organization and adaptivity. The Encyclopedia of Life Support

Systems, 2002.

[85] F. Heylighen and C. Joslyn. Cybernetics and second order cybernetics. R.A. Meyers (ed.), Encyclo-

pedia of Physical Science & Technology (3rd ed.), (Academic Press, New York), 4, 2001.

[86] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed Object Location in a Dynamic

Network. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and

Architectures (SPAA), 2002.

[87] Y. Huang and O. Wolfson. A competitive dynamic data replication algorithm. In ICDE, 1993.

[88] Y. Huang and O. Wolfson. Object allocation in distributed databases and mobile computers. In ICDE,

pages 20–29, 1994.

[89] Y. Huang, O. Wolfson, and A. P. Sistla. Data replication for mobile computers. In SIGMOD, 1994.

[90] P. Huck, M. Butler, A. Gupta, and M. Feng. A Self-Configuring and Self-Administering Name System

with Dynamic Address Assignment. ACM Transactions on Internet Technology, 2(1), 2002.

[91] IETF-RFC:3174. Secure Hash Algorithm 1 (SHA1), 2001. http://www.ietf.org/rfc/rfc3174.txt.

[92] M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay topology management. In Engineering

Self-Organising Applications (ESOA’05), 2005.

[93] M. F. Kaashoek and D. R. Karger. Koorde: A simple degree-optimal distributed hash table. In

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

[94] D. R. Karger and M. Ruhl. New Algorithms for Load Balancing in Peer-to-Peer Systems, 2003. IRIS

Student Workshop (ISW).

[95] M. Karnstedt, K.-U. Sattler, M. Hauswirth, and R. Schmidt. Similarity Queries on Structured Data in

Structured Overlays. In 2nd IEEE International Workshop on Networking Meets Databases (NetDB),

2006.

[96] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized rumor spreading. In FOCS,

2000.

[97] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to implement database

replication. In VLDB, 2000.

REFERENCES 205

[98] J. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In Proceedings of the

32nd ACM Symposium on Theory of Computing, 2000.

[99] F. Klemm, A. Datta, and K. Aberer. A Query-Adaptive Partial Distributed Hash Table for Peer-

to-Peer Systems. In International Workshop on Peer-to-Peer Computing & DataBases (P2P&DB

2004), 2004.

[100] G. Koloniari and E. Pitoura. Content-Based Routing of Path Queries in Peer-to-Peer Systems. In

EDBT, 2004.

[101] S. Krishnamurthy, S. El-Ansary, E. Aurell, and S. Haridi. An analytical study of a structured overlay

in the presence of dynamic membership. Joint IEEE/ACM Transactions on Networking, 2005.

[102] S. Krishnamurthy, S. El-Ansary, E. Aurell, and S. Haridi. A statistical theory of chord under churn.

Ithaca, NY, USA, 2005.

[103] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage.

In Proceedings of ACM ASPLOS. ACM, November 2000.

[104] A. Kumar, J. Xu, and E. W. Zegura. Efficient and Scalable Query Routing for Unstructured Peer-to-

Peer Networks. In Proceedings of the IEEE Infocom, 2005.

[105] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient management of dht routing

tables. In Proceedings of the 2nd Symposium on Networked System Design and Implementation

(NSDI’05), 2005.

[106] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the Evolution of Peer-to-Peer Systems.

In Proceedings of the Twenty-First Annual ACM Symposium on Principles of Distributed Computing

(PODC), 2002.

[107] M. J. Lin and K. Marzullo. Directional gossip: Gossip in a wide-area network. In European Depend-

able Computing Conference, LNCS, 1999.

[108] W. Litwin, M. Neimat, and D. A. Schneider. RP*: A Family of Order Preserving Scalable Distributed

Data Structures. In VLDB, pages 342–353, 1994.

[109] W. Litwin, M. Neimat, and D. A. Schneider. LH* – A Scalable, Distributed Data Structure. ACM

Transactions on Database Systems, 21(4):480–525, 1996.

[110] M. Luby. LT Codes. In The 43rd Annual IEEE Symposium on Foundations of Computer Science,

2002.

[111] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-to-peer

networks. In International Conference on Supercomputing, 2002.

