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Abstract

In multichannel sampling, several sets of sub-Nyquist sampled signal values are acquired. The offsets between the sets are
unknown, and have to be resolved, just like the parameters of the signal itself. This problem is nonlinear in the offsets, but linear
in the signal parameters. We show that when the basis functions for the signal space are related to polynomials, we can express the
joint offset and signal parameter estimation as a set of polynomial equations. This is the case for example with polynomial signals or
Fourier series. The unknown offsets and signal parameters can be computed exactly from such a set of polynomials using Gröbner
bases and Buchberger’s algorithm. This solution method is developed in detail after a short and tutorial overview of Gröbner basis
methods. We then address the case of noisy samples, and consider the computational complexity, exploring simplifications due to
the special structure of the problem.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

If a bandlimited signal is uniformly sampled at a frequency lower than twice its maximum frequency, the sampled
signal is aliased, and perfect reconstruction is generally not possible. This is a well-known result from the Shannon–
Nyquist sampling theorem [19]. However, if multiple uniform sets of samples with small relative offsets are available,
the original signal can be reconstructed from the combined set of all samples. Such a setup is often called multichannel
sampling, and was first studied by Papoulis [16]. The results were later extended by Unser and Zerubia [23,24] in their
generalized sampling theory.
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examples can be reproduced using the code available at http://lcav.epfl.ch/reproducible_research/SbaizVV06.
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These methods can be applied to high-rate A/D converters, which use multiple parallel A/D converters at a lower
rate, operating with small relative offsets [6,10]. Similarly, on two-dimensional signals, these techniques can be ap-
plied in super-resolution imaging. Super-resolution techniques use multiple images taken from almost the same point
of view to reconstruct a higher resolution image [8,18,28].

However, in most of these applications, the relative offsets between the different sets of samples are unknown. In
this paper, we will therefore study reconstruction methods for multiple aliased sets of samples with unknown offsets.
That is, we have to solve for both the unknown signal coefficients and the unknown offsets. A method to solve this
problem for discrete-valued offsets is presented by Marziliano and Vetterli [14]. For the reconstruction problem with
unknown, continuous-valued offsets, Vandewalle et al. [26] give a solution using projections onto subspaces.

A first contribution of this paper is to show that, in many cases, the multichannel sampling problem with unknown
offsets can be written as a set of polynomial equations in both the unknown signal coefficients and the offsets. The
solution can then be computed using Gröbner bases. In any practical setting, the samples are corrupted by noise, and
then there is no algebraic solution. Thus, a second contribution of the paper is to address this noisy version of the
problem, and to show how a good approximation can be obtained from multiple Gröbner bases for subsets of samples.

Gröbner basis theory is a very powerful tool from algebraic geometry. The theory was originally introduced by
Buchberger in 1965 [1], and can be found in some very good text books, like for example the book by Cox et al. [5],
as well as in many free (Macaulay2, Singular) and commercial (Mathematica, Maple, Magma) software packages.
Gröbner bases have also found their way into many applications in signal processing and system theory [2,3]. Exam-
ples can be found in filter bank design [4,9,12,17], multichannel deconvolution [29], or motion estimation [11]. In this
last paper, Holt et al. use algebraic geometry to determine the number of solutions and uniqueness for certain prob-
lems in three-dimensional motion estimation. They analyze the 3D motion of a rigid link moving in a plane where one
endpoint is known, and the extraction of 3D motion from 2D optical flow information. In this paper, we will consider
shifts of one-dimensional signals, which can be extended to global planar shifts of images in the image plane.

This paper is structured as follows. The multichannel sampling problem with unknown offsets is formulated math-
ematically as a set of polynomial equations in Section 2. Section 3 gives an overview of Gröbner basis theory, and
more particularly the main ideas that we will use for our reconstruction problem. Gröbner bases are then applied to the
multichannel sampling problem in Section 4. Section 5 presents a solution for noisy measurements. The complexity of
such an algorithm is discussed in Section 6, and some optimizations are presented that take advantage of the particular
structure of the polynomials. Finally, Section 7 concludes the paper.

2. Problem setup

A mathematical formulation of the multichannel sampling problem presented in the introduction is given below.
This setup is the same as the one used in [25], so the reader can find a more detailed description and some more
examples in that reference.

Let us consider a finite L-dimensional Hilbert space H with basis {ϕl(t)}l=0,...,L−1 (H = span({ϕl(t)}l=0,...,L−1)).
For simplicity, assume the space to be periodic, of period 1. The time t can then be taken modulo 1, and we restrict
our analysis to the interval [0,1). An arbitrary signal f (t) in H can then be written as

f (t) =
L−1∑
l=0

αlϕl(t), (1)

with αl the expansion coefficient corresponding to the basis function ϕl(t). We sample f (t) uniformly with N samples,
resulting in

y0(n) = f

(
n

N

)
=

L−1∑
l=0

αlϕl

(
n

N

)
for 0 � n < N. (2)

If we choose the number of samples N < L, it is not possible to compute the L expansion coefficients αl from the N

samples y0(n). We will therefore consider M such sets of samples, with for each set a relative offset tm (0 � m < M

and t0 = 0). For every additional set of samples, we obtain in this way N new equations, while adding only a single
unknown tm. A sample from the mth set can be written as
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(a) (b)

Fig. 1. Illustration of the different variables with M = 2 sets of samples and a Fourier basis. (a) The original signal f (t) has L Fourier coefficients
(L odd), extending from −(L − 1)/2 to (L − 1)/2. H is sampled at times n/N for the first set y0 (—), and at (n + t1)/N for the second set y1
(– –). (b) Frequency domain representation of the absolute values of the signal spectrum (—) and its aliased copies after sampling (– –).

ym(n) = f

(
n + tm

N

)
=

L−1∑
l=0

αlϕl

(
n + tm

N

)
. (3)

This setup is illustrated in Fig. 1. If we combine all the samples from the mth set in a vector ym, this can be rewritten
as

ym = Φ tmα, (4)

with α the vector containing the expansion coefficients αl , and Φ tm an N ×L matrix with the sampled basis functions
as its columns. Putting all the sets of samples ym together into a single vector y of length MN , and similarly combining
all Φ tm into the MN × L matrix Φt, we obtain:

y =

⎛
⎜⎜⎜⎝

y0
y1
...

yM−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Φ t0

Φ t1
...

