fMRI Compatible Haptic Interface Actuated with
Traveling Wave Ultrasonic Motor

Markus Flueckiger, Matteo Bullo, *Dominique Chapuis, *Roger Gassert, Yves Perriard
Integrated Actuators Laboratory - LAI
*Laboratory of Robotic Systems - LSRO
Ecole Polytechnique Fédérale de Lausanne - EPFL
CH - 1015 LAUSANNE - SWITZERLAND

Phone : +41 21 693 66 93

Fax : +41 21 693 20 50

Email : markus.flueckiger@epfl.ch

Abstract— We are developing haptic interfaces compatible with
functional Magnetic Resonance Imaging (fMRI) for neuroscience
studies. The presented prototype with one rotary degree of free-
dom is actuated by a traveling wave ultrasonic motor operating
under admittance control. Torque is sensed from the deflection
of an elastic polymer probe via light intensity measurement
over optical fibers. This concept allows us to place all electronic
components outside the shielded MR room. Hence, the device
can be used in conjunction with fMRI, providing torque and
motion feedback simultaneously with imaging. Its compactness
and simplicity facilitate the construction of multiple degree of
freedom systems.

I. INTRODUCTION
A. Interest of fMRI Compatibility

Magnetic Resonance Imaging (MRI) is a standard techno-
logy in diagnostics [1] and advanced brain research [2]. Robots
compatible with MRI [3], [4] and functional MRI (fMRI) [5]
are required to develop assistive devices for intraoperative MRI
and haptic interfaces for neuroscience studies. Investigating the
adaptation of human motor control to virtual dynamic environ-
ments produced by such interfaces has brought major advances
in neuroscience [6]. A robotic interface in conjunction with
an MR scanner would enable neuroscientists to investigate the
brain mechanisms involved in performing tasks with arbitrary
dynamics [7], and therefore has the potential to become a
critical tool in neuroscience and rehabilitation [8].

B. fMRI Compatibility and Safety

In addition to the standard requirements of medical robots,
such as safety and sterilization issues, an fMRI compatible
device must not disturb the scanning procedure. The robot
motion should not have any adverse effect on the image,
and in turn, the robot must not be affected by the scanner’s
magnetic field and RF pulses. A descriptive definition of MR
compatibility can be found in [9], a resume of techniques for
MR compatible robots is given in [10]. However, we must
consider that functional imaging sequences are even more
sensitive to perturbations of the magnetic field than standard
diagnostic sequences. The MR safety of the robot requires
that the machine should not unintentionally move from any
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magnetic attraction and no electromagnetic side effects should
occur.

C. Requirements for Neuroscience Studies

To study neuromuscular response during dynamical interac-
tion with humans performing movements, the haptic interface
must deliver forces smoothly and fast enough to allow the
rendering of any desired force field.
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Fig. 1. Testing of the haptic interface prototype inside an MR scanner at the
University Hospital in Basel.

The test procedures can be classified into two main types :

— Passive movement (from subjects point of view) : The
haptic interface moves along a predefined trajectory, the
subject, holding the output handle, follows this movement
with his hand.

— Active movement (from subjects view) : The subject
actuates the haptic interface and feels the torque feedback
of a virtual environment.

II. PROTOTYPE DESIGN ISSUES

A. Mechanical Structure

The main challenge we face in designing the mechanics
of an MR compatible haptic interface are the strong static
magnetic field and the fast switching magnetic field gradients
which are present in an MR environment. As the structure will
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be exposed to a static magnetic field of typically 1.5 to 3 Tesla,
only non-ferromagnetic materials can be used. Moreover, the
amount of electrically conducting parts should be reduced to a
minimum to avoid possible disturbance due to eddy currents,
induced by the switching magnetic field gradients. Therefore,
the polymer Polyoxymethylene (POM) was mainly used. Parts
exposed to high stress are manufactured from aluminum.

Fig. 2. Prototype of the MR compatible 1 DOF haptic interface.

B. Motor Selection

Supposing that the haptic interface must be a compact
mechanical system whose actuator operates at the place of
interest, which is at the entry of the scanner bore (i.e. where the
hand of the subject is located), conventional electromagnetic
motors cannot be used. We must choose an actuator that, on the
one hand, is able to operate within an MR environment, on the
other hand, does not disturb the imaging in any way. The MR
compatible version of the Shinsei URS60 traveling-wave ul-
trasonic motor (TUSM) was selected because it presents weak
electromagnetic disturbances and is insensitive to high magne-
tic fields. Moreover, this actuator is very well adapted to the
haptic interface application because it reaches it’s maximum
efficiency at high torque and low speed, the common range
of operation in the present application. Further, it has a high
power density compared to the conventional electromagnetic
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motors. Its holding torque (at rest, without feeding), however,
will be a challenge for controller implementation. Estimation
of output torque will not be practicable, which is why a torque
sensor is needed. TUSM have been used for positioning tasks
in surgical assist robots [11], [4] whose compatibility with
intraoperative MRI has been tested successfully [9].

