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ABSTRACT Media Servers
This paper presents a framework for efficiently streaming scalable ﬂ p x > H < >< > B
video from multiple servers over heterogeneous network paths. We = — =

; Server 1 Server 2 Server N

propose to use rateless codes,Fountain codessuch that each _—
server acts as an independent source, without the need to coordi- — ~
nate its sending strategy with other servers. In this case, the prob- Network RIR Ry, AN, N
lem of maximizing the received video quality and minimizing the N 7
bandwidth usage, is simply reduced to a rate allocation problem. We Client ‘  J f
provide an optimal solution for an ideal scenario where the loss prob- | Layer/Description L |
ability on each server-client path is exactly known. We then present I 1y 1
a heuristic-based algorithm, which implements an unequal error pro- i Tayer/Desoription 1 i
tection scheme for the more realistic case of imperfect knowledge of

the loss probabilities. Simulation results finally demonstrate the effi- Fig. 1. Distributed streaming of scalable data streams.
ciency of the proposed algorithm, in distributed streaming scenarios

over lossy channels. . . . -
proposed framework is generic and provides a low complexity dis-

tributed streaming solution. Building on the universal channel code
properties of rateless codes, the system is able to adapt to any kind of
8pannel loss, without adaptively transcoding the data at each sender,

1. INTRODUCTION

Media streaming applications over the Internet often have to respe trarilv to 14
relatively tight effective bandwidth and delay constraints, and yePon rarily to [4].

to achieve acceptable visual quality at the receiver. Server or path The sy?ekr]ndunde: con3|dergt|otn IS presemed in lFlgureﬁ).
diversity help in achieving higher overall throughput to the client, SETVers, which do not communicate among thémselves, stieam

For example, it has been shown in [1] that usage of multiple strearﬂf"yers of a media stream to a streaming client. The loss probabilities

ing servers provides better robustness in case one of the channéig and sending rateR., are possibly different for each server-client

becomes congested. As the data packets most likely take differe ath through the network. Even if our example scenario considers a

paths from their respective source to the client, the overall networ| yered encoded stream, it can be noted that the proposed distributed

load can be balanced, and the most reliable paths can be exploitéﬁre""mIng frgmework gpplles to any scalable media encodlng, and
more efficiently. However, one inherent problem of using muItipIeeven to Multiple Description Coding schemes. The rest paper is or-
sources to send the samé stream to a client is the coordination bggnized as follows. In Section 2 we briefly introduce rateless codes
tween servers. In order not to waste resources with redundant datPé( thg exampllebcl)f Razt_orb(_:odes, an:j s;ow_ hovgv they ?an Ee use_d tcl)
packets, servers have to carefully coordinate their packet scheduli code a scalable media bitstream. In Section 3we solve the optima

strategies [2]. It tends to render such a distributed streaming syste te allocation problem of an ideal scenario with static channel char-

overly complex and cumbersome, especially if conditions change oﬁCter!s“CS' In Section 4, we proylde a d_|str|bute_d heunstm_—based
one of the source-client paths. algorithm that performs efficiently in practical settings, and simula-

In this paper, we use rateless codesEauntain codesin order tion results are given in Section 5. Finally we conclude with Section

to remedy to this coordination problem. We show that using rate-"

Iess_codes, it is feasib_le to gfﬁciently stream sc:_alab_le media from 2. RATELESS CODES
multiple sources to a client with no need of coordination among the

sending servers. At the same time we make sure that each packed- Raptor Codes

that is sent by any of the servers is not redundant for the client thEUVith rateless codes, such as LT [5] and Raptor [6] codes, one can
receives it. This is in spirit similar to [3]. However we propose op- ;. arate a potentialiy unlimited number of symbols fﬂomidinal

timal sending schemes for a set of servers delivering a scalable mge 10\« | qeal Raptor codes have the property of generating unique
dia stream, and devise a heuristic-based algorithm that can providg, v o\s with high probability, such that afif + ¢) packets can be
close to optimum performance in realistic streaming scenarios. Theqq q 1o decode the originhls;}mbols. The notion ofountain code

This work has been partly supported by the Swiss National Scienc€omes from the analogy of a rateless code with a water Fountain

