
Spatial filters for the classification of
event-related potentials

Ulrich Hoffmann, Jean-Marc Vesin and Touradj Ebrahimi ∗

Ecole Polytechnique Fédérale de Lausanne – Signal Processing Institute
CH–1015 Lausanne – Switzerland

Abstract. Spatial filtering is a widely used dimension reduction method
in electroencephalogram based brain-computer interface systems. In this
paper a new algorithm is proposed, which learns spatial filters from a
training dataset. In contrast to existing approaches the proposed method
yields spatial filters that are explicitly designed for the classification of
event-related potentials, such as the P300 or movement-related potentials.
The algorithm is tested, in combination with support vector machines,
on several benchmark datasets from past BCI competitions and achieves
state of the art results.

1 Introduction

As is well known, learning a classification rule can be difficult and time-consuming
in high dimensional spaces. Therefore feature extraction and dimension reduc-
tion are central components of almost every machine learning system. A good
feature extraction method should reduce the dimension of the input data as
much as possible while keeping all the information necessary for classification.
To this end, usually application dependent prior assumptions are applied in
feature extraction methods.

A prior assumption that can be applied in the area of electroencephalogram
(EEG) based brain-computer interfaces is that the spatial distribution of the
EEG remains stable during short epochs. Dimension reduction can then be per-
formed by spatial filtering, i.e. by linearly combining data from all electrodes to
form a small set of ‘virtual’ electrodes. A good example of dimension reduction
using spatial filtering is the common spatial patterns method (CSP), which has
been successfully used for the classification of EEG recorded during motor im-
agery [1]. CSP determines spatial filters that maximize the temporal variance of
data recorded under one condition and minimize the temporal variance of data
recorded under a second condition. The success of CSP stems from the fact,
that temporal variance in the µ and β frequency bands is an important feature
for the classification of EEG signals recorded during motor imagery. For the
classification of event-related potentials (ERPs) however, temporal variance is
a less useful feature and therefore CSP is not a suitable method.

The success of CSP for motor imagery recordings motivated us to propose
a supervised dimension reduction algorithm that determines spatial filters for
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the classification of ERPs. In contrast to existing spatial filtering methods
for ERPs such as independent component analysis [2] or principal component
analysis our method is supervised and explicitly designed to compute filters
suitable for classification. In addition the algorithm is of low computational
complexity and achieves state of the art performance. Another advantage of
the presented method is, that it can directly deal with more than two classes;
which is not the case for the CSP algorithm.

The layout of the rest of the paper is as follows. In Section 2 the computation
of the spatial filters is described. In Section 3, results on benchmark datasets
are provided, and conclusions are drawn in Section 4.

2 Spatial filters for event-related potentials

In order to compute a set of spatial filters from training data, we propose to
maximize the following criterion:

J =
tr(Sb)
tr(Sw)

. (1)

This criterion was introduced in [3] and can be interpreted as a measure of the
separation between two sets of feature vectors. Maximizing J amounts to max-
imizing the sum of the squared distances of the components of the mean feature
vectors, while keeping the sum of within-class variances of the components of
the feature vectors small. We first briefly describe how the above criterion is
generally computed and then show how it can be used to obtain spatial filters
for ERPs.

The general between-class scatter matrix Sb is computed as follows:

Sb =
K∑

k=1

pk(x̄k − x̄)(x̄k − x̄)T , x̄k =
1

Nk

∑

i∈Ck

xi , x̄ =
1
N

∑

i∈C
xi.

Here feature vectors are denoted by xi, the class conditional mean vectors are
denoted by x̄k, the overall mean vector is denoted by x̄, and the pk are the a
priori class probabilities. The index set Ck contains the indices of all feature
vectors belonging to class k and the set C is the union of the Ck. The number
of classes is K, and the cardinalities of the index sets are Nk and N . The
within-class scatter matrix is the sum of the class conditional covariances:

Sw =
K∑

k=1

pkSk , Sk =
1

Nk

∑

i∈Ck

(xi − x̄k)(xi − x̄k)T.

