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Orthogonal Neighborhood Preserving Projections: A
projection-based dimensionality reduction technique

Effrosyni Kokiopoulou, Student member, IEEE, and Yousef Saad.

Abstract— This paper considers the problem of dimensionality
reduction by orthogonal projection techniques. The main feature
of the proposed techniques is that they attempt to preserve both
the intrinsic neighborhood geometry of the data samples and
the global geometry. In particular we propose a method, named
Orthogonal Neighborhood Preserving Projections, which works
by first building an “affinity” graph for the data, in a way that
is similar to the method of Locally Linear Embedding (LLE).
However, in contrast with the standard LLE where the mapping
between the input and the reduced spaces is implicit, ONPP
employs an explicit linear mapping between the two. As a result,
handling new data samples becomes straightforward, as this
amounts to a simple linear transformation. We show how to define
kernel variants of ONPP, as well as how to apply the method
in a supervised setting. Numerical experiments are reported to
illustrate the performance of ONPP and to compare it with a
few competing methods.

Index Terms— Linear Dimensionality Reduction, Face Recog-
nition, Data Visualization.

I. INTRODUCTION

The problem of dimensionality reduction appears in many
fields including data mining, machine learning and computer
vision, to name just a few. It is often a necessary preprocessing
step in many systems, usually employed for simplification
of the data and noise reduction. The goal of dimensionality
reduction is to map the high dimensional samples to a lower
dimensional space such that certain properties are preserved.
Usually, the property that is preserved is quantified by an
objective function and the dimensionality reduction problem is
formulated as an optimization problem. For instance, Principal
Components Analysis (PCA) is a traditional linear technique
which aims at preserving the global variance and relies on
the solution of an eigenvalue problem involving the sample
covariance matrix. Locally Linear Embedding (LLE) [1], [2]
is a nonlinear dimensionality reduction technique which aims
at preserving the local geometries at each neighborhood.

While PCA is good at preserving the global structure, it does
not preserve the locality of the data samples. In this paper, a
linear dimensionality reduction technique is advocated, which
preserves the intrinsic geometry of the local neighborhoods.
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The proposed method, named Orthogonal Neighborhood Pre-
serving Projections (ONPP) [3], projects the high dimensional
data samples on a lower dimensional space by means of a
linear transformation V . The dimensionality reduction matrix
V is obtained by minimizing an objective function which
captures the discrepancy of the intrinsic neighborhood geome-
tries in the reduced space. Note that the neighborhood sets
are not independent. In fact, since there is a great overlap
between the neighborhood sets of near-by data samples, it can
be deduced that the global geometric characteristics of the
data will be preserved as well. This can also be seen from the
fact that the mapping is an orthogonal projection. In principle,
orthogonal projections, like PCA, will be “blind” to features
that are orthogonal to the span of V . However, the projector
can be carefully selected in such a way that these features are
unimportant for the task at hand. By their linearity, they will
also give good representation of the global geometry. One can
view this class of methods as a compromise between PCA
which emphasizes global structure, and LLE which is based
mainly on preserving local structure.

While one is tempted to take examples from the 3-D to 2-
D linear projections, this situation provides too simplistic a
representation of the complex situations which occur in high
dimensional cases. As will be shown experimentally, linear
projections can be quite effective for certain tasks such as data
visualization. We provide experimental results which support
this claim. In particular, experiments will confirm that ONPP
can be an effective tool for data visualization purposes and that
it may be viewed as a synthesis of PCA and LLE. In addition,
ONPP can provide the foundation of nonlinear techniques,
such as Kernel methods [4], [5], or Isomap [6]. In particular,
we provide a framework which unifies various well-known
methods.

ONPP constructs a weighted k-nearest neighbor (k-NN)
graph which models explicitly the data topology. Similarly
to LLE, the weights are built to capture the geometry of
the neighborhood of each point. The linear projection step is
determined by imposing the constraint that each data sample in
the reduced space is reconstructed from its neighbors by the
same weights used in the input space. However, in contrast
to LLE, ONPP computes an explicit linear mapping from
the input space to the reduced space. Note that in LLE the
mapping is implicit and it is not clear how to embed new
data samples (see e.g. research efforts by Bengio et al. [7]).
In the case of ONPP the projection of a new data sample is
straightforward as it simply amounts to a matrix by vector
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product.
ONPP shares some properties with Locality Preserving

Projections (LPP)[8]. Both are linear dimensionality reduc-
tion techniques which construct the k-NN graph in order to
model the data topology. However, our algorithm uses the
optimal data-driven weights of LLE which reflect the intrinsic
geometry of the local neighborhoods, whereas the uniform
weights (0/1) used in LPP aim at preserving locality without
explicit consideration to the local geometric structure. While
Gaussian weights can be used in LPP, these are somewhat
artificial and require the selection of an appropriate value of
the parameter σ, the width of the Gaussian envelope. This issue
is often overlooked, though it is crucial for the performance
of the method and remains a serious handicap for the use
of Gaussian weights. A second significant difference between
LPP and ONPP, is that the latter forces the projection to be
orthogonal. In LPP, the projection is defined via a certain
objective function, whose minimization leads to eigenvectors
of a generalized eigenvalue problem.

II. DIMENSIONALITY REDUCTION BY PROJECTION

Given a data set X = [x1, x2, . . . , xn] ∈ Rm×n, the goal
of dimensionality reduction is to produce a set Y which is
an accurate representation of X , but which is of dimension
d, with d ¿ m. This can be achieved in different ways by
selecting the type of the reduced dimension Y as well as the
desirable properties to be preserved. By type we mean whether
we require that Y be simply a low-rank representation of X , or
a data set in a vector space with fewer dimensions. Examples
of properties to be preserved may include the global geometry,
or neighborhood information such as local neighborhoods,
distances between data points, or angles formed by adjacent
line segments.