C. Torque Sensing

To allow accurate force measurement over a relatively
long distance without any electronic circuitry, we use optical
sensors with light transmitted through optical fibers to detect
deflection of a polymer probe by reflected light intensity mea-
surement. This torque sensor, described in [12] was adapted
to the present application and is shown in figure 3.

Sensing element

Mirror

Optical
head Optical fibers
Fig. 3. Schema of the MR compatible torque sensor (with partial cut)[12].

D. Position and Speed Sensing

To determine the motor position we use an optical encoder !,
which was delivered with the USR60 motor. Its 500 increments
per turn, using both channels, result in a resolution of 2000
pulses per turn. In addition we are able to deduce speed
information by using the internal timer of the DSP. An
adequate conversion factor finally allows us to calculate the
motor speed in rpm.

III. MOTOR CONTROL

TUSM are friction drives. Hence, they are non-
backdriveable. Consequently, there is no control parameter
to directly impose torque at the output. We therefore use an
admittance control paradigm (section III-A) where motion is
controlled to achieve force feedback control.

A. Admittance Control Strategy

In the present case the goal of the admittance control is to
render the desired force field of a virtual target environment

'HEDS-5540, HP
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Fig. 4. In admittance control, the controller receives the torque that the

user exerts on the haptic interface(7}) as input, and reacts with motion (6.),
which is computed by a discrete virtual environment model represented by
its admittance (Ye).

at the output of the haptic interface as shown in figure 4. We
note the torque exerted by the human to the output handle
of the haptic interface as 7}, and the position of the actuator
as 6. The corresponding law which relates applied torque and
actuator position is specified by the admittance of the virtual
environment (Y;) (equation 1)

0. =Y. Ty (D

The detailed control scheme is presented in figure 5. The
external control loop generates the position command as a
function of the applied torque and the admittance of the
virtual environment (section III-D). The internal control loop
consists of a position controller cascaded with a proportional
integral speed controller that generates the control signal for
the TUSM.

- -
| External control loop |

N ————...

| : Internal control loop Nm (h) |
N

I : !
| () 1 6. () (h) f Shinsei |
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Fig. 5. Control diagram of the implemented admittance controller with

position and speed feedback. The external admittance control loop generates
the commanded position (fec) as a function of applied torque (7% ) and
measured motor position (fey,) at time (h — 1) and (h — 2). In the internal
control loop, the motor command values frequency f, amplitude a and phase
shift ¢ of the two supply voltages are generated.

B. Speed Control

Basically, the speed of the TUSM can be controlled by
varying the frequency, the voltage amplitude and the phase
difference of the two sinusoidal input waveforms. However,
the TUSM suffers from severe system nonlinearities and
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parameter variations. Especially the drift of the resonance fre-
quency due to motor heating presents a challenge. Therefore,
it is not possible to use a basic PID type controller without any
precaution. Adaptive control theory is a promising approach
and research was done on polynomial [13], fuzzy logic [14]
and neural network [15], [16] based adaptive controllers.

25
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voltage amplitude control parameter a [rad]

40 40.5 41 415 42 425 43
frequency f [KHz]

435 44 445

Fig. 6. The amplitude of the traveling wave is a function of frequency as
shown in the graph.

We suggest a control approach by amplitude modulation of
the supply voltage. We use the degree of freedom offered by
the amplitude to linearize the frequency-speed characteristic.
The optimal variation of the supply voltage making it possible
to linearize the characteristic is obtained when the parameter
of control a is a function of the frequency according to the
graph shown in figure 6.

Pl speed Th
controller l
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: impose :
| direction of |m/2| I
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Fig. 7. The speed controller commands frequency f, amplitude a and phase
shift ¢ of the two supply voltages.

The comparison of the speed-frequency characteristics ob-
tained with varying or constant amplitude (figure 8) shows
indeed that this control approach results in a linearization in
the region of low speed.

The phase shift is fixed at 5 to maintain the optimal
traveling wave. A change of sign inverts the direction of

rotation. These considerations result directly in the control
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Fig. 8. With constant voltage amplitude, the speed-frequency characteristic
is highly non-linear. When the amplitude is optimized, this characteristic
becomes linear.

loop shown in figure 7. Experimental validation shows the
dynamic behavior of this system to be essentially the same at
low and high speed (figure 9).
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Fig. 9. The dynamic behaviour of the controller is basically the same at low
speeds (where the voltage amplitude is varied as a function of frequency) and
at high speeds where the voltage amplitude is constant.