[112] R. Mahajan, M. Castro, and A. Rowstron. Controlling the Cost of Reliability in Peer-to-Peer Over-

lays. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), LNCS.

Springer, 2003.

206 REFERENCES

[113] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emulation of the butterfly.

In Proceedings of the 21st ACM Symposium on Principles of Distributed Computing (PODC), 2002.

[114] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal, M. Baker, and Y. Muliadi. Lockss: A

peer-to-peer digital preservation system. ACM Transactions on Computer Systems (TOCS).

[115] G. S. Manku. Routing networks for distributed hash tables. In Proceedings of the twenty-second

annual symposium on Principles of distributed computing (PODC), pages 133–142. ACM Press,

2003.

[116] G. S. Manku. Balanced binary trees for id management and load balance in distributed hash tables. In

Proceedings of the twenty-second annual symposium on Principles of distributed computing (PODC),

2004.

[117] G. S. Manku. Balanced binary trees for ID management and load balance in distributed hash tables.

In ACM PODC, 2004.

[118] G. S. Manku. Know thy neighbor’s neighbor: the power of lookahead in randomized p2p networks.

In Proceedings of the 36th ACM Symposium on Theory of Computing (STOC), 2004.

[119] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a Small World. In

USITS, 2003.

[120] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on the XOR

metric. In IPTPS, 2002.

[121] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Trans. Parallel

Distrib. Syst., 12(10):1094–1104, 2001.

[122] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage. Structured superpeers: Leveraging heterogeneity to

provide constant-time lookup. In IEEE Workshop on Internet Applications, 2003.

[123] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system. In

Fifth Symposium on Operating Systems Design and Implementation (OSDI), 2002.

[124] M. Naor and j. . T. y. . . U. Wieder, title = Novel Architectures for P2P Applications: the Continuous-

Discrete Approach.

[125] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and A. Löser. Super-

peer-based routing strategies for RDF-based peer-to-peer networks. J. Web Sem., 1(2), 2004.

[126] E. Pacitti, P. Minet, and E. Simon. Fast algorithms for maintaining replica consistency in lazy master

replicated databases. In VLDB, 1999.

[127] T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Reiher, A. Goel, G. H. Kuenning, and G. J.

Popek. Perspectives on optimistically replicated peer-to-peer filing. Software—Practice and Experi-

ence, 28(2), 1998.

[128] A. Parker. P2P in 2005 (Cache Logic study), 2005. http://www.cachelogic.com/research/p2p2005.

php.

REFERENCES 207

[129] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpensive Disks (RAID).

In Proceedings of ACM Sigmod, 1988.

[130] C. E. Perkins, B. Woolf, and S. R. Alpert. Mobile IP Design Principles and Practices. Prentice Hall

PTR, 1998.

[131] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive technology

into the internet. SIGCOMM Comput. Commun. Rev., 33(1):59–64, 2003.

[132] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of Replicated Objects in a

Distributed Environment. In Proceedings of the 9th Annual ACM Symposium on Parallel Algorithms

and Architectures (SPAA), 1997.

[133] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects in a

distributed environment. Theory of Computing Systems, 32, 1999.

[134] I. Podnar, T. Luu, M. Rajman, F. Klemm, and K. Aberer. A Peer-to-Peer Architec-

ture for Information Retrieval Across Digital Library Collections. Technical report, 2006.

TechnicalreportLSIR-REPORT-2006-005.

[135] M. Raab and A. Steger. ”balls into bins” - a simple and tight analysis. In RANDOM ’98: Proceedings

of the Second International Workshop on Randomization and Approximation Techniques in Computer

Science, pages 159–170, London, UK, 1998. Springer-Verlag.

[136] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker. Brief Announcement: Prefix Hash

Tree. In ACM PODC, 2004.

[137] V. Ramasubramanian and E. Sirer. Beehive: O(1) Lookup Performance for Power-Law Query Distri-

butions in Peer-to-Peer Overlays. In Usenix Symposium on Networked System Design and Implemen-

tation (NSDI), 2004.

[138] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load Balancing in Structured P2P

Systems. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03),

LNCS. Springer, 2003.

[139] D. Ratajczak and J. Hellerstein. Deconstructing DHTs. In IBM-TR-03-042, 2003.