Projection-based techniques consist of replacing the original
data X by a matrix of the form

Y = V >X, where V ∈ Rm×d. (1)

Thus, each vector xi is replaced by yi = V >xi a member of
the d-dimensional space Rd. If V is a unitary matrix, then Y
represents the orthogonal projection of X into the V -space.

The best known technique in this category is Principal
Component Analysis (PCA). PCA computes V such that the
variance of the projected vectors is maximized, i.e, V is the
maximizer of

max
V ∈ Rm×d

V >V = I

n∑

i=1

∥∥∥∥∥∥
yi − 1

n

n∑

j=1

yj

∥∥∥∥∥∥

2

2

, yi = V >xi.

If we denote by e = [1, . . . , 1]> the vector of ones, it can be
easily shown that the matrix V which maximizes the above
quantity is simply the set of left singular vectors of the matrix
X(I − 1

nee>), associated with the largest d singular values.

A. LPP and OLPP

Another related technique is that of Locality Preserving
Projections (LPP) [8]. LPP projects the data so as to preserve

a certain affinity graph constructed from the data. The affinity
(or adjacency) graph is a graph G = (V, E) whose nodes V
are the data samples. The edges of this graph can be defined
for example by taking a certain nearness measure and include
all points within a radius ε of a given vertex, to its adjacency
list. Alternatively, one can include those k nodes that are the
nearest neighbors to xi. In the latter case it is called the k-NN
graph.

The weights can be defined in different ways as well.
Two common choices are weights of the heat kernel wij =
exp(−‖xi − xj‖22/t) or constant weights (wij = 1 if i and j
are adjacent, wij = 0 otherwise). The adjacency graph along
with these weights defines a matrix W whose entries are the
weights wij’s which are nonzero only for adjacent nodes in
the graph. Note that the entries of W are nonnegative and that
W is sparse and symmetric.

LPP defines the projected points in the form yi = V >xi

by putting a penalty for mapping nearest neighbor nodes in
the original graph to distant points in the projected data.
Specifically, the objective function to be minimized is

Elpp =
1
2

n∑

i,j=1

wij‖yi − yj‖22 (2)

Note that the matrix V is implicitly represented in the above
function, through the dependence of the yis on V . The
following theorem expresses the above objective function as
a trace. Note that the authors in [9], [8] give a proof for the
case of d = 1. In what follows, we provide a proof for the
general d > 1 case.

Theorem 2.1: Let W be a certain symmetric affinity graph,
and define D = diag(di) with

di =
n∑

j=1

wij . (3)

Let the points yi be defined to be the columns of Y = V >X
where V ∈ Rm×d. Then the objective function (2) is equal
to

Elpp = tr[Y (D −W )Y >] = tr[V >X(D −W )X>V ] (4)
Proof: By definition:

Elpp =
1
2

n∑

i,j=1

wij‖yi − yj‖22

=
1
2

n∑

i,j=1

wij(yi − yj)>(yi − yj)

=
1
2

n∑

i,j=1

wijy
>
i yi +

1
2

n∑

i,j=1

wijy
>
j yj −

n∑

i,j=1

wijy
>
i yj

=
n∑

i,j=1

wijy
>
i yi −

n∑

i,j=1

wijy
>
i yj

=
n∑

i

diy
>
i yi −

n∑

i,j=1

wijy
>
i yj .

An observation will simplify the first term of the above
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expression:
n∑

i=1

diy
>
i yi = tr(DY >Y ) = tr[Y DY >].

Denoting by ei the i-th canonical vector, we have for the
second term,

n∑

i,j=1

wijy
>
i yj =

n∑

i

(Y ei)>
n∑

j=1

wjiyj

=
n∑

i

e>i Y >(Y W )ei

= tr[Y >(Y W )]
= tr[Y WY >] .

Putting these expressions together results in (4).
The matrix L ≡ D − W is the Laplacian of the weighted
graph defined above. Note that e>L = 0, so L is singular.

In order to define the yi’s by minimizing (4), we need to
add a constraint to V . From here there are several ways to
proceed depending on what is desired.

OLPP: We can simply enforce the mapping to be
orthogonal, i.e., we can impose the condition V >V = I . In
this case the set V is the eigenbasis associated with the lowest
eigenmodes of the matrix

Clpp = X(D −W )X>. (5)

We refer to this first option as the method of Orthogonal
Locality Preserving Projections (OLPP). This option leads to
the standard eigenvalue problem:

X(D −W )X>vi = λivi , (6)

and leads to a matrix V with orthonormal columns. The OLPP
option is different than the original LPP approach which uses
the next option.

LPP: We can impose a condition of orthogonality on
the projected set: Y Y > = I . Note that the rows of Y are
orthogonal, which means that the d basis vectors in Rn on
which the xi’s are projected are orthogonal. Alternatively, we
can also impose an orthogonality with respect to the weight
D: Y DY > = I . (This gives bigger weights to points yi’s for
which di =

∑
j wij is large). The classical LPP option leads

to the generalized eigenvalue problem.

X(D −W )X>vi = λiXDX>vi. (7)

In both cases the smallest d eigenvalues and eigenvectors must
be computed.

A slight drawback of the scaling used by classical LPP
is that the linear transformation is no longer orthogonal.
However, the weights can be redefined (i.e., the data can be
rescaled a priori) so that the diagonal D becomes the identity.

Note that the above OLPP option that is proposed here, is
different than the one proposed in [10], which recently came to
our attention while this paper was under review. In short, the
authors in [10] enforce orthogonality of the vi’s by imposing
explicit orthogonality constraints and they propose a solution
based on Lagrange multipliers.

An interesting connection can be made with PCA as was
observed in [11]. Using a slightly different argument from
[11], suppose we take as W the (dense) matrix W = 1

nee>.
This simply puts the uniform weight 1/n to every single pair
(i, j) for the full graph. In this case, D = I and the matrix
(5) which defines the objective function becomes

Clpp = X

(
I − 1

n
ee>

)
X> = Cpca .