Φ tM−1

⎞
⎟⎟⎟⎠α = Φtα. (5)

Example 2.1 (Second degree polynomials). Let us illustrate this setup with an example. Consider the space H defined
as the span of the functions ϕ0(t) = t2, ϕ1(t) = t , ϕ2(t) = 1. Assume that we take two sets of two samples, i.e. M = 2,
N = 2. If we consider the signal parameters α = (64,−24,−4)T and offsets t = (0,1/4), the two sets of samples are
y0 = (−4,0)T and y1 = (−6,6)T . The signal and its samples are shown in Fig. 2. In this case, (5) becomes⎛

⎜⎜⎜⎜⎝
0 0 1
1
4

1
2 1

1
4 t2

1
1
2 t1 1

( 1
2 + 1

2 t1)
2 1

2 + 1
2 t1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ α0

α1
α2

⎞
⎠ =

⎛
⎜⎜⎝

−4
0

−6
6

⎞
⎟⎟⎠ . (6)

We can clearly see that the unknown offset t1 appears together in the equations with the unknown signal coefficients
α0, α1 and α2.

In the above example, we obtain a set of nonlinear polynomial equations. The equations are linear in the unknown
signal coefficients α. Thanks to the specific choice of a polynomial basis, the equations are polynomials in the offsets t.
Note that for an arbitrary basis {ϕl(t)}, this is not valid. However, for certain bases, we can rewrite (5) as a set of
polynomial equations using a change of variables. This is possible when the basis is a set of functions ϕl(t) = h(t)l ,
with h(t) an invertible function.
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Fig. 2. Second degree polynomial signal used in Example 2.1. The signal f (t) = 64t2 − 24t − 4 is sampled with two sets of two samples y0 =
(−4,0)T and y1 = (−6,6)T with offset t1 = 1/4.

Probably the most important and practically useful example of such a basis is when h(t) = ej2πt , that is, the Fourier
series. In fact, consider the case of a complex signal of the form

f (t) =
K∑

l=−K

αlϕl(t), (7)

with ϕl(t) = ej2πlt . Note that the basis functions and coefficients are now indexed from −K to K (instead of 0 to
L − 1 previously), which is the usual way of indexing for Fourier series. For coherence with the previous example,
we will assume here that K = (L − 1)/2, with L odd. The samples are given by

ym(n) = f

(
n + tm

N

)
=

K∑
l=−K

αlW
nle

j2πltm
N for 0 � n < N, (8)

with W = ej2π/N . By setting zm = ej2πtm/N , we obtain

ym(n) = f

(
n + tm

N

)
=

K∑
l=−K

αlW
nlzl

m. (9)

We multiply (9) with zK
m to eliminate negative exponents:

zK
mym(n) = zK

mf

(
n + tm

N

)
=

K∑
l=−K

αlW
nlzl+K

m . (10)

For each sample, this can be rewritten as a polynomial constraint

pnN+m =
K∑

l=−K

αlW
nlzl+K

m − zK
mym(n) = 0. (11)

In this equation, the unknowns are the signal parameters αl and the offset-dependent variables zm. As in Example 2.1,
the equations are linear in the signal parameters and polynomial in the offset variables zm. We will now introduce
Gröbner bases and Buchberger’s algorithm, which provide an elegant method to solve such a set of polynomial equa-
tions.
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3. Gröbner bases

It is beyond the scope of this paper to give a complete presentation of algebraic geometry and Gröbner bases.
We present here the main results related to our multichannel sampling problem and we refer to Cox et al. [5] and
Buchberger [2,3] for a complete presentation of algebraic geometry and Gröbner bases. This section is intended as a
quick introduction and overview of key results that are necessary to our solution method. It can be skipped by readers
familiar with Gröbner bases.

3.1. Affine varieties and ideals

We consider polynomials in the n complex variables, x0, . . . , xn−1. A polynomial p can then be written compactly
as

p =
∑

d

adxd, ad ∈ C, (12)

where the sum is over a finite number of n-tuples d = (d0, . . . , dn−1) and xd is a compact notation for x
d0
0 . . . x

dn−1
n−1 .

Each term of the sum in (12) is called a monomial. In the following, we will denote C[x0, . . . , xn−1] the set of
(complex) polynomials in the variables x0, . . . , xn−1.

The basic objects of algebraic geometry are affine varieties:

Definition 3.1 (Affine variety). Consider the polynomials p0, . . . , ps−1 in the n variables x0, . . . , xn−1 ∈ C. Then we
set

V (p0, . . . , ps−1) = {
(c0, . . . , cn−1) ∈ C

n: pi(c0, . . . , cn−1) = 0, ∀0 � i < s
}
. (13)

We call V (p0, . . . , ps−1) the affine variety defined by p0, . . . , ps−1. The elements of an affine variety are the points
for which the polynomials p0, . . . , ps−1 are all zero.

The determination of the affine variety is trivial in the linear case, since the polynomial pi has the simple form

pi(x0, . . . , xn−1) = ai0x0 + · · · + ai(n−1)xn−1 + bi, i = 0, . . . , s − 1, (14)

and the points of the variety V (p0, . . . , ps−1) are those that satisfy the system

Ax + b = 0, (15)

with {A}i,j = aij and b = (b0, . . . , bs−1)
T . The solution can be easily computed by using Gaussian elimination.

Recall that Gaussian elimination consists in computing linear combinations of the rows of (15) in order to remove
progressively the variables. The method is based on a certain ordering of the variables. For example, with the ordering
x0, x1, . . . , xn−1, we obtain a system

Ãx + b̃ = 0. (16)

The ith row of Ã has the form

( 0 . . . 0 ãiji
ãiji+1 . . . ãi(n−1) ). (17)

The leading zeros in each row correspond to the positions of the variables that have been eliminated from the previous
equations. Therefore, we have (possibly with an initial reordering of the equations)

j0 < j1 < · · · < jl−1 < n, (18)

and the rows l to s − 1 are all zero. That is, at least one of the variables is eliminated at each step (and possibly more
than one). Note that, after the lth equation, all the variables are eliminated. If b̃l = · · · = b̃s−1 = 0, rank(Ã | b̃) =
rank(Ã) = l and the system admits a solution. The solution of the system is obtained by back substitution.

The procedure of Gaussian elimination can be extended to the case of polynomial equations. This extension is
known as Buchberger’s algorithm and the set of equations obtained after elimination is called a Gröbner basis. In
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order to give an overview of the algorithm, we recall the theoretical background and show the analogy with Gaussian
elimination. We refer to the bibliography for the details and formal proofs.