Foundation, under grant PP002-68737 and the Swiss Innovation Promotidghe unlimited number of symbols) from which any glass of volume
Agency (CTI), under grant 7388.2 ESPP-ES. (k + ¢) satisfies the client needs, no matter which drops (symbols)
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of water it has obtained. It does not even matter if the received synthe GOPt. The efficiency of the distributed streaming system is
bols come from the same source, as long as different sources hatfeerefore clearly driven by an efficient rate allocation problem. The
encoded the same input symbols. This property is key in order to usgreaming rate distribution strategy has to maximize the probability
multiple sources to provide the same stream to a client without anthat the client receives enough different packets for each layer, in
coordination among the sources. As long as the set of symbols theyder to optimize the quality after decoding. We now compute that
serve has been generated from the same input symbols, the encogedbability, where we drop the GOP indefor the sake of clarity.
symbols will be different from one source to another with high prob- ~ We consider a distributed streaming system viitservers. Each
ability, and so they can contribute in the same way to the client'serversS,, is connected to the client through a pattwith a maxi-
decoding. mum rate ofR,, symbols/GOP, and a loss probability, (1 < n <

In practice, the number of symbols that can be generated from &). In the generic case, each path may have a differentggst
set of source symbols is limited to the number of avail&ieoding  inferred by transmitting a packet over path Let k!, denote the
Symbol IDsor ESls, which are coded with 2 bytes, thus providing anumber of coded symbols of layérwhich are correctly received
maximum of2'¢ distinct encoded symbols. The symbol sizean  from serverS,,. Further, let-, denote the streaming rate for layler
range from 1 bit to several hundred bytes. Hlackof K symbols of  on pathn. If we assume an independent loss process, the probability
sizeT is encoded into a large number of encoded symbols ofBize density function (pdf) ok, can be expressed as:
and if 1000 < K < 8192, then the decoding overheads typically
of about 2 symboils. It is worth noting that Raptor codes induce linear L. L. rk i (rl i)
complexity for both encoding and decoding, and therefore also allow Pu(i) = Prob(k, = 1) = i (1 =)' @
for on-the-fly encoding if needed. For further details on Raptor codes

and their implementation, we refer the interested readers to [6, 7, 8Let Kl represent the number of symbols from layereceived from

all the sourcesS,, together. The pdf of:! is the convolution ofV

2.2. Coding Scheme for Layered Media binomial density functions, and can be written as:

A layers/descriptions N N
Fountain F"; Fountain F", Fountain F", pl(i) = P?"Ob(kl = ’L) = Prob Z k,l,l =i = ® pgﬂ. (2)
| Layer L | | Layer L | Layer L n=1 n=1
4 4 1 The corresponding cumulative density functiBf(;) represents the
Fl""""’L’" ’z ! I Flo"”“’L’" Fz 2 I 2 D ‘i : probability that at leastsymbols from layet are correctly received.
ayer ayer ayer . . .
Itis simply given by:
f f f -
Fountain F'; Fountain F', Fountain F', Pl N Loy
i)=1-— . 3
| Layer 1 | | Layer 1 | Layer 1 time ( ZO p (j) ( )
- J=
GOP 1 [ GOP 2 [ GOP t [

Fig. 2. Coding Scheme: a Fountain is created per GOP and per We are now able to derive conditions for optimal rate alloca-

layer. The vertical arrows show the hierarchical dependencies in th[éOn among servers, and .between Iayers. .Th.e sefptifmal rates
bitstream. r,,1 <n < N,1 <1< Lissuch that it maximizes the probability

PY(K") of receiving at leasfs’ symbols for each laye Interest-

A rateless code, applied blindly on a media bitstream, wouldngly, these probabilities only depend on the allocated rates per layer
mix the time-dependencies and the intra-layer dependencies that aaad per link,r,, through equations (1) and (2). In the same time,
present in the original scalable media stream. Therefore, we prdhe overall rate usage has to be minimized, while the individual path
pose to create one Fountain per layer and per GOP of the originate constraints have to be satisfied. Note that the difference between
bitstream, as depicted in Figure (2). Such a Fountain is debted K* and) rL, corresponds to the error protection overhead, which
wherel stands for the layed, < I < L andt is the timestamp as- is optimally distributed between servers when the rate allocation is
sociated with the corresponding GOP. It encodes a saf'cfource  optimal.

symbgls, which depends on the encod!ng ratg of the lay&uch Optimization Problem 1 Given the numbers of source symbols per
a coding scheme allows to keep the hierarchical and temporal d?éyer {K'}, the set of available rate§R,, } and loss probabilities

pendencies present in the original bitstream, which are essential fcfw }, the optimal rate allocation* is given by:
the scalable delivery of the stream. Then, each server sends diffef- "'’ P 9 y:
ent packets from the same Fountaif, such that the client does not . L N -
= agmax  [[PUEH-D ) m, @)
{rl}1<i<pi<n<ny 1=1 n=1 =1

receive any duplicate packets. Even in the case of practical Raptor r
codes, there are several ways to guarantee that each server sends dif-
ferent symbols from the same Fountain. For example, the requesting L

client can provide a different random seed to each of the SOUrCe§nder the constraints thdy - v < Ry, Vn.
determining a subset of ESlIs (and thus encoded symbols), which the
server has to transmit. Another option could be to centrally encode
a large number of symbols for each Fountain, and to put disjoin he solution of the Optimization Problem 1 is a priori combinatorial