PCA computes the eigenvectors associated with the largest
eigenvalues of a “global” (full) graph. In contrast, methods
based on Locality Preservation (such as LPP) compute the
eigenvectors associated with the smallest eigenvalues of a
“local” (sparse) graph. PCA seeks the largest eigenvalues due
to the fact that its goal is to maximize the variance of the
projected data. Similarly, LPP seeks the smallest eigenvalues
since it targets at minimizing the distance between similar
data samples. PCA is likely to be better at conveying global
structure, while methods based on preserving the graph will
be better at maintaining locality.

III. ONPP

The main idea of ONPP is to seek an orthogonal mapping
of a given data set so as to best preserve a graph which
describes the local geometry. It is in essence a variation of
OLPP discussed earlier, in which the graph is constructed
differently.

A. The nearest neighbor affinity graph

Consider a data set represented by the columns of a matrix
X = [x1, x2, . . . , xn] ∈ Rm×n. ONPP begins by building
an affinity matrix by computing optimal weights which will
relate a given point to its neighbors in some locally optimal
way. This phase is identical with that of LLE [1], [2].

For completeness, the process of constructing the affinity
graph is summarized here; details can be found [1], [2]. The
basic assumption is that each data sample along with its k
nearest neighbors (approximately) lies on a locally linear man-
ifold. Hence, each data sample xi is reconstructed by a linear
combination of its k nearest neighbors. The reconstruction
errors are measured by minimizing the objective function

E(W ) =
∑

i

‖xi −
∑

j

wijxj‖22. (8)

The weights wij represent the linear coefficients for recon-
structing the sample xi from its neighbors {xj}. The following
constraints are imposed on the weights:

1) wij = 0, if xj is not one of the k nearest neighbors of
xi;

2)
∑

j wij = 1, that is xi is approximated by a convex
combination of its neighbors.

Note that the second constraint on the row-sum is similar
to imposing di = 1, where di is defined in eq. (3). Hence,
imposing this constraint is equivalent to rescaling the matrix
W in the previous section, so that it yields a D matrix equal
to the identity.
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In the case when wii ≡ 0, for all i, then the problem is
equivalent to that of finding a sparse matrix Z, (Z ≡ I −
W>) with a specified sparsity pattern, which has ones on the
diagonal and whose row-sums are all zero.

There is a simple closed-form expression for the weights.
It is useful to point out that determining the wij’s for a given
point xi is a local calculation, in the sense that it only involves
xi and its nearest neighbors. Any algorithm for computing the
weights will be fairly inexpensive.

Let G be the local Grammian matrix associated with point
i, whose entries are defined by

gpl = (xi − xp)>(xi − xl) ∈ Rk×k.

Thus, G contains the pairwise inner products among the
neighbors of xi, given that the neighbors are centered with
respect to xi. Denoting by X(i) a system of vectors consisting
of xi and its neighbors, we need to solve the least-squares
(X(i) − xie

>)wi,: = 0 subject to the constraint e>wi,: = 1.
It can be shown that the solution wi,: of this constrained least
squares problem is given by the following formula [1] which
involves the inverse of G,

wi,: =
G−1e

e>G−1e
. (9)

(recall that e is the vector of all ones). The weights wij satisfy
certain optimality properties. They are invariant to rotations,
isotropic scalings, and translations. As a consequence of these
properties the affinity graph preserves the intrinsic geometric
characteristics of each neighborhood.

B. The algorithm

Assume that each data point xi ∈ Rm is mapped to a lower
dimensional point yi ∈ Rd, d ¿ m. Since LLE seeks to
preserve the intrinsic geometric properties of the local neigh-
borhoods, it assumes that the same weights which reconstruct
the point xi by its neighbors in the high dimensional space,
will also reconstruct its image yi in the low dimensional space,
by its corresponding neighbors. In order to compute the yi’s
for i = 1, . . . , n, LLE employs the objective function:

F(Y ) =
∑

i

‖yi −
∑

j

wijyj‖22. (10)

In this case the weights W are fixed and we need to min-
imize the above objective function with respect to Y =
[y1, y2, . . . , yn] ∈ Rd×n.

Similar to the case of LPP and OLPP, some constraints
must be imposed on the yi’s. This optimization problem is
formulated under the following constraints in order to make
the problem well-posed:

1)
∑

i yi = 0 i.e., the mapped coordinates are centered at
the origin and

2) 1
n

∑
i yiy

>
i = I , that is the embedding vectors have unit

covariance.
LLE does not impose any other specific constraints on the
projected points, it only aims at reproducing the graph. So the
objective function (10) is minimized with the above constraints
on Y .

Algorithm: ONPP
Input: Data set X ∈ Rm×n and d: dimension of
reduced space.
Output: Embedding vectors Y ∈ Rd×n.
1. Compute the k nearest neighbors of data points.
2. Compute the weights wij which give the best

linear reconstruction of each data point xi

by its neighbors (Equ. (9)).
3. Compute V the matrix whose column vectors are the d

eigenvectors of
M̃ = X(I −W>)(I −W )X>

associated with 2nd to (d + 1)st smallest eigenvalues.
4. Compute the projected vectors yi = V >xi.

TABLE I
THE ONPP ALGORITHM.

Note that F(Y ) can be written F(Y ) = ‖Y −Y W>‖2F , so

F(Y ) = ‖Y (I −W>)‖2F
= tr

[
Y (I −W>)(I −W )Y >]

. (11)

The problem will amount to computing the d smallest eigen-
values of the matrix M = (I − W>)(I − W>)>, and the
associated eigenvectors.