As in the linear case, we need to define an ordering of the terms of (12), i.e. the monomials of x0, . . . , xn−1.
Since the variables may appear with different exponents, there are different ways to order monomials according to the
variables and the exponents. A common choice is lexicographic (lex) ordering.

Definition 3.2 (Lexicographic ordering). Let d = (d0, . . . , dn−1) and d′ = (d ′
0, . . . , d

′
n−1) be two n-tuples representing

positive integer exponents of the monomials xd, xd′
. We say that d >lex d′ if, in the vector difference d − d′ ∈ Zn, the

left-most nonzero entry is positive. We will write xd >lex xd′
if d >lex d′.

Note that, next to the type of ordering, we also need to define the order between the different variables. In the
following, we will assume that the terms of each polynomial are ordered in descending order according to lex ordering,
and with x0 > x1 > · · · > xn−1. We define the multidegree of a polynomial p, multideg(p) as the largest exponent of
the monomials of p according to the lex ordering. We call leading term, LT(p) the term of p with the largest exponent.
The total degree of a polynomial is defined as the maximum sum of the exponent vectors d of its terms.

Example 3.1. Let us consider a polynomial

p = 2x3
0x2

1 + 5x0x
3
1x3

2 + 3x4
1x2. (19)

Using lex ordering, and x0 > x1 > x2, we have x3
0x2

1 > x0x
3
1x3

2 > x4
1x2, and (19) is ordered in descending lexico-

graphic order. Its multidegree is multideg(p) = (3,2,0), and the leading term LT(p) = 2x3
0x2

1 . The total degree is
1 + 3 + 3 = 7.

In the procedure of Gaussian elimination, the equations of the system correspond to a set of vectors generating a
subspace. The aim of elimination is to determine a new basis for such a subspace with the structure given by (16). In
the case of polynomials, the equations can be combined using polynomial coefficients. The set of all polynomials that
can be constructed from an original set has the algebraic structure of an ideal of the ring of polynomials.

Definition 3.3 (Ideal). A subset I ⊂ C[x0, . . . , xn−1] is an ideal if it satisfies:

(1) 0 ∈ I.

(2) If p,q ∈ I, then p + q ∈ I.

(3) If p ∈ I and a ∈ C[x0, . . . , xn−1], then ap ∈ I.

If p0, . . . , ps−1 are polynomials, then we set

I = 〈p0, . . . , ps−1〉 =
{

s−1∑
i=0

aipi : ai ∈ C[x0, . . . , xn−1]
}

. (20)

We call I the ideal generated by p0, . . . , ps−1.

3.2. The ideal membership problem

A key problem in algebra is to determine whether a given element p of a ring belongs to a given ideal I or not.
In terms of polynomials, the problem is equivalent to testing if a given polynomial p can be written as a linear
combination of the polynomial generators of I , p0, . . . , ps−1, using polynomial coefficients a0, . . . , as−1. Such a
problem is known as the ideal membership problem.

If we think of an ideal generated by a single polynomial in one variable, the problem has a simple solution. In fact,
we can apply the algorithm of polynomial division and write p as

p = a0p0 + r. (21)

The quotient a0 and the remainder r are uniquely determined under the condition that deg(r) < deg(p0). In this case,
the ideal membership problem has a simple solution: if r = 0, p belongs to 〈p0〉, otherwise not.
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In the case of multiple polynomials in multiple variables, we can extend the algorithm of polynomial division. The
goal is to write p as

p = a0p0 + · · · + as−1ps−1 + r. (22)

The division algorithm consists in considering the monomials of p in decreasing order. For each monomial, if the
leading term of one of the pi ’s is a divisor, then the corresponding quotient ai is updated together with the remaining
monomials of p. Otherwise, the monomial is moved to the remainder r . The following theorem can be proven for
polynomial division [5, §2.3, Theorem 3].

Theorem 3.1. Fix a monomial order and let P = (p0, . . . , ps−1) be an ordered s-tuple of polynomials in x0, . . . , xn−1.
Then every polynomial p can be written as in (22), where either r = 0 or r is a linear combination of monomials,
none of which is divisible by any of LT(p0), . . . ,LT(ps−1). Furthermore, we have

multideg(p) � multideg(aipi), i = 0, . . . , s − 1. (23)

A crucial point of the algorithm is that the result of the division depends on the order that we consider for the
divisors p0, . . . , ps−1.

Example 3.2. Let p0 = x0x1 + 1, p1 = x2
1 − 1 be two polynomials in x0, x1 and assume we use the lex order with

x0 > x1. If we divide p = x0x
2
1 − x0 by P = (p0,p1) the result is

x0x
2
1 − x0 = x1 · (x0x1 + 1) + 0 · (x2

1 − 1
) + (−x0 − x1). (24)

With P = (p1,p0), however, we have

x0x
2
1 − x0 = x0 · (x2

1 − 1
) + 0 · (x0x1 + 1) + 0. (25)

Therefore, the result of division is not unique. Moreover, the remainder of division may be nonzero, even if p ∈
〈p0,p1〉. In the following, we will denote pP the remainder r of the division of p by the s-tuple of polynomials P .

There are some cases where the s-tuple of polynomials has a particular structure that allows to solve the ambiguity.
A set with such a property is called a Gröbner basis.

Definition 3.4 (Gröbner basis). Let G = {g0, . . . , gu−1} be a basis for the ideal I . If for all p ∈ I the remainder of the
division pG = 0 then G is called a Gröbner basis for I .

Gröbner bases have several interesting properties, including a generalization of the structure of the system (16).
However, the most surprising result is given by the following theorem [4, §2.5, Theorem 4]:

Theorem 3.2 (Hilbert basis theorem). Every ideal I of the ring of polynomials of n variables has a finite generating
set. That is, I = 〈g0, . . . , gu−1〉 for some g0, . . . , gu−1 ∈ I . In particular, it is always possible to choose g0, . . . , gu−1
so that they form a Gröbner basis.

3.3. Buchberger’s algorithm

The key step of Gaussian elimination was to combine two rows of the matrix (i.e. two equations) in order to cancel
the entry corresponding to the variable of highest order. This concept is extended to polynomials by introducing
S-polynomials.