=1

subsets on different servers of a CDN. in the general case. We however outline a series of heuristics, which
can be used to design a low-complexity rate allocation algorithm,
3. OPTIMAL RATE ALLOCATION which performs close to optimal. An example optimal rate allocation

is illustrated in Figure (3), where* is computed by exhaustively
In the generic case of non-systematic coding, the decoder needsarching for the optimum rate for each layer and each path. In this
to receive at leask! symbols to be able to decode the layesf particular run, 3 servers and 2 layers are considered. The 3 links can
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. Lovert Consider now an allocation scheme that uses the same optimal per
ayer . . . .
g link rate allocations;,. However, it proportionally allocates shares

of each layer, as determined by the to each link:
15 T Tl _ I<Ll 7“*

1 = —— .
g o | ] - DYV

@)

‘ ‘ ‘ Clearly, this allocation makes sure that the number of received sym-

) ‘ ‘ ‘ 7 bols per layer is, on average, givenE/nV:1 Z["l Lr;i) (1—mn).
< T - A =8~ L . . . 1=1" .
= 1 This is equivalent to Equation (6), which proves that the allocation
0% plh)| ‘ ‘ ; i scheme which affects shares that are proportional to the layer sizes to
0 5 10 15 20 25 each used link, is always among the solutions to Optimization Prob-
Number of received symbols: K = K'+k* lem 1. This property allows us to formulate a distributed algorithm

Fig. 3. An optimal rate allocation for 2 layers over 3 links. Link 2 in the next Section, as every server splits its sending rate in the same
is never used and therefore not shown. Results are showki fer ~ way among the streamed layers.
K'+ K? between 1 and 25, witki* ~ 2K2. Bottom: Probabilities
P'(K') and P?(K?) as computed by the optimal rate allocation. 4. HEURISTIC-BASED ALGORITHM
Each link has unit price. '
4.1. Client side

We now propose a heuristic-based scheme, which offers a close to
X’ptimal rate allocation, with low complexity. We assume that a client
has an approximation of both the available ratgs and the error

from 1 to 25, and each tim&* is approximately twice as large as probabilitiesr,, for the N server-client paths. Based on these rates

K?. Several observations can be noted on the solutions obtained félﬂgrf;z r[i)stg(l:):bilt“téi?ﬁ V\(th]:ecsh ;r:eosfa:)aeiftr aetztlg;lztf;ﬁof t2<ra :::3:: path
the Optimization Problem 1: ' P orp

(without considering the layers), by greedily attributing streaming
e As long as the channel with the lowest error probability canrates to the path with the lowest error probability first. The allocation
carry all the symbols that are needed, all the symbols are ais finished once the sum of the effective rates that have been allocated

support rates of maximum 20, 20 and 15 symbols/GOP, respectivel
and the loss probabilities ara = 0.01, 72 = 0.2 andws = 0.03.
The figure shows the optimal allocation f&r = Zle K' ranging

located to that channel. satisfies the average rate of the video stream to be delivAred,
N
* The channel with the second lowest error probability isused = N™(1 — 7,)r,, With 7 < Ru, 1 <n < N, (8)

only when the one with the lowest error probability has been
exhausted. The exceptionskit= 17,18 are due tothe fact 4 5 garver side

that we use discrete pdfs, and only allow for integer symbols

to be allocated. Each server fills the rate,, as requested by the client, with shares
for each layer that are reflected by the weigklitsas given in Equa-

n=1

e The optimal rate distribution allocates the optimal amount Ofkion (5). Each server then has the possibility of sending —

error protection to all layers, as it takes into account the exactp _ ", \"aqditional bits to the client. These bits may be used

error probabilities on all the links. to perform Unequal Error Protection (UEP) on the delivered stream,
The solution to Optimization Problem 1%, is an array of lines ~ which becomes beneficial when the client error probability estimates
and! columns, where each componentn)(l) denotes the optimal ~ are not exact, as it is most likely the case in practice. The use of Rap-
number of symbols from layérto send on link:. Letr}; denote the  tor codes makes the implementation of UEP quite trivial: in order to
optimal total rate allocation for link: it is the sum of thé compo-  better protect layet, we just need to send more packets from foun-
nents of then®* line of ¥*. In generals* is not a unique solution, tain F'. That is why we choose to use the available bitratein
as for a given set of optimal per-link allocation$, there can be a way that reflects the hierarchical dependencies between the lay-
various per-layer allocations, among the links that are equivalent. ers, which are present in the uncoded bitstream. To express these
In the following, we show that an allocation that allocates shares oflependencies, we use a weightfor each layer, which reflects the
each link bandwidth, proportionally to the respective layer sizes, isiumber of layers that depend on layén order to be decoded cor-
always among the solutions of Optimization Problem 1. rectly. For example, in the case of Figure @},= L,o*> = L — 1