In ONPP an explicit linear mapping from X to Y is imposed
which is in the form (1). So we have yi = V >xi, i = 1, . . . , n
for a certain matrix matrix V ∈ Rm×d to be determined. In
order to determine the matrix V , ONPP imposes the constraint
that each data sample yi in the reduced space is reconstructed
from its k neighbors by exactly the same weights as in the
input space. This means that we will minimize the same
objective function (11) as in the LLE approach, but now Y
is restricted to being related to X by (1). When expressed
in terms of the unknown matrix V , the objective function
becomes

F(Y ) = ‖V >X(I −W>)‖2F
= tr

[
V >X(I −W>)(I −W )X>V

]
. (12)

If we impose the additional constraint that the columns of
V are orthonormal, i.e. V >V = I , then the solution V to the
above optimization problem is the basis of the eigenvectors
associated with the d smallest eigenvalues of the matrix

M̃ = X(I −W>)(I −W )X> = XMX> . (13)

The assumptions that were made when defining the weights
wij at the beginning of this section, imply that the matrix
I − W is singular. In the case when m > n the matrix
M̃ , which is of size m × m, is at most of rank n and it
is therefore singular. In the case when m ≤ n, M̃ is not
necessarily singular. However, it can be observed in practice
that ignoring the smallest eigenvalue of M̃ , is helpful. This is
explained in detail in Section III-C. Note that the embedding
vectors of LLE are obtained by computing the eigenvectors
of M associated with its smallest eigenvalues. This is to be
contrasted with ONPP which computes these vectors as V >X ,
where V is the set of eigenvectors of M̃ associated with its
smallest eigenvalues.

An important property of ONPP is that mapping new data
points to the lower dimensional space is trivial once the matrix
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V is determined. Consider a new test data sample xt that needs
to be projected. The test sample is projected onto the subspace
using the dimensionality reduction matrix V , so

yt = V >xt. (14)

Therefore, mapping the new data point reduces to a simple
matrix vector product.

In terms of computational cost, the first part of ONPP
consists of forming the k-NN graph. This scales as O(n2). Its
second part requires the computation of a few of the smallest
eigenvectors of M̃ . Observe that in practice this matrix is
not computed explicitly. Rather, iterative techniques are used
to compute the corresponding smallest singular vectors of
matrix X(I −W )> [12]. The main computational operation
of these techniques is the matrix-vector product which scales
quadratically with the dimensions of the matrix at hand.

C. Discussion

We can also think of developing a technique based on
enforcing an orthogonality relationship between the projected
points instead of the V ’s. Making the projection orthogonal
will tend to preserve distances for data points xi, xj whose
difference xi−xj is close to the subspace span(V ). Because
of linearity, the overall geometry will also tend to be preserved.
In contrast, imposing the condition Y Y > = I , will lead to a
criterion that is similar to that of PCA: the points yi will tend
to be different from one another (because of the orthogonality
of the rows of Y ). This maximum variance criterion is also
used by LLE. In essence, the main difference between LLE
and ONPP is in the selection of the orthogonality to enforce.

The two optimization problems are shown below:

LLE : minY ∈Rn×d; Y Y >=I tr[Y MY >]
ONPP : minY =V >X;V ∈Rm×d; V >V =I tr[Y MY >] .

Yet, another point of view is to think in terms of null spaces
or approximate null spaces of the matrix I−W>. LLE builds
a matrix W so that X is approximately a left null space for
I − W>, i.e., so that X(I − W>) is close to zero. Then,
in a second step, it tries to find a d × n matrix Y so that
Y is an approximate null space for I −W>, by minimizing
‖Y (I−W>)‖2F = tr(Y MY >). The second step of ONPP tries
also to find Y so that it is close to a null space for I −W>,
but it does so by restricting the reduced dimension data to
be an orthogonal projection of the original data. Interestingly,
when X(I −W>) is small then so is V >X(I −W>). If the
rows of X happen to be linearly dependent (or very close to
being linearly dependent), then a zero row (or a very close to
zero row) will appear in the projected data Y . This situation
indicates redundancies in the information given on the data. A
result is that a linear combination of this information (rows of
X) will be zero and this means that a zero row will result in the
projected data Y . This zero row should be ignored. This is the
reason why one should always discard eigenvectors associated
with very small eigenvalues.

It is also possible to enforce a linear relation between the
Y and X data, but require the same orthogonality as LLE.
We will refer to this procedure as Neighborhood Preserving

Projections (NPP). In NPP, the objective function is the same
as with ONPP and is given by (12). However, the constraint
is now Y Y > = I which yields, V >XX>V = I . What this
means is that NPP is a linear variant of LLE which makes
the same requirement on preserving the affinity graph and
obtaining a data set Y which satisfies Y Y > = I:

NPP : minY =V >X;V ∈Rm×d; Y Y >=I tr[Y MY >]

If we define G = XX>, then this leads to the problem,

min
V ∈ Rm×d, V >GV =I

tr[V >M̃V ] . (15)

The solution of the above problem can be obtained by solving
the generalized eigenvalue problem M̃v = λGv. We note that
in practice, the vectors V obtained in this way need to be
scaled, for example, so that their columns have unit 2-norms.

IV. SUPERVISED ONPP

ONPP can be implemented in either an unsupervised or a
supervised setting. In the later case where the class labels are
available, ONPP can be modified appropriately and yield a
projection which carries not only geometric information but
discriminating information as well. In a supervised setting we
first build the data graph G = (N , E), where the nodes N
correspond to data samples and an edge eij = (xi, xj) exists
if and only if xi and xj belong to the same class. In other
words, we make adjacent those nodes (data samples) which
belong to the same class. Notice that in this case one does not
need to set the parameter k, the number of nearest neighbors,
and the method becomes fully automatic.

Denote by c the number of classes and ni the number of
data samples which belong to the i-th class. The data graph G
consists of c cliques, since the adjacency relationship between
two nodes reflects their class relationship. This implies that
with an appropriate reordering of the columns and rows, the
weight matrix W will have a block diagonal form where the
size of the i-th block is equal to the size ni of the i-th class.
In this case W will be of the following form,

W = diag(W1,W2, . . . , Wc).

The weights Wi within each class are computed in the usual
way, as described by equation (9). The rank of W defined
above, is restricted as is explained by the following proposi-
tion.