Definition 3.5 (S-polynomial). Let p0, p1 be two nonzero polynomials in x0, . . . , xn−1. If multideg(p0) = d and
multideg(p1) = d′, then let d′′ = (d ′′

0 , . . . , d ′′
n−1), where d ′′

i = max(di, d
′
i ). The S-polynomial of p0 and p1 is defined

as the linear combination

S(p0,p1) = xd′′

LT(p0)
p0 − xd′′

LT(p1)
p1. (26)
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Algorithm 1. Buchberger’s algorithm for the computation of a Gröbner basis.

Let I = 〈p0, . . . , ps−1〉 	= 0 be a polynomial ideal. Then a Gröbner basis for I

can be constructed in a finite number of steps by the following algorithm:

Input: P = (p0, . . . , ps−1)

Output: a Gröbner basis G = (g0, . . . , gu−1) for I , with P ⊆ G

G := P

Repeat
G′ := G

For each pair (p, q), p 	= q in G′ do
S := S(p,q)G

′

If S 	= 0 then G := G ∪ S

until G = G′.

Using S-polynomials, we can easily verify if a basis G is a Gröbner basis. In fact, we have the following theorem [5,
§2.6, Theorem 6]:

Theorem 3.3. Let I be a polynomial ideal. Then a basis G = {g0, . . . , gu−1} is a Gröbner basis for I if and only if,
for all pairs i 	= j, the remainder on division of S(gi, gj ) by G (listed in some order) is zero.

There is a main difference between the linear and the polynomial case when we combine equations. In the linear
case, if we combine p0 and p1 we obtain an equation of the form

h = ap0 + bp1, a, b ∈ C, (27)

and this equation can be used to replace p0 or p1, i.e.

〈p0,p1〉 = 〈p0, h〉 = 〈h,p1〉. (28)

In the polynomial case, equations are combined using polynomial coefficients, i.e. the terms a and b are polynomials
in the variables x0, . . . , xn−1. Since the set of polynomials has the structure of a ring, it is not always possible to find
an inverse of the coefficients. This means that, for example, it is not always possible to compute p1 from p0 and h.
For this reason, to construct a Gröbner basis, one has to increase initially the number of elements of the basis. Such
an extension ends when the conditions given by Theorem 3.3 are satisfied. This algorithm is due to Buchberger and is
given in Algorithm 1 [2, §2.7, Theorem 2].

Algorithm 1 is not a very practical way to compute a Gröbner basis. Several improvements are possible. More-
over, Gröbner bases computed in this way are often bigger than necessary. For this reason, unneeded generators are
eliminated by using Theorem 3.3 or similar tests.

3.4. Solution of polynomial equations

We can now show that a Gröbner basis corresponding to a system of polynomial equations and built using lex
ordering simplifies the system and allows to compute the solution by back substitution. Remember that we defined the
ideal I as the set of all polynomials that can be derived from the initial set using polynomial coefficients. We can also
define the elimination ideal Ik as the set of all polynomials that can be deduced from the original system and contain
only the variables xk, . . . , xn−1,

Ik = I ∩ C[xk, . . . , xn−1]. (29)

If we can find a basis for each one of the sets Ik , k = 1, . . . , n − 1, we can determine the solutions of the original
system using back substitution. In fact, we clearly have that for any k � 1, Ik+1 ⊆ Ik . Therefore, if we have a solution
of the system of equations associated to Ik+1, we can extend it to the system associated to Ik by computing the values
of the variable xk . This can be done by computing the zeros of a polynomial in the variable xk . An important property



L. Sbaiz et al. / Appl. Comput. Harmon. Anal. 25 (2008) 277–294 285
Algorithm 2. Algorithm for multichannel sampling with unknown offsets using Gröbner bases.

(1) Write out the equations from (5) describing the samples as a function of the signal coeffi-
cients.

(2) If necessary, perform a change of variables to convert the equations into a set of polynomial
equations.

(3) Compute a Gröbner basis for the set of polynomial equations using Buchberger’s algorithm.
(4) Use back substitution to compute the offsets and signal parameters from the Gröbner basis.
(5) If necessary, eliminate solutions that are not valid (e.g. offset values not on the unit circle in

the Fourier case).

of Gröbner bases is that they solve easily the problem of determining the ideals Ik , k = 1, . . . , n − 1. Namely, the
Gröbner bases of all the ideals Ik , k = 1, . . . , n− 1 can be determined from the Gröbner basis of I . The result is given
by the elimination theorem [2, §3.1, Theorem 2]:

Theorem 3.4 (Elimination theorem). Let I ⊂ [x0, . . . , xn−1] be an ideal and let G be a Gröbner basis of I with respect
to lex order where x0 > x1 > · · · > xn−1. Then, for every 1 � k < n, the set

Gk = G ∩ C[xk, . . . , xn−1] (30)

is a Gröbner basis of the kth elimination ideal Ik .

Using this theorem, we can compute the different variables from a Gröbner basis using back substitution. To
summarize, we can solve a set of polynomial equations in multiple variables as follows. First, we compute a Gröbner
basis for the ideal corresponding to the set of equations using Buchberger’s algorithm. The solution can then be
obtained from this Gröbner basis using back substitution.

4. Multichannel sampling using Gröbner bases

We can now use Gröbner bases and Buchberger’s algorithm to solve the equations from (5). After a possible change
of variables to write the equations in polynomial form, we can directly apply Buchberger’s algorithm. This results in
a Gröbner basis for the ideal defined by the set of equations. The signal parameters can then be easily extracted from
this Gröbner basis using the elimination theorem. This is summarized in Algorithm 2. We will illustrate this algorithm
with two examples, for polynomial signals and signals described by Fourier series, respectively.

Example 4.1 (Polynomial signals). First, we reconsider the equations obtained in Example 2.1. That is, we consider
a second degree polynomial signal with two sets of two samples (L = 3, M = 2, and N = 2, see also Fig. 2). We can
represent the set of solutions of (6) as the points of the affine variety defined by the set of polynomials:

p0 = α2 + 4,

p1 = 1

4
α0 + 1

2
α1 + α2,

p2 = 1

4
α0t

2
1 + 1

2
α1t1 + α2 + 6,

p3 = 1

4
α0t

2
1 + 1

2
α0t1 + 1

4
α0 + 1

2
α1t1 + 1

2
α1 + α2 − 6, (31)

in the variables α0, α1, α2 and t1. We fix the ordering of variables as α0 > α1 > α2 > t1 and we use lex ordering for
monomials.