[140] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-Addressable

Network. In Proceedings of the ACM SIGCOMM, 2001.

[141] D. Ratner, G. J. Popek, and P. Reiher. Roam: A scalable replication system for mobile computing. In

Mobility in Databases and Distributed Systems, 1999.

[142] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. SIAM, 8(2):300–304, June

1960.

[143] M. K. Reiter and S. G. Stubblebine. Resilient authentication using path independence. IEEE Trans-

actions on Computers, 47(12), 1998.

208 REFERENCES

[144] M. K. Reiter and S. G. Stubblebine. Authentication metric analysis and design. ACM Transactions

on Information and System Security, 2(2), 1999.

[145] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: The Oceanstore

prototype. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST), 2003.

[146] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In Proceedings of the

USENIX Annual Technical Conference, 2004.

[147] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu.

OpenDHT: A Public DHT Service and Its Uses. In PProceedings of ACM SIGCOMM, 2005.

[148] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubiatowicz. Maintenance-

free global data storage. IEEE Internet Computing, 5(5), 2001.

[149] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella network: Properties of large-scale

peer-to-peer systems and implications for system design. IEEE Internet Computing Journal, 6(1),

2002.

[150] J. Risson and T. Moors. Survey of Research towards Robust Peer-to-Peer Networks: Search Methods.

Technical Report UNSW-EE-P2P-1-1, University of New South Wales, Sydney, Australia, Sep. 2004.

http://www.ee.unsw.edu.au/∼timm/pubs/robust p2p/submitted.pdf.

[151] J. Ritter. Why gnutella can’t scale. no, really. http://www.darkridge.com/∼jpr5/doc/gnutella.html,

2001.

[152] R. Rodrigues and B. Liskov. High Availability in DHTs: Erasure Coding vs. Replication. In IPTPS,

2005.

[153] A. Rowstron and P. Druschel. Past: A large-scale, persistent peer-to-peer storage utility. In HOTOS

’01: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems, page 75, Washington,

DC, USA, 2001. IEEE Computer Society.

[154] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-

scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Systems Platforms

(Middleware), Heidelberg, Germany, 2001.

[155] P. H. Salus, editor. Big Book of IPv6 Addressing RFCs (Big Book). Morgan Kaufmann, 2000.

[156] N. Sarshar, P. O. Boykin, and V. Roychowdhury. Percolation search algorithm, making unstructured

p2p networks scalable. In IEEE P2P, 2003.

[157] A. Shokrollahi. Raptor codes, 2002.

[158] J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M. Stonebraker, and A. Yu. Data replication in mariposa. In

ICDE, 1996.

[159] G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient processing of xpath queries with structured

overlay networks. In ODBASE, 2005.

REFERENCES 209

[160] Skype.com. P2P Telephony Explained - For Geeks Only, as of April 2006. http://www.skype.com/

products/explained.html.

[161] N. Spring, L. Peterson, A. Bavier, and V. Pai. Using PlanetLab for Network Research: Myths, Reali-

ties, and Best Practices. Number Second Workshop on Real, Large Distributed Systems.

[162] K. Sripanidkulchai. The popularity of gnutella queries and its implications on scalability. http:

//www-2.cs.cmu.edu/∼kunwadee/research/p2p/gnutella.html, 2001.

[163] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-To-Peer

Lookup Service for Internet Applications. In Proceedings of the ACM SIGCOMM, 2001.

[164] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing unstructured overlay topologies in modern p2p

file-sharing systems. In USENIX Internet Measurement Conference (IMC), 2005.

[165] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-organizing semantic

overlay networks. In SIGCOMM ’03: Proceedings of the 2003 conference on Applications, tech-

nologies, architectures, and protocols for computer communications, pages 175–186, New York, NY,

USA, 2003. ACM Press.

[166] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing

update conflicts in bayou, a weakly connected replicated storage system. In SOSP, 1995.

[167] K. Truelove. Opennap use crashes, Nov. 2001. http://www.openp2p.com/pub/a/p2p/2001/05/11/

opennap.html.

[168] H. Weatehrspoon, B.-G. Chun, C. So, and J. D. Kubiatowicz. Long-term data maintenance: A quan-

titative approach. Technical Report UCB/CSD-05-1404, UC Berkeley, 2005.