Proposition 4.1: The rank of I −W is at most n− c.
Proof: Recall that the row sum of the weight matrix Wi

is equal to 1, because of the constraint (2). This implies that
Wiei = ei, ei = [1, . . . , 1]> ∈ Rni . Thus, the following c
vectors 


e1 0 · · · 0
0 e2 · · · 0
0 0 · · · ec


 ,

are linearly independent and belong to the null space of I−W .
Therefore, the rank of I −W is at most n− c.

Consider now the case m > n where the number of samples
(n) is less than their dimension (m). This case is known as the
undersampled size problem. A direct consequence of the above
proposition is that in this case, the matrix M̃ ∈ Rm×m will
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have rank at most n− c. In order to ensure that the resulting
matrix M̃ will be nonsingular, we may employ an initial PCA
projection that reduces the dimensionality of the data vectors
to n − c. Call VPCA the dimensionality reduction matrix of
PCA. Then the ONPP algorithm is performed and the total
dimensionality reduction matrix is given by

V = VPCAVONPP,

where VONPP is the dimensionality reduction matrix of ONPP.

V. KERNEL ONPP

It is possible to formulate a kernelized version of ONPP.
Kernels have been extensively used in the context of Support
Vector Machines (SVMs), see, e.g., [4], [5]. Essentially, a
nonlinear mapping Φ : Rm → H is employed, where H is
a certain high-dimensional feature space. Denote by Φ(X) =
[Φ(x1), Φ(x2), . . . , Φ(xn)] the transformed data set in H.

The main idea of Kernel ONPP rests on the premise that
the transformation Φ is only known through its Grammian on
the data X . In other words, what is known is the matrix K
whose entries are

Kij ≡ k(xi, xj) = 〈Φ(xi), Φ(xj)〉. (16)

This is the Gram matrix induced by the kernel k(x, y) associ-
ated with the feature space. In fact, another interpretation of
the Kernel mapping is that we are defining an alternative inner
product in the X-space, which is expressed through the inner
product of every pair (xi, xj) as < xi, xj >= kij .

Formally, ONPP can be realized in a kernel form by simply
applying it to the set Φ(X). Define

K ≡ Φ(X)>Φ(X) . (17)

There are two implications of this definition. The first is that
the mapping W has to be defined using this new inner product.
The second is that the optimization problem too has to take
the inner product into account.

A. Computation of the graph weights

Consider first the graph definition. In the feature space we
would like to minimize

m∑

i=1

‖Φ(xi)−
∑

j

wijΦ(xj)‖22.

This is the same as the cost function (8) evaluated on the set
Φ(X) as desired, and therefore an alternative expression for
it is

E(W ) = ‖Φ(X)(I −W>)‖2F
= tr[(I −W )Φ(X)>Φ(X)(I −W>)]
= tr[(I −W )K(I −W>)]

Note that K is dense and n×n. The easiest way to solve the
above problem is to extract a low rank approximation to the
Grammian K, e.g.,

K = US2U> = (US)(US)>,

where U ∈ Rn×` and S ∈ R`×`. Then the above problem
becomes one of minimizing

E(W ) = tr(I −W )USSU>(I −W )> (18)
= ‖(I −W )US‖2F (19)
= ‖SU>(I −W>)‖2F . (20)

Therefore, W is constructed similarly as was described in
Section III-A, but now SU> replaces X .

Note that the low rank approximation of K is suggested
above mostly for computational efficiency. One may well
choose to use ` = n and in this case the resulting graph
weights will be exact.

B. Computation of the projection matrix

Consider now the problem of obtaining the projection
matrix V in a kernel framework. Formally, if we were to
work in feature space, then the projection would take the form
Y = V >Φ(X), with V ∈ RL×d, where L is the (typically
large and unknown) dimension of the feature space. Now the
cost function (12) would become

F(Y ) = tr
[
V >Φ(X)MΦ(X)>V

]
, (21)

where we have used that M = (I−W>)(I−W ). Since Φ(X)
is not explicitly known (and is of large dimension) this direct
approach does not work. We propose two different approaches
to attack this problem.

a) Strategy 1: The first way out is to restrict V to be
in the range of Φ(X). This is natural since each column of
V is in RL the row-space of Φ(X). Specifically, we write
V = Φ(X)Z where Z ∈ Rn×d is to be determined and
Z>Z = I . Then (21) becomes

F(Y ) = tr
[
Z>Φ(X)>Φ(X)MΦ(X)>Φ(X)Z

]

= tr
[
Z>KMKZ

]
. (22)

Thus, Z is determined by the eigenvectors of KMK corre-
sponding to its smallest eigenvalues.

In a testing phase, we need to project a test point xt onto
the space of lower dimension, i.e., we need to generalize (14).
This is done by noting that the projection is performed from
the feature space, so we now need to project Φ(xt) using the
matrix V :

yt = V >Φ(xt) = Z>Φ(X)>Φ(xt) = Z>K(·, xt) . (23)

Here the notation K(·, xt) represents the vector
(k(xj , xt))j=1:n.

b) Strategy 2: It is somewhat unnatural that the matrix
K is involved quadratically in the expression (22). Equation
(21) suggests that we should really obtain K not K2, since
Φ(X)>Φ(X) = K. For example, in the trivial case when
W ≡ 0, then (21) would become tr(V >Φ(X)Φ(X)>V )
whereas (22) would yield tr(Z>K2Z). The second solution
is to exploit an implicit QR factorization (or an implicit polar
decomposition) of Φ(X). In the following we will employ a
QR factorization of the form:

Φ(X) = QR (24)
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where R is upper triangular and Q is unitary i.e., Q>Q = I .
This factorization is only implicit since Φ(X) is not available.
Note that

R>R = Φ(X)>Φ(X) = K (25)

so that R>R is the Cholesky factorization of K. In addition,
Q is now an orthogonal basis of the range of Φ(X), so that
we can use as a projector in feature space a matrix of the form
V = QZ, with Z ∈ Rn×d, Z>Z = I . The projected data in
reduced space is

Y = V >Φ(X) = Z>Q>Φ(X) = Z>Q>QR = Z>R. (26)

In this case, the objective function (21) becomes

F(Y ) = tr
[
Z>R(I −W>)(I −W )R>Z

]

= tr
[
Z>R M R>Z

]
. (27)

As a result the columns z of the optimal Z are just the set of
eigenvectors of the problem

[
R(I −W>)(I −W )R>

]
z = λz (28)

associated with the smallest d eigenvalues. The matrix R can
be obtained in practice from the Cholesky factorization of K.
However, as we show in the sequel, the problem can also be
reformulated to avoid the explicit computation of R.

