
I. INTRODUCTION

BUILDING good sparse approximations of functions is one
of the major themes in approximation theory. When ap-

plied to signals, images, or any kind of multidimensional data,
it allows to deal with basic building blocks that essentially syn-
thesize the information at hand. It has been known since the
early successes of wavelet analysis that sparse expansions very
often result in efficient algorithms for characterizing signals, or
even for analysis and compression. An interesting and increas-
ingly popular way of achieving sparsity is to turn to very re-
dundant systems. It often allows for short-length representation
of signals, since the probability of finding a sparse approxima-
tion generally increases with the redundancy of the dictionary.
In most cases, sparsity is measured by the norm of the vector
of coefficients.
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Finding the best linear expansion using a redundant dictio-
nary of functions is a daunting task and even a NP-hard problem
[1] in the general case. Despite the difficulty to find the best,
sparsest solution, it is possible to find sufficiently good repre-
sentations that are nearly optimal. Suboptimal heuristics have
been developed that recover the best approximations of a func-
tion in a redundant dictionary. Among the most popular algo-
rithms that find good suboptimal solutions to the sparsest signal
representation problem, we can cite Matching Pursuit [2] and
Basis Pursuit [3]: both reach a solution close to optimum by re-
laxing some constraints of the original optimization problem.
Even if specific optimizations are possible for particular classes
of dictionaries, the complexity of these algorithms however re-
when the amount of data gets very large. Dictionary functions
with similar properties can be clustered together, in order to fa-
cilitate the search for the sparsest representation. Clustering is
a widely used technique when the amount of data is huge and
hides the underlying structures, see [12] for a survey. Clustering
algorithms depend on a measure to quantify the similarity be-
tween two objects. Proper data arrangement then allows for the
development of tree data structures, which can be efficiently
used for search when a huge amount of data is present [13]. Tree
search has been proposed in [14] in order to improve the perfor-
mance of Matching Pursuit expansion. We however propose to
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where can be expressed as

(4)

This equation confirms that the algorithm will behave well,
provided there is always an atom closely aligned with the
residual. The properties of the signal, dictionary and algorithm,
are tightly linked.

As already mentioned, solving the sparse approximation
problem of (1) using a redundant dictionary is of combina-
torial complexity. The greedy heuristic finds in general a
good approximant to the problem in polynomial time. There
is however no guarantee on the optimality of the solution,
except in the case where sufficient conditions are set on the
dictionary [18]. However, polynomial time still does not mean
fast! Typical implementations of Matching Pursuit suffer from
high computational complexity when compared to most or-
thogonal transforms. In the remainder of this paper, we propose
to reduce the complexity by an efficient organization of the
dictionary. We group similar atoms together, and represent
them by a unique element called molecule. Applying clustering
recursively on atoms and molecules yields a hierarchical tree
structure, which can be exploited to design a search algorithm
with greatly reduced complexity.

III. STRUCTURING REDUNDANT DICTIONARIES

A. From Atoms to Molecules

This section discusses clustering of a generic, redundant dic-
tionary, which eventually leads to the creation of a tree structure.
First, it describes the problem of representing a group of highly
correlated dictionary atoms by a unique element. We then dis-
cuss the characteristics which are necessary for a dictionary to
be efficiently clustered and organized in a tree structure.

Let the elements of the dictionary be labeled by
the index set . A subdictionary is such that ,
where and . A collection of subdictionaries

forms a partition of the dictionary if and
, . If the atoms in are sufficiently un-

correlated, a simple greedy algorithm is able to recover a sparse
approximation of the signal (see, for example, [18]). This is not
the case for highly correlated redundant dictionaries. It can be
explained intuitively by the fact that high correlation in the dic-
tionary can fool the pursuit and result in wrong choices. We are
thus going to try to represent a highly correlated subdictionary

by a single molecule, while at the same time minimizing
the correlation among molecules. This procedure should result
in a set of molecules that behaves like a (quasi-) incoherent
dictionary.