[169] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative comparison. In

IPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer Systems, 2001.

[170] Wikipedia. Napster. http://en.wikipedia.org/wiki/Napster.

[171] Wikipedia.org. Wikipedia. http://wikipedia.org/.

[172] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hierarchical storage system.

In H. Jin, T. Cortes, and R. Buyya, editors, High Performance Mass Storage and Parallel I/O: Tech-

nologies and Applications, pages 90–106. IEEE Computer Society Press and Wiley, New York, NY,

2001.

[173] J. Xu, A. Kumar, and X. Yu. On the Fundamental Tradeoffs between Routing Table Size and Network

Diameter in Peer-to-Peer Networks. IEEE Journal on Selected Areas in Communications, 22(1),

2004.

[174] B. Zhao, L. Huang, J. Stribling, A. Joseph, and J. Kubiatowicz. Exploiting routing redundancy via

structured peer-to-peer overlays. In ICNP, 2003.

[175] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerant wide-

are location and routing. In UC Berkeley Technical Report UCB/CSD-01-1141, 2001.

Appendix

211

A. Decentralized partitioning (further analysis).

A.1 Evolution of (probability) distribution function

The properties of the decentralized (adaptive eager) partitioning algorithm AEP (Section 4.3.1) can be stud-

ied by modeling it as a Markov process. As observed in Section 10.3.2, there are two different analysis

techniques that can be found in the literature for studying the stochastic behavior of such a randomized

system/algorithms: (i) The first approach can be broadly termed as a mean value analysis (MVA), where the

evolution of the mean state is studied assuming that the system always actually resides in the mean state. (ii)

The second approach looks at the probability distribution function of the system states at any time instance,

thus studying the evolution of the (probability mass) distribution function (EoDF).

Earlier in Section 4.3.1 the MVA analysis was used to determine the algorithm parameters for Adaptive

Eager Partitioning (AEP) decentralized partitioning algorithm. Here we perform an EoDF analysis to ascer-

tain the appropriateness of the results obtained there. The time evolution of the probability mass function -

the distribution of p0 and p1 can be given as:

P

"
p0

p1

!
, t + 1

#
= P

"
p0 − 1

p1

!
, t

#
p1

n
β

+P

"
p0

p1 − 1

!
, t

#
p0 + (p1 − 1)(1− β)

n

+P

"
p0 − 1

p1 − 1

!
, t

#
1

n
α

+P

"
p0

p1

!
, t

#
1

n
(1− α) (A.1)

for p0 + p1 ≤ n with the last term replaced by P

[(
p0

p1

)
, t

]
for p0 + p1 = n + 1.

In the expression above, we assume that P

[(
x

y

)]
= 0 if either x < 0 or y < 0.

This equation, along with the initial condition P

[(
0

0

)
, 0

]
= 1 and P

[(
p0

p1

)
, 0

]
= 0 for all other

cases, allows to determine the probability distribution function at any time t for any choice of n, α, β. We

are of-course primarily interested in the probability mass function of the states at the end of the partitioning

214 A. Decentralized partitioning (further analysis).

process. It turns out that for n →∞ the expectation value for p0 and p1 follow the equations 4.1 and 4.2 until

tf and remain constant thereafter. Thus to say the expectation values of the EoDF and the MVA analyses

match, which is why we could use the approximate MVA analysis in Section 4.3.1.

Note that if the system were to lead to non-linear equations (as may be the case for some some other

systems) then the MVA analysis might have led to a different result than the EoDF analysis. However solv-

ing the MVA equations numerically is computationally much cheaper than solving the equations obtained

from EoDF analysis. This is because for the MVA analysis, there is only one variable per system state, rep-

resenting its mean value. In contrast, for EoDF we need to deal with the whole distribution of each of the

states, which makes solving the EoDF based equations computationally expensive. However EoDF allows

in addition to obtain the higher order moments of the system states p0 and p1 as a function of the design

parameters α and β, apart from the probability distribution function itself, which is calculated from equa-

tion A.1. Figure A.1 shows the probability distribution function obtained for various desired values of p for

a total peer population n + 1 = 300 where the design parameters α and β are chosen by solving the MVA

based equations.