To obtain spatial filters with the help of Criterion 1, the quantities involved
in the computation of Sb and Sw are expressed in terms of EEG signals and spa-
tial filters. We represent EEG epochs containing n samples from m electrodes
by m × n matrices Ei. As before the subscript i together with the index sets
Ck indicates to which class an epoch belongs. Feature vectors are the result of



spatially filtering one epoch and can be written as the product of a spatial filter
f and an EEG epoch: xi = ET

i f . We denote further by ei(t) the column vector
that contains all the samples at time t from epoch Ei. Now the tth element of
the class conditional mean vector x̄k can be written as:

x̄k(t) = fTēk(t) , ēk(t) =
1

Nk

∑

i∈Ck

ei(t).

Given the above equation, it is easy to derive an expression for the trace of the
between-class scatter matrix:

tr(Sb) = fTŜbf , Ŝb =
∑

t∈T

∑

k∈K
pk(ēk(t) − ē(t))(ēk(t) − ē(t))T.

Similarly, the trace of the within-class scatter matrix is:

tr(Sw) = fTŜwf , Ŝw =
1
N

∑

t∈T

∑

k∈K

∑

i∈Ck

(ei(t) − ēk(t))(ei(t) − ēk(t))T.

Finally, Criterion 1 can be expressed as:

J(f) =
fTŜbf

fTŜwf
. (2)

Equation 2 is a generalized Rayleigh quotient and an optimal f can be found by
solving a generalized eigenvalue problem. The solution of the generalized eigen-
value problem is a set of eigenvectors and eigenvalues. Eigenvectors correspond
to spatial filters, and the discriminative power of the filters is indicated by the
associated eigenvalues.

Since the spatial filters usually have to be estimated from noisy training data
it can be advantageous to regularize the estimates. In the framework proposed
here this can for example be achieved by replacing Ŝw by (1−λ)Ŝw +λI, where
I is the identity matrix. Using large λ amounts to specifying a smoothness prior
on the spatial filters.

Note that equation 2 strongly resembles the criterion that is used in classical
linear discriminant analysis (LDA). If each epoch consist of only one sample from
all electrodes, the proposed method is in fact equivalent to LDA. However, if
more than one sample per epoch is used, the method is different from LDA and
can be seen as an extension of LDA for spatial filter design.

The above procedure can also be employed to compute temporal filters for
the classification of ERPs. This can be achieved by simply changing the vectors
e which contain samples from all electrodes at one point in time to vectors
containing samples from one electrode at several points in time. If temporal
filters are considered, a close connection to the eigenfilter method [4] can be
shown. Due to space constraints we omit a further discussion of the eigenfilter
method and temporal filtering.



3 Experiments

3.1 Datasets

The P300 speller datasets from the BCI competitions 2003 and 2004 were used
to benchmark the proposed spatial filtering algorithm1. The idea behind the
P300 speller paradigm is, to let users choose symbols from a predefined set of
symbols, only by means of their brain-activity [6]. To achieve this, a 6 × 6
matrix of symbols is presented to the user, and rows and columns of the matrix
are flashed in random order. The user can select a symbol by counting how
often it flashes or simply by concentrating on the flashes of the desired symbol.
Each time the desired symbol flashes, a P300 is evoked and can be detected by
an appropriate algorithm.

3.2 Preprocessing

Before submitting the data to the feature extraction and learning algorithms
the data were bandpass filtered between 0.1Hz and 5Hz with a 4th order But-
terworth filter and then downsampled to a sampling rate of 20Hz. Only the
first 14 samples were kept for each epoch, this corresponds to a time-window of
approximately 660ms after stimulus onset. To reduce the effect of outliers the
5th and the 95th percentile were computed for each channel and values below
the lower percentile or above the upper percentile were set to the correspond-
ing percentile. A set of spatial filters was then determined and the data were
projected onto these spatial filters.