At the first step of Buchberger’s algorithm, we find that

S(p0,p1) = 4α0 − 2α1α2 − 4α2
2 = (−2α1 − 4α2)p0 + 16p1,
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S(p0,p2) = α0t
2
1 − 1

2
α1α2t1 − α2

2 − 6α2

=
(

−1

2
α1t1 − α2 − 4t2

1 − 2

)
p0 + 4t2

1 p1 − 2α1t
2
1 + 2α1t1 + 16t2

1 + 8, (32)

S(p0,p3) = −1

2
α0α2t1 − 1

4
α0α2 + α0t

2
1 − 1

2
α1α2t1 − 1

2
α1α2 − α2

2 + 6α2

=
(

−1

2
α0t1 − 1

4
α0 − 1

2
α1t1 − 1

2
α1 − α2 − 4t2

1 − 8t1 + 6

)
p0

+ (
4t2

1 + 8t1 + 4
)
p1 − 2α1t

2
1 − 2α1t1 + 16t2

1 + 32t1 − 24,

S(p1,p2) = 1

8
α1t

2
1 − 1

8
α1t1 + 1

4
α2t

2
1 − 1

4
α2 − 3

2

=
(

1

4
t2
1 − 1

4

)
p0 + 1

8
α1t

2
1 − 1

8
α1t1 − t2

1 − 1

2
,

S(p1,p3) = −1

8
α0t1 − 1

16
α0 + 1

8
α1t

2
1 − 1

8
α1t1 − 1

8
α1 + 1

4
α2t

2
1 − 1

4
α2 + 3

2

=
(

1

4
t2
1 + 1

2
t1

)
p0 +

(
−1

2
t1 − 1

4

)
p1 + 1

8
α1t

2
1 + 1

8
α1t1 − t2

1 − 2t1 + 3

2
,

S(p2,p3) = −1

2
α0t1 − 1

4
α0 − 1

2
α1 + 12 = (2t1 + 1)p0 + (−2t1 − 1)p1 + α1t1 − 8t1 + 8. (33)

Therefore, we add the remainders that are nonzero to the basis:

p4 = S(p0,p2)
G = −2α1t

2
1 + 2α1t1 + 16t2

1 + 8,

p5 = S(p0,p3)
G = −2α1t

2
1 − 2α1t1 + 16t2

1 + 32t1 − 24,

p6 = S(p2,p3)
G = α1t1 − 8t1 + 8. (34)

The remainders of S(p1,p2) and S(p1,p3) are not added, because they are the same as polynomials p4 and p5,
respectively. Following the same procedure, in the second iteration, we find that only S(p2,p6) and S(p4,p6) give a
distinct, nonzero remainder. We add the polynomials

p7 = S(p2,p6)
G = −2α1 − 48, p8 = S(p4,p6)

G = 32t1 − 8 (35)

to the basis. In the following iteration all remainders are zero and by Theorem 3.3 we conclude that p0, . . . , p8 is a
Gröbner basis. Applying again Theorem 3.3 we can try to reduce the elements of the basis. In this case, we have that
p2, p3, p4, p5, p6 can be removed and the final basis is given by {p0,p1,p7,p8}. In order to apply the elimination
theorem, we rename the elements of the basis as:

g0 = 1

4
α0 + 1

2
α1 + α2, g1 = −2α1 − 48, g2 = α2 + 4, g3 = 32t1 − 8. (36)

The elimination ideals are I1 = 〈g1, g2, g3〉, I2 = 〈g2, g3〉, and I3 = 〈g3〉. The solution of the problem can be obtained
by computing the points of the affine variety associated to I3 and extending it by back substitution to I2, I1 and I . We
easily find that the unique solution is given by t1 = 1

4 , α2 = −4, α1 = −24, and α0 = 64.

The procedure described in the above example can be applied to any multichannel sampling problem in the polyno-
mial space H. For any value of the variables L, M , and N , the equations in (5) form a set of polynomial equations and
we can therefore compute the parameter values by calculating a Gröbner basis for the corresponding ideal. Similarly,
the same algorithm can be applied to Fourier series, using the change of variables given in Section 2. This is a very
interesting case from a practical point of view, as signals and images are often bandlimited or can be considered to
be so.
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Fig. 3. Fourier series signal used in Example 4.2. The signal with Fourier series coefficients x = (3 2 − j 1 2 + j 3)T is sampled with two sets
of four samples y0 = (11 −7 3 −3)T and y1 = (1 + √

2 1 − 3
√

2 1 − √
2 1 + 3

√
2 )T with offset t1 = 1/2.

Example 4.2 (Fourier series). Assume K = 2 (and therefore L = 5, see (7)), i.e. the input signal is represented by the
parameter vector α = (α−2, . . . , α2), where each entry is a complex value. For this example, we assume

α = ( 3 2 − j 1 2 + j 3 )T .

We suppose that M = 2 sets of N = 4 samples are taken from the input signal, with the displacements t = (0,1/2). In
this case, the two sets of measurements are

y0 = ( 11 −7 3 −3 )T ,

y1 = ( 1 + √
2 1 − 3

√
2 1 − √

2 1 + 3
√

2 )T . (37)

The signal and its samples are shown in Fig. 3. Applying (11), we obtain 8 polynomials that represent the constraints
imposed by the measurements:

p0 = α2 + α1 + α0 + α−1 + α−2 − 11,

p1 = −α2 + jα1 + α0 − jα−1 − α−2 + 7,

p2 = α2 − α1 + α0 − α−1 + α−2 − 3,

p3 = −α2 − jα1 + α0 + jα−1 − α−2 + 3,

p4 = α2z
4
1 + α1z

3
1 + α0z

2
1 + α−1z1 + α−2 − (1 + √

2 )z2
1,

p5 = −α2z
4
1 + jα1z

3
1 + α0z

2
1 − jα−1z1 − α−2 − (1 − 3

√
2 )z2

1,

p6 = α2z
4
1 − α1z

3
1 + α0z

2
1 − α−1z1 + α−2 − (1 − √

2 )z2
1,

p7 = −α2z
4
1 − jα1z

3
1 + α0z

2
1 + jα−1z1 − α−2 − (1 + 3

√
2 )z2

1, (38)

where the complex variable z1 = ej2πt1/4 represents the displacement. Again, by using Buchberger’s algorithm, we
obtain a Gröbner basis. Assuming the ordering α2 > α1 > · · · > α−2 > z1, we obtain

g0 = 2α2 − 3j
√

2z1 + 3
√

2z1 − 12,

g1 = α1 − 2 − j,

g2 = α0 − 1,

g3 = α−1 − 2 + j,

g4 = 2α−2 + 3j
√

2z1 − 3
√

2z1,

g5 = 2z2
1 − √

2(1 + j)z1 = 2z1

(
z1 −

√
2
(1 + j)

)
. (39)
2
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Algorithm 3. Algorithm for multichannel sampling from noisy samples.