50 100 150 200 250 300

0.02

0.04

0.06

0.08

Probability distribution of p^0 Hfor a population n+1 = 300L

Binomial distribution @300,0.5D

AEP: alpha = 1, beta = 1 for p = 0.5

Binomial distribution @300,0.25D

AEP: alpha = 0.5, beta = 0 for p = 0.25

Fig. A.1. Probability distribution function obtained using EoDF analysis of adaptive eager partitioning (AEP) algorithm for α and β

chosen for desired p = p0

n+1
values is compared with the (binomial) distribution as obtained using autonomous partitioning (AUT).

We also plot the probability distribution (binomial) for the corresponding p values as is obtained by

autonomous partitioning (AUT). We observe that the spread (variance) obtained using the AEP decentralized

partitioning algorithm is smaller than what is observed in a binomial distribution. Thus to say, apart the

fact that we needed AEP to reduce the communication cost of the partitioning process when subjected

A.2 Error Analysis 215

to the referential integrity constraint, adaptive eager partitioning (AEP) performs better than autonomous

partitioning (AUT) in terms of satisfying the proportional replication constraint for a globally known p.

A.2 Error Analysis

In the mean value analysis of the adaptive eager partitioning (AEP) algorithm in Section 4.3.1 as well as

the evolution of the density function analysis above, we assumed that the value of p is known to all peers.

In practice however peers will derive an estimate for p by sampling. Therefore, in the following we analyze

the effect of errors introduced by only approximate knowledge of p. Other potential sources of errors, such

as taking the limit case n →∞ and using mean value analysis turned out to have a negligible influence.

Assume peers obtain s samples from their locally stored data keys. The samples correspond to Bernoulli

variables X1, . . . , Xs with probability p. The peers estimate p by computing the mean value X =
1
s

∑s
j=1 Xj which is binomially distributed. We would like to determine the effect of an error in estimating

p on the values of α(p) and β(p) and the resulting effect on the partitioning process when using approximate

values of α and β. In the following we will use α and β instead of α(p) and β(p) as long as the meaning is

clear.

We provide an exemplary error analysis for the evolution of p1
i for the case where p ≥ 1− log(2).

We assume that in step i the estimation value p∗i = p + γi is used to determine an estimation value

βi = β + εi. The error γi is the sampling error obtained by the peer initiating step i. Let us denote by

p̃1
i = p1

i + δ1
i the error introduced into the result of the partitioning process due to sampling errors. We can

derive the following closed-form expression for δ1
i from analyzing the Markov model of the process.

δ1
i =

(
1− β

n

)i i−1∑

j=0

−

(
1−

(
1− β

n

)−j
)

n εj

β (β − n)
(A.2)

Since the sampling errors are presumably small we use a Taylor series expansion to approximate β(p).

In fact, for reasons that will become clear later, we need to make a second order approximation to perform

a proper error analysis. For a given value p, we have

εi ≈ β′(p)γi +
1
2
β′′(p)γ2

i (A.3)

for small γi. We now determine the expectation value and standard deviation for δ1
t (to simplify the

presentation we will write t instead of tβ in the following). Since E[γi] = 0 and E[γ2
i] = var[γi] =

1
sp(1− p) we obtain for the expectation value

216 A. Decentralized partitioning (further analysis).

E[δ1
t] =

1
2
β′′(p)

n

s
p(1− p) g(β, n, t) (A.4)

where g(β, n, t) = δt
i/n|εj=1 using (A.2). Asymptotically, for n → ∞, we find numerically that

g(β, n, t) is bounded between -0.25 and -0.15. This shows that sampling introduces a systematic shift of

the balance between the resulting partitions.

Since var[
∑t

i=1 γi] = t var[γi] = t
sp(1− p) we obtain for the standard deviation by a similar analysis

σ[δ1
t] = β′(p) n

√
t

s
p(1− p) f(β, n, t) (A.5)

where for the valid range of p we determine numerically that 0.007 ≤ f(β, n, t) ≤ 0.0105.

The impact of the errors depends in particular also on the behavior of the functions β′(p) and β′′(p).

Using numerical differentiation we observed that the functions are well-behaved in the relevant region.

Performing an analogous analysis for p < 1− log(2) the behavior of the functions α′(p) and α′′(p) will

be relevant for the error behavior. We have included a plot of α′′(p) in order to point out an important obser-

vation (Figure A.2): For very small values of p the second derivative grows extremely fast, and consequently

the error will be large as well.