Indeed, let z be a column of Z, an eigenvector of the matrix
R(I −W>)(I −W )R> associated with some eigenvalue λ.
Define y = R>z and observe that y is a transposed row (a row
written as a column vector) of the reduced dimension matrix,
Y = Z>R, per equation (26). We then have:

R(I −W>)(I −W )R>z = λz →
R>R(I −W>)(I −W )R>z = λR>z →

K
[
(I −W>)(I −W )

]
y = λy. (29)

Thus, the eigenvectors of K
[
(I −W>)(I −W )

]
associated

with the smallest d eigenvalues will directly yield the trans-
posed rows of the sought projected data Y . In other words,
the rows of Y can be directly computed at the smallest left
eigenvectors of the matrix (I −W>)(I −W )K. Though the
matrix in (29) is nonsymmetric, the problem is similar to
the eigenvalue problem My = λK−1y and therefore, the
eigenvectors are orthogonal with respect to the K−1-inner
product. Using this observation, one may compute directly the
projected data set Y , without computing explicitly the matrix
R.

Now consider again the testing phase and the analogue of
(14). Noting that Q = Φ(X)R−1 we write

yt = V >Φ(xt) = Z>Q>Φ(xt)
= Z>R−>Φ(X)>Φ(xt)
= Z>R−> K(·, xt) (30)
= Z>R(R−1R−>)Φ(X)>Φ(xt)
= Y K−1 K(·, xt) . (31)

Equations (30) and (31) provide two alternative ways of
computing yt, one for when Z is computed by (28) and the
other for when Y is computed directly by (29). In either case,
the computation will be cubic in n, so this approach is bound

to be limited to relatively small data sets. If d is very small and
the size of the test data is large, it is of course more economical
to compute Z>R−> = (R−1Z)> in (30) once and for all at
the outset. Similarly, for (31), Y K−1 = (K−1Y >)> can also
be computed once for all training data. Note that in practice,
we don’t compute the inverse explicitly, but solve d linear
systems instead (one for each different right hand side). Thus,
in both cases, d linear systems need to be solved (since both
Z and Y > have d columns).

C. Discussion
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Fig. 1. Two examples of data points randomly taken on 3-D manifolds.
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Fig. 2. Results of four related methods applied to the s-curve example.

We conclude this section with an important observation.
The new eigenvalue problem that is solved in Kernel ONPP,
whether by (28) or (29), does not involve the data set X
explicitly, in contrast with the eigenvalue problem related to
the matrix (13). In essence, the data is hidden in the Gram
matrix K or its Cholesky factor R. In fact, recalling (26),
we observe that (27) is simply tr(Y MY >) and minimizing
this trace subject to the condition Z>Z = I is equivalent to
solving

min
Y ∈ Rm×d Y K−1Y >=I

tr
[
Y MY >]

. (32)
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Recalling also the LLE problem from Section III-C, this shows
that in effect, Kernel ONPP is mathematically equivalent to
LLE with the K−1-inner product. For example, LLE can be
obtained by defining K = I as a particular case of Kernel
ONPP.

This can be pursued a little further by considering the
objective function (27) which involves a factor R such that
R>R = Φ(X)>Φ(X). Of course we can define R by using
other factorizations (for instance, we mentioned above the
polar decomposition). Hence, if we use for K the Grammian
X>X , then we might define R to be simply X , since
R>R = K, even though R is no longer an n×n matrix. The
dimension of Z must be changed accordingly to being m×d.
This will yield the standard ONPP according to (27). This
unconventional extension, allowing R to be an p × n matrix
and Z a p×d matrix can open some interesting connections. In
particular it puts under the same framework LLE, Laplacian
eigenmaps [9] alongside with OLPP, and ONPP, by simply
changing the matrices R and M . Under this extension, the
distinction between LLE, Laplacian Eigenmaps, ONPP, OLPP,
and Kernel ONPP, lies in the definitions of the matrices R, and
M . Table II indicates the connections between the different
methods and the corresponding choices of matrices R and M .

VI. EXPERIMENTAL RESULTS

In this section we evaluate all four linear dimensionality
reduction methods LPP, NPP, OLPP and ONPP. We use an
implementation of LPP which is publicly available1. The
implementation of OLPP is based on a slight modification of
the publically available LPP code.

A. Synthetic data

Let us first consider two well known synthetic data sets
from [2]: the s-curve, and the swissroll. Figure 1

1http://people.cs.uchicago.edu/∼xiaofei/LPP.m
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Fig. 4. Behavior of ONPP under different values of k on the s-curve data
set.

illustrates the 3-D randomly sampled points (n = 1000) on
the s-curve and swissroll manifolds. Figures 2 and
3 illustrate the two dimensional projections obtained by all
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Fig. 5. Behavior of ONPP under different values of k on the swissroll
data set.

methods in the s-curve and swissroll data sets. The
affinity graphs were all constructed using k = 10 nearest
neighbor points. Observe that the performance of LPP parallels

Method Matrix M Matrix R

LLE (I −W>
a )(I −Wa) I

Laplacian Eigenmaps (D −W>
L ) I

ONPP (I −W>
a )(I −Wa) X

OLPP (D −W>
L ) X

K-ONPP with Kernel K (I −W>)(I −W ) R>R = K (Chol.)