(1) Write out the equations from (5) describing the samples as a function of
the signal coefficients.

(2) If necessary, perform a change of variables to convert the equations into a
set of polynomial equations.

(3) Divide these equations into at most
(

MN
L+M−1

)
critical subsets of equations

Si .
(4) Compute a Gröbner basis for each set Si . Use back substitution to obtain

the offsets and the signal parameters.
(5) Eliminate solutions that are not valid (e.g. offset values not on the unit

circle in the Fourier case).
(6) Compute the weighted average of the offsets corresponding to the remain-

ing solutions (typically one per set Si ).
(7) Fill in the offsets in the equations from (5) and solve the set of linear equa-

tions for the unknown signal parameters.

In the last polynomial of the basis, g5, all variables but z1 are eliminated. Therefore we can compute the solutions for
the displacement variable, z1 = 0 and z1 = ejπ/4, from g5. Clearly, z1 = 0 is discarded since it does not belong to the
unit circle, while the second solution corresponds to the correct displacement t1 = 1/2. By back substitution, one can
compute the signal parameters.

To sum up, in the above examples we have MN polynomial equations with maximum total degree L. The equations
are linear in the signal coefficients αl , and polynomial of order at most L− 1 in the offsets tm. The computed Gröbner
basis is linear in Example 4.1, and contains a second degree polynomial in Example 4.2. This is much lower than the
theoretical double exponential bound that will be discussed in Section 6.

5. Multichannel sampling under noisy conditions

The computation of a Gröbner basis is typically performed with infinite precision. A Gröbner basis is defined as
a set of polynomials that generates the same variety as the original set of polynomial equations. The solution that is
computed using Gröbner bases is therefore an exact solution to the set of polynomial equations.

Moreover, concepts such as projections or distance do not have any meaning over the ring of polynomials. It is not
possible to compute a ‘least squares solution’ to a set of equations with Gröbner bases. Hence, if the measurements are
noisy, or known with limited precision, Buchberger’s algorithm would generally conclude that there is no solution.
As there are usually more equations than unknowns (see Example 4.2), the errors on the sample values make the
equations from (5) incoherent. There has already been a lot of research on the stability of Gröbner basis computation,
and various solutions have been proposed [20–22].

We propose to solve this problem by dividing the complete set of polynomial equations into multiple (overlapping)
critical subsets. By critical we mean that there is a finite, nonempty set of solutions (typically when the number
of equations is equal to the number of unknowns). We could use all the critical subsets that can be derived from the
original set of equations, or select only a limited number of them to limit the computational time. We can now compute
a Gröbner basis for each subset, and obtain a set of parameter values using back substitution. The final solution can
then be defined as a (weighted) average of the different solutions from the subsets. This method is summarized in
Algorithm 3. Let us now analyze an example.

Example 5.1 (Fourier series with noisy measurements). Consider a signal that is represented by its L = 5 Fourier
series coefficients, given by

α = ( 5 − j −3j −6 3j 5 + j )T . (40)

The signal is sampled with two sets of four samples (M = 2, N = 4), with an offset vector t = (0,24/11) =
(0,2.1818). In a noiseless case, this would result in the following two sets of samples:
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Fig. 4. Fourier series signal used in Examples 5.1 and 6.1. The signal with Fourier series coefficients x = (5 − j −3j −6 3j 5 + j)T is sampled
with two sets of four noisy samples y0 = (3.4845 −21.2468 3.6672 −9.5310)T and y1 = (2.0917 −7.4480 0.7300 −19.3078)T with offset
t1 = 24/11. Its reconstruction both in Example 5.1 (– –) and Example 6.1 (– · –) are shown. We can see that the results are rather unstable even
with small amounts of noise. Recall however that the sampling locations of the second set (x) with respect to the first set are unknown.

y0 = ( 4 −22 4 −10 )T ,

y1 = ( 3.0217 −7.5743 −0.3591 −19.0882 )T . (41)

The second set of samples is given numerically, because the exact expressions are quite complicated. Now we add
white Gaussian noise to these samples with mean 0 and standard deviation 1, resulting in the noisy sample values

y0 = ( 3.4845 −21.2468 3.6672 −9.5310 )T ,

y1 = ( 2.0917 −7.4480 0.7300 −19.3078 )T , (42)

for one particular realization (see also Fig. 4). We obtain a similar set of polynomials as in (38), with just different
sample values. As we have 8 equations in 6 unknowns (5 signal parameters and an offset), we compute a Gröbner
basis for all

(8
6

) = 28 subsets Si of 6 polynomials from the total set. One of them is given here:

g0 = α2 − (11.5043 + 8.2663j)z1 − (8.5363 + 13.2582j)z2
1 − 9.4824,

g1 = 0.04567 − 2.9289j + α1,

g2 = 5.9065 + α0,

g3 = 0.04567 + 2.9289j + α−1,

g4 = α−2 + (11.5043 + 8.2663j)z1 + (8.5363 + 13.2582j)z2
1,

g5 = z3
1 + (1.1192 + 1.0848j)z2

1 + (0.0312 + 0.9995j)z1. (43)

We can then compute all the possible solutions for each of the Gröbner bases. We eliminate the invalid ones: those that
do not correspond to valid offsets (values of z1 that are not on the unit circle), as well as those that give a large error
when evaluated on the two remaining equations. Typically, only a single solution remains for every Gröbner basis.
From the remaining solutions, we compute the offsets t1, and compute their average value:

t1,avg = 2.0660. (44)

This way of proceeding has the advantage that we keep a valid offset value. If we would just average the computed
values for z1, the result is typically not on the unit circle anymore, and does not represent a valid offset. Note that
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we performed a simple averaging operation here. A weighted average that takes the sensitivity of the results to the
different sample values into account would probably improve the results further. We replace this average offset value
in the original equations, and compute the least squares solution of this set of linear equations in the unknown signal
parameters α:

α̂ =

⎛
⎜⎜⎜⎜⎝

4.7412 − 4.5812j

−0.0388 − 2.9566j

−5.9450
−0.0388 + 2.9566j

4.7412 + 4.5812j

⎞
⎟⎟⎟⎟⎠ . (45)

The relative error is computed as the norm of the difference between the true coefficient vector α and the estimated
coefficient vector α̂ divided by the norm of the coefficient vector: ‖α − α̂‖/‖α‖. For this simulation, we obtain a
relative error of 0.493. This error can be compared to the error that would be obtained from the noisy samples with the
exact offset t1, which is 0.080. Averaged over 250 such simulations with random signal coefficients and offsets, the
estimated relative error is 0.340, compared to 0.095 in the ideal case using the exact offsets with the noisy samples.