The error analysis shows that in the presence of sampling errors, we have to include correction terms in

the probabilities α(p) and β(p) used in AEP.

αcorr(p) = α(p)− 1
2
α′′(p)

1
s
p(1− p) (A.6)

βcorr(p) = β(p)− 1
2
β′′(p)

1
s
p(1− p) (A.7)

0.05 0.1 0.15 0.2 0.25 0.3
p

10

20

30

40

50

60

alpha’’HpL

Fig. A.2. Numerical Solution for α′′(p).

A.2.1 Numerical Simulation of the Markov Model

To validate the correctness of our analytical models we performed numerical simulation experiments. We

simulated five models:

1. MVA: simulation of the mean value model for AEP with known p

2. SAM: simulation of the mean value model for AEP; the value of p is estimated from s samples

3. AEP: discrete simulation of AEP with peers taking discrete decisions based on α(p) and β(p) instead

of adding mean value contributions as in the mean value model

4. COR: discrete simulation of AEP with corrected probabilities αcorr(p) and βcorr(p) (as obtained in

Section A.2).

5. AUT (Discrete Autonomous Partitioning): Discrete simulation of autonomous decision making where p

is estimated from s samples

We present the results for n = 1000 and s = 50. Each experiment has been repeated 100 times.

Figure A.3 shows the deviation of the mean value of pt
0 from the expected value p n averaged over all

experiments. As expected, using sampling for estimating p leads to a systematic deviation of the resulting

distribution (SAM, AEP). The error correction strategy (COR) eliminates the deviation almost completely.

Clearly, autonomous partitioning (AUT) on average achieves the desired distribution.

0.1 0.2 0.3 0.4 0.5
p

-2

2

4

6

8

10

12

MeanHp0HtL - n pL Deviation from Mean

AUT

COR

AEP

SAM

MVA

Fig. A.3. Mean of p0
t over 100 experiments, the expected value p n is subtracted to highlight the deviation.

Figure A.4 shows the cost of each algorithm measured in number of interactions. As theoretically pre-

dicted, we observe that adaptive eager partitioning performs better than AUT, except for small values of p

(approx. p < 0.15) independent of which version is considered (MVA, SAM, COR).

Further experiments with different sample sizes showed that the sample size has practically no influence.

Even very small samples (1 or 2 samples) lead to the same results as larger sample sizes. Experiments

also showed that adaptive eager partitioning has a further advantage over autonomous partitioning as it

reduces the standard deviation of the error in partitioning by approximately a factor of 2. Thus our AEP

approach optimizes both performance in terms of number of required interactions and error control in terms

of matching the partitioning ratio p.

Superficially, AEP appears to be a more complex algorithm than AUT while not considerably outper-

forming AUT. However, the complexity is in the analysis required to determine the correct decision proba-

218 A. Decentralized partitioning (further analysis).

0.1 0.2 0.3 0.4 0.5
p

1000

1500

2000

2500

3000

Interactions Number of Interactions

AUT

COR

AEP

SAM

MVA

Fig. A.4. Mean total number of interactions over 100 experiments.

bilities, whereas for practical implementation AEP has several advantages since it leads to a lower variance

than AUT as seen in the previous section A.1 and it provides an invariant: When taking a decision for a

partition, the availability of a reference is guaranteed.

Index

Accordion, 26, 127
Adaptive eager partitioning, 58, 132, 215, 216
Autonomous partitioning, 58, 216

CAN, 4, 54
CFS, 94, 146
Chord, 4, 53, 106

DKS, 29, 106
Dynamic equilibrium, 105

Freenet, 1, 170

Glacier, 146
Gnutella, 2, 15

In-degree balancing, 90
Intensive variables, 129

Kademlia, 24

Load skew, 49

Napster, 1, 2, 15

OceanStore, 146, 170
Optimal replica placement, 29, 91
Overlay maintenance, see Route maintenance
Overlay routing, see Routing

P-Grid, 4, 37
– Construction
– – as a DHT, 71
– – Parallelized, 55
– – Sequential, 64
– Range queries, see Range queries
– – Min-max traversal, 42, 135
– – Shower, 44, 135
– Self-referential directory, see Self-referential directory
Pastry, 4, 53, 54, 106, 127, 170
– Bamboo or OpenDHT, 127