Let us first define the minimal coherence of a subdic-
tionary by:

(5)

A subdictionary will be referred to as reducible when is pos-
itive and sufficiently big. In order to quantify the adequation of
the molecule in representing the atoms in the subdictionary ,
a distance measure has to be defined. Let be a measure

of the distance between two unit energy atoms and . In this
paper, we chose to use the following distance measure, derived
from the simple cosine function:

(6)

Note that an atom can be considered as equivalent to ,
from an approximation point of view, the sign of the weights
in (1) could be reversed. The distance measure given in (6) is
independent of the direction of as .

Most clustering algorithms represent a cluster by a centroid
whose mean distance to all elements it represents is minimized.
Let us define the optimal centroid or unit norm molecule ,
for a subdictionary , by

(7)

Using the distance measure defined in (6), the optimal centroid
becomes

(8)

(9)

(10)

where the columns of the matrix are the atoms of the sub-
dictionary . The molecule is the eigenvector associ-
ated to the biggest eigenvalue of the matrix . The eigen-
values of are equal to the eigenvalues of (see
[20, Theorem 1.3.20]). This last matrix is the Grammian of .
Later, Fig. 4 illustrates the reduction capabilities of a molecule
regarding a group of similar atoms. As the matrix is sym-
metric, the associated eigenvalues are real and the associated
eigenvectors are orthogonal. The molecule is also equiva-
lent to the dominant left singular vector of the matrix [20].

B. Dictionary Characterization

In the previous subsection, we introduced the definition of
molecule in order to structure the information at hand in a
highly redundant subdictionary. We will now see how a dictio-
nary can be partitioned into disjoint subdictionaries represented
by molecules through a simple clustering procedure. Further
recursive application of clustering on the set of molecules
results in a hierarchical tree structure that will be used by the
search algorithm.

We previously stated that representing a subdictionary by a
molecule makes sense only for reducible subdictionaries. By
extension, a dictionary is said to be reducible if it contains
a partition , such that all its subdictionaries are reducible
and , i.e., the number of subdictionaries is much
smaller than the number of atoms in the dictionary. A special
case of reducible dictionaries is represented by the block inco-
herent dictionaries [21]. These dictionaries are such that it is
possible to find a partition having a small block coherence
defined by

(11)
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In this paper, we will follow a bottom-up approach, which
consists in grouping nodes, starting from atoms, to create
new nodes and molecules. The bottom-up approach is better
appropriate to the clustering of arbitrary dictionaries, since
the number of clusters does not need to be known in advance.
The bottom-up approach presented here sets the cardinality

of each cluster. Algorithm 1 presents the method. Initially,
it creates nodes containing the atoms from a dictionary .
The recursive part consists in finding groups of nodes
that can be merged. A set of molecules is associated to

. We propose a weak and a strong rule. The weak version
defines , while for the strong decision rule,
contains the molecules associated to the leaf nodes that are the
descendants of the different nodes of (i.e., ). The
set of nodes is merged if , where is an

a priori fixed threshold.

Algorithm 1 Tree Creation by grouping

INPUT: , the dictionary.

, the cardinality of the clusters.

, the grouping threshold.
OUTPUT: , the tree.

ALGORITHM:

, , leaf nodes have no children.

, , molecules at leaf nodes.

, leaf nodes of the tree.

, initial tree.

, list of candidates for grouping.

, subset of nodes to group.

while do

, create the new molecule.

, list of children.

, remove grouped nodes from the list.

, add index of new node to the list.

, create new node.

, add the new node to the tree.

, subset of nodes to group.

end while
, no molecule at root node.

, list of nodes at first level.

, add root node to the tree.

Finding the best group of nodes is still a combinatorial
problem, but it can be easily solved for small values of (our
results are based on trees created with ). The tree can be
constructed off-line, without penalizing the pursuit algorithm.