6. Complexity and optimizations

The main disadvantage of Gröbner bases for the multichannel sampling problem is the computational complexity
of Buchberger’s algorithm. As explained in Section 3, the set of polynomials pi has to be expanded in the first part of
the algorithm by adding the nonzero remainders of S-polynomials. Unlike in Gaussian elimination, we cannot simply
replace a polynomial by a linear combination of that polynomial with another one. The linear combination has to be
added to the existing set of polynomials. This expansion can become very large, and is one of the reasons for the high
memory requirements of Buchberger’s algorithm. The maximum total degree of the polynomials in a reduced Gröbner
basis can be shown to be

E = 2

(
D2

2
+ D

)2S−1

, (46)

where D is the maximal total degree of the polynomials pi , and S is the number of variables [7,15]. In our setup, the
maximal total degree D = L, and we would therefore typically obtain

E = 2

(
L2

2
+ L

)2L+M−2

. (47)

Fortunately, this double exponential function describes a worst-case scenario, while in practice the complexity is often
much lower. In the examples from the previous sections, the degree was always much lower, with only linear terms
remaining in Example 4.1, and a second degree polynomial in Example 4.2. The above upper bounds for those cases
would be about 107 and 1040, respectively.

Another reason for the high complexity of Buchberger’s algorithm is given by the fact that the algorithm performs
computations with infinite precision. If for example the input coefficients are (small) integers, quite complicated
rational numbers are used in the computation of a Gröbner basis. Using Maple to solve a polynomial problem like
the one in Example 2.1, with a 6th degree polynomial, and 3 sets of 3 samples, the algorithm already requires more
than 1 GB of memory. In the back substitution step of our solution method, we need to compute the zeros of a
polynomial. The complexity of this operation will depend on the order of the specific polynomial that is obtained.
Although theoretically, this order can only be bounded by (47), in practice, it is often much lower (as can also be seen
from the examples). The roots of a polynomial with degree E can be computed using an algorithm with complexity(

E(logE)2| log ε| + E2(logE)2) (48)

where ε is the precision of the computed roots [13].
Various optimizations of Buchberger’s algorithm exist. For example, certain S-polynomials can already be ex-

cluded before examining them. Often, other orderings than the lexicographic ordering also result in lower complexity.
Algorithms exist to convert a Gröbner basis using one ordering into a Gröbner basis for another ordering. It can there-
fore be computationally more efficient to compute a Gröbner basis first using another ordering, and convert it then into
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lexicographic ordering. Lexicographic ordering is required to apply the elimination theorem, which offers a simple
way to compute the coefficients using back substitution. Various implementations of Gröbner basis algorithms includ-
ing different optimizations exist (Gb [9], Macaulay2, Maple, Mathematica, Magma, Singular). We used Mathematica
for our simulations. Even though this is probably not the optimal implementation [9], it allows us to implement and
clearly show all the important concepts and ideas from this paper.

It is important to note that the multichannel sampling problem has a particular structure. From (5), which describes
the problem for any kind of basis, and from the different examples in previous sections, we can see that the equations
are linear in the signal parameters. They only have higher polynomial orders in the offset parameters t. Typically, there
are many (L) signal parameters, while only a small number (M) of different sets of samples is used. The (linear) signal
parameters can be eliminated from the set of equations using Gaussian elimination on the first L equations. This can be
performed in O(L3) operations, and for our particular structure of the problem and with two sets of samples (M = 2),
it does not increase the degree of the polynomial coefficients in t. This can be seen from the examples in the previous
sections. With a Fourier basis, each term in a signal parameter αi has the same power of the offset variable z1, and a
varying complex coefficient (or has no offset variable at all, for the first set of N equations). The signal parameters can
therefore be eliminated by multiplying equations with complex numbers and adding them together. We never need to
multiply any of the equations from the second set by the offset variable z1, and therefore do not increase its degree. For
polynomial signals, we can perform a similar elimination. By ordering the signal parameters as αL−1, αL−2, . . . , α0,
we can eliminate each of the parameters without needing to multiply equations by the offset variable t1. If more than
M = 2 sets are considered, the different offset variables have to be multiplied in the Gaussian elimination, and the
results are more complex.

After this Gaussian elimination step, the computed values for the signal parameters (as a function of t) can be
replaced in the MN − L remaining equations. We obtain a (much smaller) set of MN − L polynomial equations in
the unknown offsets t. It is now sufficient to compute a Gröbner basis for this smaller set in much fewer unknowns
(M � L). With noisy samples, we can now compute Gröbner bases for the

(
MN−L
M−1

)
subsets of M −1 equations instead

of the
(

MN
L+M−1

)
sets of L + M − 1 equations previously. Typically this results in much fewer subsets of smaller size.

However, the precision with which the parameters are computed is also (slightly) lower. Compared to all the possible
subsets of L + M − 1 equations in Algorithm 3, now only the subsets containing the first L equations and all possible
combinations of M − 1 equations from the remaining set are considered. The maximum total degree of a Gröbner
basis for such a subset is reduced to

2

(
L2

2
+ L

)2M−2

, (49)

where the number of sets of samples M is much smaller than the number of coefficients L. As the first L equations
are linear in the signal parameters and have lower degrees than (49) in the offsets, this bound also replaces the
previous bound (47) for the general Gröbner basis computation. For Examples 4.1 and 4.2, these bounds are 15
and 35, respectively. While this is still far beyond the actual degrees of the Gröbner bases, it is already a much tighter
bound than the one given in (47). Once this (smaller) Gröbner basis is computed, the offset values can be obtained
using back substitution and a method to compute the zeros of a polynomial. We can compute the signal parameters
by substituting the offset values in the first L equations. Once the offsets are known, other methods (such as least
squares) can also be used to compute the signal parameters from the original equations. Note however, that with most
Gröbner basis algorithms, the above procedure is also followed (implicitly), as the signal parameters are eliminated
first. The algorithm with explicit Gaussian elimination of the signal parameters is given in Algorithm 4. We will now
illustrate this method for the setup used in Example 5.1.