Peer-to-Peer (P2P), 1
PlanetLab, 2, 55, 131
Probabilistic system, 7

Range queries, 4, 41, 135
Recursive queries, 47, 115
– Disambiguation, 47
Replica updates, 110, 169
– Push
– – Rumor spreading, 169
– Push/Pull, 169
Replication strategies, 28
– Caching at querying peers, 29
– Constrained replication, 29
– Optimal replica placement, see Optimal replica placement
– Query-adaptive, 92
– – Proportional, 95
– – Square-root, 95
– Replication along the query path, 29
– Replication at least loaded peers, 29
– Structural replication, see Structural replication
– Updates, see Replica updates
Route maintenance, 126
– Correction on Change (CoC), 126
– Pre-empt churn, 127
– Proactive or periodic (PC), 126
– Self-healing routing, 112
– – Correction on Failure (CoF), 116, 126
– – Correction on Use (CoU), 115, 126
– – Recursive queries, see Recursive queries
Routing, 18
– Iterative processing, 47
– Look-ahead, 46
– Recursive processing, 47
– Recursive queries, see Recursive queries

Self-organization, 7, 196
– Markov process, 8, 196
Self-referential directory, 5, 110, 149, 173

219

220 Index

Skype, 2, 104
Statistical mechanics
– Master equations, 128
Storage systems
– CFS, see CFS
– Glacier, see Glacier
– Maintenance strategies
– – Deterministic lazy repair, 149
– – Eager repair, 149
– – Randomized lazy repair, 150
– OceanStore, see OceanStore
– Redundancy mechanisms, 147
– – Digital Fountain (rateless) codes, 148
– – Erasure codes, 147
– – Replication, 147
– TotalRecall, see TotalRecall
Structural replication, 28, 104
– Re-balancing, 67
Structured overlay, 2, 4, 20
– Accordion, see Accordion
– Beehive, 97
– CAN, see CAN
– Chord, see Chord
– Distributed Hash Table, see DHT
– DKS, see DKS
– Kademlia, see Kademlia
– Mercury, 26
– P-Grid, see P-Grid
– Pastry, see Pastry
– Proximity, 46
– – PNS, 46
– – PRS, 46
– SkipGraphs, 22
– Symphony, see Symphony
– Viceroy, 26
Structured overlay maintenance
– Route maintenance, see Route maintenance
Symphony, 26, 90

TotalRecall, 104, 146

Unstructured overlay, 18

Anwitaman Datta

Short Biography Anwitaman Datta did his PhD at the School of Computer and Communication
Sciences (I&C) at EPFL. He has published more that twenty peer-reviewed papers
during his PhD, and participated in the Swiss National Center of Competence in
Research on Mobile Information and Communication Systems (NCCR-MICS), the
Evergrow EU project as well as the internal project for developing the P-Grid peer-
to-peer system.

Research
Interests

• Self-organization and dynamics in large scale systems.

• Distributed and Peer-to-Peer (P2P) systems and algorithms.

• Epidemic and gossip algorithms.

Education and
Research
Experience

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Oct’2001-Aug2006: PhD. Candidate, School of Computer and Communication
Sciences (graduation: August 2006)
Advisor: Prof. Karl Aberer

2000-2001: Graduate School in Communication Systems Department, EPFL.

University of California Berkeley, California, USA.

2005 (April-July): Visiting Scholar at Department of Electrical Engineering &
Computer Sciences (EECS)
Hosted by Prof. Ion Stoica and also collaborated with Prof. Michael Franklin.

Indian Institute of Technology, Kanpur, India

1996-2000: B. Tech. in Electrical Engineering (major), Computer Science (mi-
nor).

Academic Honors National Talent Search Examination (NTSE 1994) Awardee (awarded by the Gov-
ernment of India).

Employments &
internships

2001 - 2006: Research Assistant at EPFL, Lausanne, Switzerland.
2000: Associate Member of Technical Staff at Transwitch India, New Delhi, India.
1999: Summer internship at Center for Advanced Technology (CAT), Indore, India.

	Thesis.pdf
	ShortCV.pdf