Besides the evident advantages of the simplicity of our
approach compared to the methods cited above, control by
amplitude modulation of the supply voltage allows, in an
intrinsic way, to considerably reduce the phase current. The
measures reported in figure 10 give evidence of considerably
reduced power consumption. For instance, at a speed of
50rpm, current and voltage are lowered by approximately
26%, which corresponds to a reduction in power consumption
of about 46% per phase.

We can thus conclude that the suggested control approach
is, among the cited alternative solutions, the one that performs
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Fig. 10. Evolution of the phase current I}, as a function of motor speed

n. The phase current is significantly lowered at low speed when the voltage
amplitude varies according to the optimized profile.

best in the criteria of performance, robustness, effectiveness
and simplicity of implementation.

C. Position Controller

To design a position controller we exploit the intrinsic
property of the TUSM, which is its holding torque. Contrary
to standard servo drives, there will be no power consumption
when the commanded position is reached. The controller is
thus designed to calculate the approaching speed dependent
on the actual positioning error. We notice that when the
error of position is higher than a certain threshold, speed
is commanded such that the motor is working close to the
resonant frequency where efficiency is maximum. When the
positioning error falls below the threshold, speed is decreased
linearly until the commanded position is reached and feed is
cut. In this way we avoid exciting eigenfrequencies of higher
order which could damage the mechanics.

D. Virtual Environment

The virtual environment we want to represent with the
haptic interface is given through its mecanical equivalent in
figure 11.

T
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[¢)
A

0.

. %

Fig. 11. Equivalent mechanical model of the virtual environment.

Noting its equivalent inertia as .J., dumping as d. and

stiffness as ¢, the dynamics of the virtual environment can
be represented by equation 2.

0-7803-9208-6/05/$20.00 © 2005 IEEE



Jeée =Ty — deée - Ceoe (2)
The Laplace transform of equation 2 is given by

1
T2 4d. s+ ¢
—_————

YE

0.(s) Th(s) 3)

E. Implementation

The virtual environment is described by a mathematical
model implemented on the DSP microprocessor. For validation
of the control algorithm we implement the virtual environment
given by the second order differential equation 2. For this
purpose we need to obtain its discrete form. This is done by
approximating the first derivation (angular speed) and second
derivation (angular acceleration) as given by equations 4 and
5.

H(h) — tg(h)%w 4)
H(h) _ O(h) —20(h — 1) +0(h —2) )

Ah?
With this method, replacing equations 4 and 5 in equation 2,
equation 6 yields the commanded angular position at sample
time h.

eec(h) =A (Th(h)) + B (ae(h - 1)) +C (ee(h - 2)) (6)

Where A, B and C are given in function of the system
parameters J., ¢, d. and Ah :

INE
A= 7
J. + Ah2c, + Ahd, @
_ Ahd, +2J, ®)
= J. + Ah2c, + Ahd,
—J.
C &)

= .+ Ah2c, + Ahd,

As the chosen equivalent mechanical model of the virtual
environment is a second order system, it is natural that the
commanded angular position 6..(h), besides depending on the
applied torque, is a function of the measured position at the
preceding sample times (f..(h — 1) and O..(h — 2)).

The suggested control approach is of a general nature and
finds a wide range of applications wherever interaction with
human motion is demanded (research, surgery, rehabilitation
etc.).

IV. EXPERIMENTAL RESULTS

The validation of the proposed haptic interface consists on
the one hand of a test of the torque feedback control algorithm,
including both, conventional performance evaluation as well as
the appreciation of a human operator. On the other hand, its
compatibility with fMRI must be verified.
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A. Validation of controller

Applying the admittance control strategy, we obtained the
results shown in figure 12. A torque 7} is applied artifi-
cially by the means of the control electronics to simulate a
human operator. The measure of the angular motor position
commanded by the control algorithm is then compared to the
angular motor position computed on the basis of equation 2.
In addition to the position, the control parameters frequency
(f), amplitude (a) and phase shift (¢) are shown. We observe
that the measured position follows the simulated value, which
means that the haptic interface reproduces the virtual target
environment correctly.

B. EMC test results

The radiation of the prototype as an isolated system was
measured. In a anechoic chamber (electromagnetically shiel-
ded room), an annular antenna’ was positioned 3m away from
the robot as specified in the norms for electromagnetic compa-
tibility measures for medical equipment. The electromagnetic
field was measured with a spectrum analyzer’. No parasite
signal could be observed for the frequency range (9kHz to
300M H z) of interest.