TABLE II
DIFFERENT METHODS AND THE CORRESPONDING CHOICES FOR THE

MATRICES R AND M . THE MATRIX Wa CORRESPONDS TO THE AFFINITY

GRAPH IN LLE AND ONPP, SEE SECTION III-A FOR DETAILS. THE

MATRIX D −WL IS THE LAPLACIAN GRAPH USED IN LAPLACIAN

EIGENMAPS AND OLPP, SEE SEC. II-A AND [9], [8] FOR DETAILS.

that of NPP and, similarly, the performance of OLPP parallels
that of ONPP. Note that all methods preserve locality which
is indicated by the gray scale darkness value. However, the
orthogonal methods i.e., OLPP and ONPP preserve global
geometric characteristics as well, since they give faithful
projections which convey information about how the manifold
is folded in the high dimensional space. This may be the result
of the great overlap among the neighbor sets of data samples
that are close by.

Figures 4 and 5 illustrate the sensitivity of ONPP with
respect to random realizations of the data set, for different
values of k, for the s-curve and the swissroll manifolds
respectively. We test with a few representative values of k
and we compute eight projections for eight different random
realizations of the data sets. The number of samples was set
to n = 1000. Notice that when k is small, the k-NN graph is
not able to capture effectively the geometry of the data set. In
some cases this results in the method yielding slightly different
projections for different realizations of the data set. However,
as k increases, the k-NN graph captures more effectively the
data geometry and ONPP yields a stable result across the
different realizations of the data set.

B. Digit visualization

The next experiment involves digit visualization. We use
20 × 16 images of handwritten digits which are publically
available from S. Roweis’ web page2. The data set contains 39
samples from each class (digits from ’0’-’9’). Each digit image
sample is represented lexicographically as a high dimensional
vector of length 320. For the purpose of comparison with PCA,
we first project the data set in the two dimensional space using
PCA and the results are depicted in Figure 6. In the sequel we
project the data set in two dimensions using all four methods.
The results are illustrated in Figures 7 (digits ’0’-’4’) and 8
(digits ’5’-’9’). We use k = 6 for constructing the affinity
graphs of all methods.

Observe that the projections of PCA are spread out since
PCA aims at maximizing the variance. However, the classes
of different digits seem to heavily overlap. This means that
PCA is not well suited for discriminating between data. On
the other hand, observe that all the four graph-based methods

2http://www.cs.toronto.edu/∼roweis/data.html
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yield more meaningful projections since samples of the same
class are mapped close to each other. This is because these
methods aim at preserving locality. Finally, ONPP seems to
provide slightly better projections than the other methods since
its clusters appear more cohesive.

C. Face recognition

In this section we evaluate all methods for the problem of
face recognition. We used three data sets which are publically

available: UMIST [13], ORL [14] and AR [15]. The size of
the images is 112×92 in all data sets. As is common practice
the images in all databases were downsampled to size 38×31,
for computational efficiency. Thus, each facial image was
represented lexicographically as a high dimensional vector of
length 1,178. In order to measure the recognition performance,
we use a random subset of facial expressions/poses from each
subject as training set and the remaining as test set. The
test samples are projected in the reduced space using the
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Fig. 9. Sample face images from the UMIST database. The number of
different poses poses for each subject is varying.

Fig. 10. Sample face images from the ORL database. There are 10 available
facial expressions and poses for each subject.

dimensionality reduction matrix V which is learned from the
training samples. Then, recognition is performed in the low
dimensional space using nearest-neighbor (NN) classification.
In order to ensure that our results are not biased from a
specific random realization of the training/test set, we perform
20 different random realizations of the training/test sets and
we report the average error rate.

We also compare all four methods with Fisherfaces [16],
a well known method for face recognition. Fisherfaces is
a supervised method which determines V by using Linear
Discriminant Analysis (LDA). LDA works by extracting a

Fig. 11. Sample face images from the AR database. Facial expressions from
left to right: ‘natural expression’, ‘smile’, ‘anger’, ‘scream’, ‘left light on’,
‘right light on’, ‘all side lights on’ and ‘wearing sun glasses’.

set of “optimal” discriminating axes. Assume that we have c
classes and that class i has ni data points. Define the between-
class scatter matrix

SB =
c∑

i=1

ni(µ(i) − µ)(µ(i) − µ)>

and the within-class scatter matrix

SW =
c∑

i=1




ni∑

j=1

(x(i)
j − µ(i))(x(i)

j − µ(i))>




where µ(i) is the centroid of the i-th class and µ the global
centroid. In LDA the columns of V are the eigenvectors asso-
ciated with largest eigenvalues of the generalized eigenvalue
problem

SBw = λSW w. (33)



12

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14
UMIST

dimension of reduced space

er
ro

r 
ra

te
 (

%
) LPP

OLPP
PCA
ONPP
NPP
LDA

Fig. 12. Error rates with respect to the reduced dimension d, for the UMIST
data set.

Intuitively, the matrix V of LDA maximizes the ratio of inter-
class variance over the intra-class variance. Note that the rank
of SB is at most c− 1, which implies that the above problem
has only c − 1 generalized eigenvalues. Therefore, LDA can
yield at most c− 1 discriminant axes.

We have observed experimentally that employing supervised
graphs boosts the classification performance of the methods.
This is also a common practice (e.g., see also [10]). Recall
that in this case the affinity graph is constructed in a special
way which exploits the class labels (see Section IV for more
details on the supervised version of ONPP). For example, the
best performance of the supervised ONPP on the UMIST
dabase (see description later) is 1.11% and is reached at
d = 55. However the best performance of the unsupervised
ONPP is 5.6% and is reached at k = 20, for the same d.
Thus, we have chosen to use the supervised versions of the
four methods in the tests which follow. Note that with the
supervised construction of the affinity graph, the parameter k
need not be determined by the user, since it is set automatically
to be the cardinality of each class.