Example 6.1 (Fourier series using Gaussian elimination). We use the same signal and sample values as in Exam-
ple 5.1. Instead of calculating a Gröbner basis for the 28 subsets of 6 equations, we now eliminate the signal parameters
first from the first L = 5 polynomials using Gaussian elimination. This gives us the signal parameters as a function of
the offset:

α−2 = 9.4824 + 9.4824 − (0.0457 + 2.9289j)z1 − 7.9982z2
1 − (0.0457 − 2.9289j)z3

1

−1 + z4
1

,

α−1 = −0.0457 − 2.9289j,
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Algorithm 4. Algorithm for multichannel sampling from noisy samples using Gaussian elimination for the
linear part.

(1) Write out the equations from (5) describing the samples as a function of the signal coefficients.
(2) If necessary, perform a change of variables to convert the equations into a set of polynomial equations.

These are linear in the signal coefficients α, and higher order polynomials in the offsets t.
(3) Apply Gaussian elimination on the first L equations to compute the signal coefficients α as a function

of the offsets t.
(4) Replace these values of α in the remaining MN − L equations and multiply each equation by its

common denominator to obtain a set of MN − L polynomial equations in the offsets t.
(5) Divide these equations into at most

(
MN−L
M−1

)
critical subsets of equations Si .

(6) Compute a Gröbner basis for each set Si .
(7) Calculate the possible offset values using back substitution and by computing the zeros of polynomial

equations.
(8) Eliminate offset values that do not give a valid solution (e.g. values not on the unit circle in the Fourier

case).
(9) Compute the weighted average of the offsets corresponding to the remaining solutions (typically one

per set Si ).
(10) Replace this value in the original equations and solve for the signal parameters α.

α0 = −5.90654,

α1 = −0.0457 + 2.9289j,

α2 = −9.48237 + (0.0457 + 2.9289j)z1 + 7.9982z2
1 + (0.0457 − 2.9289j)z3

1

−1 + z4
1

, (50)

where we assume that z4
1 	= 1. We can then replace these values in the remaining three equations, and multiply them

by their common denominators. This results in three polynomial equations in the unknown offset z1:

(2.9746 + 2.8833j)z1 + 6.4568z2
1 + (2.9746 − 2.8833j)z3

1

− (2.9746 + 2.8833j)z5
1 − 6.4568z6

1 − (2.9746 − 2.8833j)z7
1 = 0,

(−0.0913 − 5.8579j)z1 − 1.3617z2
1 − (0.0913 − 5.8579j)z3

1

+ (0.0913 + 5.8579j)z5
1 + 1.3617z6

1 + (0.0913 − 5.8579j)z7
1 = 0,

(−2.8833 + 2.9746j)z1 − 5.4031z2
1 − (2.8833 + 2.9746j)z3

1

+ (2.8833 − 2.9746j)z5
1 + 5.4031z6

1 + (2.8833 + 2.9746j)z7
1 = 0. (51)

As there is only a single unknown offset, the three possible critical subsets of equations that can be formed are the
three separate equations. We do not need to compute a Gröbner basis for these subsets and can therefore directly
compute the zeros for each of the polynomials separately. After elimination of the zeros that are not valid solutions
(additional zeros were added by multiplying with the common denominators, the zeros have to be on the unit circle,
etc.), we have the following zeros remaining for the three polynomials:

z
(1)
1 = −0.9957 − 0.0924j, z

(2)
1 = −0.9949 − 0.1007j, z

(3)
1 = −0.9982 − 0.0594j. (52)

From these values, we can compute the offsets t
(1)
1 = 2.0589, t

(2)
1 = 2.0642, and t

(3)
1 = 2.0378. We take the average of

these solutions (t1,avg = 2.0537), replace the corresponding value of z1 in the original equations and compute a least
squares solution to these linear equations. We obtain the coefficient vector

α̂ =

⎛
⎜⎜⎜⎜⎝

4.7412 − 5.7629j

−0.0457 − 2.9289j

−5.9065
−0.0457 + 2.9289j

4.7412 + 5.7629j

⎞
⎟⎟⎟⎟⎠ . (53)
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The relative error for our estimation, ‖α − α̂‖/‖α‖, is 0.655. This error can be compared to the error that would be
obtained by applying a least squares estimation on the noisy samples with the exact offset t1, which is 0.080. Averaged
over 250 simulations with random coefficients and offsets, the estimated error norm is 0.618, compared to 0.095 with
the exact offsets. We can see that our estimation has a larger error than in Example 5.1 (where the error was 0.340),
but the computational complexity is also highly reduced. Instead of 28 Gröbner bases for sets of 8 equations, only
3 sets of a single equation remained, which could be directly solved.

Remark also that the computation of a Gröbner basis does not depend on the specific values of the samples, except
in some degenerate cases. Once the size of the problem (L, M , N ) is fixed, we could therefore compute the generic
Gröbner basis for this setup. The first six steps from Algorithm 4 can then be precomputed. The online computations
are reduced to steps 7–10: computing the zeros of a polynomial and replacing the solution(s) in the set of equations
for the signal parameters. The zeros of a polynomial can be computed with the complexity given in (48). The other
operations are negligible compared to this. Buchberger’s algorithm is not needed anymore in the actual solution of the
specific problem, which can be computed very efficiently.

7. Conclusions

In this paper, we have presented a method to reconstruct a signal from multiple sets of unregistered, aliased samples
using Gröbner bases. First, we have shown how multichannel sampling with unknown offsets can be written as a set
of polynomial equations. This was shown both for a polynomial signal and for a signal described by its Fourier
series. Next, we applied Buchberger’s algorithm to compute a Gröbner basis for the ideal corresponding to this set of
equations. From a Gröbner basis, we can easily derive the unknown signal parameters. We presented an adaptation of
our algorithm to the case of noisy measurements. Gröbner bases are then computed for critical subsets of polynomials.
It is important to note however that this method is not very stable. Finally, some complexity issues were discussed,
and a more efficient method was presented that computes the linear signal parameters first, such that a Gröbner basis
has to be computed only for a much smaller set of equations in the unknown offsets. A Mathematica implementation
of these methods is available online (http://lcav.epfl.ch/reproducible_research/SbaizVV06).
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