Any optimal allocation™ makes sure that, on average, the totalanda™ = 1. Note that in a balanced multiple description coding

number of received symbols will BE ", 5 (1 — 7,,). Out of this ~ scenario, all weights are equal.
total number of received symbols, the optimal allocation also guar-  To summarize, each server for which > 0 sends at rate;”",
antees that, on average, the share of symbols received for each lay#éhich can be written as:
is proportional to the number of source symbadt¥, as reflected by it = 4 g, 9)
the weights<' given as:

K where the coefficient € [0, 1] allows to control the rate that is used
K Tomin 5) for unequal error protection against channel estimation mismatches.
The rates per layer that sum up to the first term are expressed as
X _ ! . . .
where K™ is the smallestk’. So, on averagek! symbols are  "n = ST T similarly to Equation (7). Finally, the rates per
received for layet: layer that sum up to the second term are:

N 1 al

l
K= 725 = ( rr(l— wn)> . (6) Uy = m(Rn —Tn). (10)
=1 n=1
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H0 S e e y e (GEN) is a generic scheme, allocating the overall rate in the
D4 e e network to all the links, by using a water-pouring strategy: all
~- GEN Layer 2 links get equal shares of rate, regardless of their loss proba-

3150 H -o- WCF-EEP Layer 1 E E B e . R . .
0~ WCF-EEP Layer 2 bility. Once the lowest capacity link is full, the procedure is

12 = _ . .. . .
== - - continued on the remaining links. The allocated rate per link

is then shared among all layers, in proportions reflected by
Equation (5).
Figure (4) shows the number of received symbols for the various
strategies versus the overall streaming rate, starting,atthe over-
all rate allocated by the client. Each data point is the average over
10 simulation runs. For a given total rate, our scheme allocates more
rate to the base layer than to the enhancement layer, while (WCF-
EEP) provides an equal number of additional protection symbols to
each layer. Thus, if there are random losses on any of the chan-
nels, due to a sudden unforeseen congestion for example, the client
is more likely to receive at least the base layer using our scheme
than using (WCF-EEP). Hence, our scheme is more robust as it im-

«
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Number of received symbols
w
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o

3000

2 3 4 5 6 7 8 9 10 plements graceful quality degradation. Note that the generic scheme
o0, UEP .
‘ ‘ | wpelefr ‘ . (GEN) performs quite poorly: for the same total rate, more symbols
198.4 2008 2033 2057 208.1 2105 getlost in the network due to the fact that more symbols are allocated
Total rate [kbps]

to channels with higher loss probabilities.

Fig. 4. Performance of distributed streaming algorithms, in number 6. CONCLUSIONS
of received symbols versus overall streaming rate.

This paper has presented a distributed streaming system for scalable
video, based on rateless codes applied independently on each layer
5. SIMULATION RESULTS of each GOP. An optimal rate allocation strategy has been proposed
) . . in the ideal case of perfect knowledge of the network status. A low
We consider the delivery of 2 layers of video, a base layer, and an ey mplexity heuristic-based algorithm has been designed, wich per-
hancement layer, which depends on the base layer. Both layers hagms close to optimal. Additionally, it provides an increased ro-
an equal average rate of 96kbps and a frame rate of 30Hz. The GQRsiness to incorrect channel characteristics estimation, by carefully
size is 60 frames. One GOP is Raptor-encoded ngh symbol sizg|iocating the remaining bandwidth as unequal error protection of
T = 8 bytes. Thus the client needs to receNé = K* = 3000  the respective layers. Rateless codes are shown to provide a very in-
Raptor encoded symbols, in order to be able to decode one laygfresting solution for low complexity distributed streaming systems,

with high probability. The choice of parameters complies with theyithout need for complex synchronization schemes between servers.
constraints imposed by practical Raptor codes, as mentioned in Sec-

tion 2. We suppose that the servers can always provide enough ag- ACKNOWLEDGEMENTS
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