3.3 Cross-validation

Estimates of hyperparameters and classification accuracy were obtained with
a ten-fold cross-validation. In each iteration the percentile values for outlier
reduction, the spatial filters, and the parameters of a linear support vector
machine (SVM) [7] were learned from the training part of the data2. To infer
symbols in the test set, a score was computed for each candidate symbol. The
score was the sum of the values of the SVM decision function for the epochs in
which the candidate symbol would have evoked a P300. After the computation
of scores for all 36 symbols, the symbol with the highest score was chosen.

Since there are three hyperparameters that have to be estimated, a simple
heuristic was used to avoid lengthy computations. First the filter regularization
parameter λ was set to 0.1 and the SVM hyperparameter and the optimal
number of spatial filters were estimated in a cross-validation loop. Then the

1The datasets, as well as classification results of the competition winners are available on
the BCI competition website [5].

2In order to obtain unbiased classifiers the same number of target epochs (in which a P300
was evoked) and non-target epochs (in which no P300 was evoked) was used for training,
i.e. only a randomly chosen subset of the non-target epochs was used. This simple approach
is clearly suboptimal, however it is sufficient to show the feasibility of our spatial filtering
method.



regularization parameter λ for the spatial filters was tuned in a second cross-
validation loop, using the values for the two other hyperparameters found in
the first cross-validation loop.

3.4 Results

The competition datasets all consist of a training set and a test set. The goal
in the competition was to train a classifier on the training set and to predict
the symbols in the test set. We simulated the competition conditions and used
only the training set to determine classifier parameters and hyperparameters.
The estimated values of the hyperparameters for spatial filtering, as well as the
cross-validation accuracy are shown in Table 1. For all of the three datasets
a large reduction in dimension was possible, namely the 64 original electrodes
could be reduced to 1, 13, and 3 ‘virtual’ electrodes. Moreover, for all three
datasets the same value for the regularization parameter λ was used. In fact, the
cross-validation procedure showed that for values of λ which were close to zero
classification accuracy was optimal, lower classification accuracy was obtained
for larger values of λ. Examples of spatial filters computed for one of the 2004
P300 datasets are shown in Figure 1.

After estimating parameters and hyperparameters on the competition train-
ing sets, the classifiers were applied to the competition test sets. The results in
Table 1 (column Test) show that the spatial filtering algorithm, in combination
with a linear SVM, yields results comparable to those of the competition win-
ners (column Comp.). A further improvement of the performance could possibly
be obtained by applying a more sophisticated SVM training procedure, such as
the method proposed in [8].

4 Conclusion

We have shown how spatial (or temporal) filters for the classification of ERPs
can be obtained as the solution to a generalized eigenvalue problem. The method
we proposed is of low computational complexity, leads to a considerable reduc-
tion of the number of features, yields results that are physiologically plausible,
and is comparable to the state of the art in terms of classification accuracy.

Possible future research topics are the application of our algorithm in other
BCI paradigms, the development of a more elaborated regularization method
and the use of the algorithm for the computation of temporal filters.

Dataset Filters λ CV Test Comp.
2003 1 0.1 100.0 ± 0 100.0 100.0

Subject A 2004 13 0.1 95.0 ± 6.5 91.0 97.0
Subject B 2004 3 0.1 96.3 ± 6.2 97.0 96.0

Table 1: Classification accuracy and hyperparameters for the three datasets.



Fig. 1: First four spatial filters for Subject A (2004). Shown are the absolute
values of the filter coefficients, scaled to [0, 1]. The top row shows the filters
with largest (left) and second largest eigenvalues (right). Filters associated to
the third and fourth eigenvalues are shown in the second row. The first two
filters have large weights in the central, parietal, and occipital regions, which
corresponds well to the neurophysiology of the P300.
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