In the LPP and OLPP methods, we employ Gaussian
weights. We determine the value of the width σ of the
Gaussian envelope as follows. First, we sample 1000 points
randomly and then compute the pairwise distances among
them. Then σ is set equal to half the median of those pairwise
distances. This gives a good and reasonable estimate for the
value of σ.

1) UMIST: The UMIST database [13] contains 20 people
under different poses. The number of different views per
subject varies from 19 to 48. We used a cropped version
of the UMIST database that is publically available from S.
Roweis’ web page3. Figure 9 illustrates a sample subject from
the UMIST database along with its first 20 views. We form
the training set by a random subset of 15 different poses per
subject (300 images in total) and use the remaining poses as
a test set. We experiment with the dimension of the reduced
space d from 10 to 70 with step 5. For each value of d, we

3http://www.cs.toronto.edu/∼roweis/data.html
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plot the average error rate across 20 random realizations of
the training/set set. The results are illustrated in Figure 12.

Concerning the method of Fisherfaces note that there are
only c− 1 generalized eigenvalues, where c is the number of
subjects in the data set. Thus, d cannot exceed c − 1 and so
we plot only the best achieved error rate by Fisherfaces across
the various values of d. Observe again that NPP and LPP have
similar performance and that ONPP competes with OLPP and
they both outperform the other methods across all values of
d. We also report the best error rate achieved by each method
and the corresponding dimension d of the reduced space. The
results are tabulated in the left portion of Table III. Notice that
PCA works surprisingly well in this database.

2) ORL: The ORL (formerly Olivetti) database [14] con-
tains 40 individuals and 10 different images for each individual
including variation in facial expression (smiling/non smiling)
and pose. Figure 10 illustrates two sample subjects of the ORL
database along with variations in facial expression and pose.
We form the training set by a random subset of 5 different
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UMIST ORL AR
d error (%) d error (%) d error (%)

PCA 70 1.94 40 6.9 90 18.29
LDA 20 12.63 70 10.37 90 8.25
LPP 40 2.31 40 10.6 100 7.79
NPP 65 2.49 50 10.35 100 8.27
OLPP 30 1.27 50 5.38 100 4.44
ONPP 55 1.11 110 5.9 100 4.74

TABLE III
THE BEST ERROR RATE ACHIEVED BY ALL METHODS ON THE UMIST,

ORL, AND AR DATABASES RESPECTIVELY.

facial expressions/poses per subject and use the remaining 5
as a test set. We experiment with the dimension of the reduced
space d from 10 to 150 with step 10. For each value of d we
compute the average error rate across 20 random realizations
of the training set.

Figure 13 illustrates the results. Here, LPP and NPP exhibit
an unusual behavior: Their error rates initially decrease with
the dimension d and then start growing after some point.
Notice also that the orthogonal methods ONPP and OLPP
outperform again the remaining methods and that the former
seems to be slightly better than the latter, overall. The best
error rates achieved by each method are tabulated in Table III
along with the corresponding value of d.

3) AR: We use a subset of the AR face database [15] which
contains 126 subjects under 8 different facial expressions and
variable lighting conditions for each individual. Figure 11
depicts two subjects randomly selected from the AR database
under various facial expressions and illumination. We form
the training set by a random subset of 4 different facial
expressions/poses per subject and use the remaining 4 as a
test set. We plot the error rate across 20 random realizations
of the training/test set, for different values of d between 30
and 100 with step 10.

The results are illustrated in Figure 14. Once again we
observe that ONPP and OLPP outperform the remaining
methods across all values of d. In addition, notice that NPP has
parallel performance with LPP and they are both competitive
to Fisherfaces. Furthermore, Table III reports the best achieved
error rate and the corresponding value of d. Finally, observe
that for this database, PCA has poor performance. In addition,
OLPP and ONPP yield very similar performances for this case.

In all previous experiments, we observe a consistent su-
periority in the performance of the orthogonal methods i.e.,
ONPP and OLPP versus their non-orthogonal counterparts i.e.,
NPP and LPP. Thus, the experimental results suggest that the
orthogonality of the columns of the dimensionality reduction
matrix V is important for data visualization and classification
purposes. This is more evident in the case of face recognition,
where this particular feature turned out to be crucial for the
performance of the method at hand.

It is interesting to observe that that “neighborhood-based
methods”, i.e., LPP, OLPP, ONPP, work rather well in spite of
some intrinsic geometric limitations. Specifically, it is difficult
to capture the local (as well as global) geometry of a complex
data set in high dimensional spaces. For example, a cusp on
a sharp curvature on a high-dimensional manifold would need

a high value of k to be well-captured. The choice of k, or
more generally, the means in which geometry can be better
represented in such situations deserves further study. Note for
example, that PCA did quite well on at least two examples,
suggesting that for these test cases, the local geometry be-
comes harder to capture by neighborhood-based methods and
easier to capture by PCA.

It appears from the experiments shown here that the
weighted graph used by ONPP (based on the one in LLE)
to represent locality does better that the simpler technique
used by OLPP (based on the one in LPP). However, this
comparison does not take cost into account. When cost is taken
into account, the comparison may not be so clear since a larger
k can be taken for LPP/OLPP to compensate for the higher
cost of the mapping of LLE/ONPP.

VII. CONCLUSION

The Orthogonal Neighborhood Preserving Projections
(ONPP) introduced in this paper is a linear dimensionality
reduction technique, which will tend to preserve not only the
locality but also the local and global geometry of the high
dimensional data samples. It can be extended to a supervised
method and it can also be combined with kernel techniques.
We introduced three methods with parallel characteristics and
compared their performance in both synthetic and real life data
sets. We showed that ONPP and OLPP can be very effective
for data visualization, and that they can be implemented in a
supervised setting to yield a robust recognition technique.
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