Fig. 2 illustrates the construction of a binary tree, for a dictio-
nary of 12 random vectors. The most similar atoms are paired to-
gether, until the algorithm reaches level 1 with three molecules,
which are too incoherent to be further clustered.

IV. TREE-BASED PURSUIT ALGORITHM

A. Tree-Based Search

In a sense, a single iteration of Matching Pursuit can be seen
as a classification problem where each atom corresponds to
a class of signals. Its aim becomes to successively map the
residual signal to a class according to a given distance measure.
When considering the greedy approximation problem as an
iterative classification problem, the tree structure can be used
to divide the decision into smaller steps in a manner similar to
a decision tree. Matching Pursuit simply tries all possibilities
to find the best class. The use of a hierarchical structure allows
to discard an important part of the dictionary at each node. In
the following, we describe a practical implementation of this
technique, the Tree-Based Pursuit algorithm. Like Matching
Pursuit, the proposed algorithm iteratively searches for a good
atom to approximate a residual signal . Instead of testing
all possible atoms from , Tree-Based Pursuit uses the tree
structure that groups similar atoms in the same subtree.
The search starts at the root node and goes down through the
tree until a leaf node is reached. At each node, the algorithm
chooses the child whose molecule best approximates the signal
(i.e., the one that leads to the highest amplitude of the scalar
product with the residual).

In practice, a dictionary is often built using several gen-
erating functions, which are translated to different positions in
the signal space, e.g., in time or space. Let be the operator
that translates a generating function at position on the sup-
port of the atom and leaves the energy unchanged. Tree-Based
Pursuit is described by Algorithm 2 for dictionaries built using
generating functions that can be translated at any place on the
support of the signal to approximate. However, it remains valid
for any kind of dictionary. For dictionaries that do not explicit
the translation of atoms, the search of the optimal position is
simply discarded.

Algorithm 2 Tree-Based Pursuit algorithm

INPUT: , the tree structured dictionary

, the size of the local search window

, the signal to approximate.

OUTPUT: , the set of chosen atoms

, the set of corresponding projections.

INITIALIZATION: ,

repeat

while do

,
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Fig. 9. (a) Comparison of the error produced by the proposed algorithm when using different bounds for the grouping. (b) Comparison of the complexity between
Matching Pursuit and Tree-Based Pursuit, when using different values for � during the creation of the tree structure.

Fig. 10. Performance of Tree-Based Pursuit compared to Matching Pursuit for different trees. The x axis corresponds to the mean time per atom divided by the
mean time per atom for Matching Pursuit. The lower part of the figures presents the value of � used during the creation of the tree. (a) PSNR achieved using 25
atoms. (b) PSNR achieved using 150 atoms.

trees created with a value of . However, due to a more com-
plex data structure to handle, the computational time is slightly
higher.

VII. CONCLUSION

This paper has presented a generic algorithm to reduce the
computational complexity of pursuit algorithms. Hierarchical
clustering of dictionary atoms in molecules has been pro-
posed, as an efficient structuring of large sets of functions.
The molecules represent a subdictionary of highly correlated
atoms and are used to create a tree structure from an arbitrary
highly redundant dictionary. A tree-based pursuit algorithm
is then proposed, which exploits the tree structure, resulting
in a computational complexity that is significantly lower than
the classic pure greedy algorithm. We experimentally showed
that the reduction in complexity does not imply a large penalty
in approximation rate. It is shown also that Tree-Based Pur-
suit recovers coarse structures of the signal, even for highly
redundant dictionaries, thanks to the hierarchical clustering

into sufficiently incoherent dictionaries of molecules. Finally,
practical applications are often based on highly redundant dic-
tionaries, whose properties are however poorly studied. On the
other hand, the class of incoherent dictionaries has been widely
studied, but is rarely used in practical applications. Our study
tries to bridge that gap, by demonstrating that, from a molecular
point of view, it is possible to apply the approximation results
for incoherent dictionaries to highly redundant dictionaries.
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