C. MR Compatibility Tests

Magnetic compatibility is a necessary condition for our
system and has been shown with EMC tests. The criteria
for MR compatibility are the loss of homogeneity of the
magnetic field and the signal to noise ratio (SNR) of the image.
Preliminary tests at the University Hospital of Basel* have
shown that no variation in imaging quality due to robot/motor
activity can be observed (figure 13). Further, as the same
motor/sensor configuration as in [3] is used, it can be said, that
the same conclusions concerning the MR combatibility can
be made. Similarly, the heating effect has been proven to be
minor as shown in previous work [17]. As functional imaging
sequences are generally more sensitive to perturbations of the
magnetic field than standard diagnostic sequences, we plan
to conduct tests with human subjects performing a cognitive
task during functional imaging in order to validate the correct
behavior of the system, as was suggested in [18].

Fig. 13. Functional images of the cylindrical phantom when the robot was
not inside the shielded room (left) and when the motor was in motion at the
entry of the scanner bore (center). The subtraction of these images shows no
shift (right).

2HLAG6120, Schaffner-Chase
3E7401 9kHz - 1.5GHz EMC Analyzer, Agilent Technologies
4with a Magnetom Espree Tim [76 x 18] MR scanner, Siemens
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Fig. 12. The behavior of the controller was tested with the virtual environment model given in section III-D.

V. CONCLUSION

Each component of the system was designed and optimi-
zed regarding to fRMI compatibility. The tailormade control
algorithm allowed us to optimize the operating characteristics
of the TUSM, which initially has a highly nonlinear behavior.
The proposed admittance control scheme (section III-A) ex-
tends the field of application of TUSM to fMRI compatible
haptic interfaces, which gives way to several improvements
compared to existing devices that use a hydrostatic transmis-
sion concept [18], [5] :

— By the benefit of electrical power transmission, more
compact and mechanically simpler solutions can be achie-
ved. Hence, the construction of multiple degree of free-
dom systems is facilitated.

— Due to the higher bandwidth, the simulation of a larger
variety of force fields is possible.
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Nevertheless, the multidisciplinarity of this project still
offers us many opportunities for future developments. They
will be directed towards optimization of the power and control
electronics and the realization of a more robust and more
compact mechanical structure. Moreover we intend to base
further developments of the control method on sensorless
technology.

A. Speed Observer

The position encoder we use does not allow an accurate
calculation of low speed and therefore, in the next generation
prototype, it will be replaced by a speed estimation algorithm.
This allows to reduce cost and dimensions of the haptic
interface. Especially, no electronic circuitry will be present
in the shielded MR room and compatibility will hence be
improved further. A neural network algorithm is chosen for the
purpose of speed estimation because of the nonlinearity of the
motor characteristics and the fact that no valid analytical model
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Fig. 14.  Schematic representation of the training method for the neural

network used to estimate motor speed 7.

can be obtained yet. A neural network, given that enough
information is supplied, can be trained to learn any function.
Inspired by biologic nervous systems, it is composed of
simple elements (neurons) working in parallel which are linked
by weighted connections. These weights are adjusted during
training in order to minimize the error between measured and
estimated output as illustrated in figure 14.

—— measured speed
q - = estimated speed

10 ‘q
sb | |

[

speed [rpm]

i
|

I
36 38 40 42 44 46 48
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Fig. 15. Results of preliminary speed estimation tests.
Observations during preliminary tests showed that motor
speed n is related unequivocally to load torque 7. and phase
current I;,. The torque sensor is necessary because of the
TUSM’s irreversibility and can therefore also be used as
input for the neural network. The neural network will be
trained offline on the basis of representative measures aiming
to identify this relation. After the training step, the online
simulation of the network, excited with measurements of
load torque and phase current, will enable us to estimate
speed. In order to allow the identification of the system’s
dynamic behavior, the phase current of the preceding sample
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step is also an input variable. Position will be obtained by
integration. Preliminary results obtained with this method
show its feasibility (figure 15). However, the robustness and
the stability of the suggested estimation algorithm strongly
depends on the information contained in the data used for
the training of the neural network. For instance, we noticed
a reduced estimation quality when the user of the interface
changed. We need to exploit our good knowledge of the TUSM
to build a database that allows an effective training of the
neural network. A series of tests, which are representative for
the typical working conditions, will finally validate robustness
and stability of the speed estimation algorithm.

NOMENCLATURE
Y.  Virtual environment admittance [rad/Nm)
T,  Torque applied by human [Nm)]
T,. Torque measured by torque sensor [Nm)]
f.  Virtual environment motor position [rad]
Ocrm,  Measured motor position [rad]
0.c  Commanded motor position [rad]
0.  Virtual environment motor speed [rad/s]
0.  Virtual environment motor acceleration  [rad/s?]
Je  Virtual environment inertia [N]
de  Virtual environment dumping [Ns/m]
Ce Virtual environment stiffness [N/m]
n.  Commanded motor speed [rpm]
nm,m  Measured motor speed [rpm]
I Frequency [kH 2]
a Amplitude command parameter [rad]
) Phase shift [rad]
Irs Phase current [A]
h Sampling time [s]
Ah  Integration step [$]
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