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Abstract—This paper presents a progressive coding scheme for
3-D objects, based on overcomplete signal expansions on the 2-D
sphere. Due to increased freedom in the basis construction, re-
dundant expansions have shown interesting approximation prop-
erties in the decomposition of signals with multidimensional sin-
gularities organized along embedded submanifolds. We propose
to map simple 3-D models on 2-D spheres and then to decompose
the signal over a redundant dictionary of oriented and anisotropic
atoms living on the sphere. The signal expansion is computed iter-
atively with a matching pursuit algorithm, which greedily selects
the most prominent components of the 3-D model. The decomposi-
tion therefore inherently represents a progressive stream of atoms,
which is advantageously used in the design of scalable representa-
tions. An encoder is proposed that compresses the stream of atoms
by adaptive coefficient quantization and entropy coding of atom
indexes. Experimental results show that the novel coding strategy
outperforms state-of-the-art progressive coders in terms of distor-
tion, mostly at low bit rates. Furthermore, since the dictionary is
built on structured atoms, the proposed representation simultane-
ously offers an increased flexibility for easy stream manipulations.
We finally illustrate that advantage in the design of a view-depen-
dent transmission scheme.

Index Terms—Matching pursuit, progressive coding, scalable
coding, sparse approximations, 3-D model compression, 3-D
representation and coding.

I. INTRODUCTION

HE widespread use of 3-D data in many areas like gaming
Tor entertainment, architecture, robotics, or medical
imaging, for example, has created an essential need for efficient
compression of 3-D models. Simultaneously, the increasingly
large variety of decoding engines with heterogeneous capa-
bilities and connectivity imposes a need for multiresolution
representations, as well as low-complexity decoders. The most
common approaches for 3-D data representation are based on
polygonal meshes, which are described by both geometry (i.e.,
the position of vertices in space) and connectivity information,
as well as optional information about normals, colors, and
textures. It generally results in models built on arbitrarily
defined and nonuniform grids that lead to efficient decoding
performance on dedicated hardware. However, these forms of
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representations stay quite voluminous and do not provide a
lot of flexibility for adaptation to the requirements of specific
applications or to the constraints imposed by the decoding
engine.

The aim of this paper is to propose a novel coding scheme
for 3-D objects, which can provide a progressive representa-
tion with flexibility in the stream manipulation, whilst achieving
good compression performance. A progressive representation
enables the decoder to construct a model at different resolu-
tions, simply by proper stream truncation to meet a well-chosen
rate—distortion tradeoff. At the same time, a flexible represen-
tation provides the possibility to manipulate the model in the
compressed domain, to decode the model at different sizes, or
from different viewpoints, for example. Towards this objective,
we first propose to move away from restrictive representation
techniques on nonuniform grids, by resampling 3-D data on a
regular spherical grid, thus reducing the dimension of the input
data into a 2-D data set. A spherical representation, defined on
aregular grid, further enables the usage of 2-D signal transform
coding techniques for 3-D models. A 3-D surface, which can
be represented as a function on a 2-D sphere is a genus-zero!
surface that has only one intersection point with each radial line
from the center of the point cloud and thus does not contain any
folds. We will refer to these models that can be mapped on the
2-D sphere as simple genus-zero or star-shape models. We even-
tually show that the representation of more complex models is
feasible by splitting them into several spherical mappings.

Inspired by the good efficiency of discrete wavelet trans-
forms for image compression, the first choice would be to use
the spherical wavelet transform for the representation of 3-D
models living on a sphere. However, similarly to contours in
natural images, 3-D objects often present numerous multidi-
mensional singularities that are organized along embedded
submanifolds. It has been shown that wavelets are not optimal
in representing such features like contours, because they cannot
deal with the geometrical regularity of these characteristics.
We therefore propose to represent the 3-D model as a series
of oriented and anisotropically refined functions taken from
a redundant dictionary of atoms. These atoms are edge-like
functions living on the 2-D sphere, which can take arbitrary
positions, shapes, and orientations. In order to capture the
low-frequency components of the 3-D model, low-frequency
atoms built on 2-D Gaussian functions finally complement the
dictionary. We propose to use the iterative Matching Pursuit
(MP) algorithm to greedily build the signal approximation. MP
inherently produces a progressive stream of atoms, which can

I A mesh has a genus g, iff one can cut the mesh along 2¢g closed loops without
disconnecting the mesh.
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be decoded with a reduced complexity. A coefficient quantiza-
tion step as well as an entropy coding stage for atom parameters
are proposed in order to generate a flexible compressed repre-
sentation of the 3-D model. The proposed encoder offers better
compression performance at low rate, compared with classical
3-D compression methods, while still providing interesting
scalability properties. Experimental results show that the PSNR
gain of the proposed coding scheme over the state-of-the-art
schemes even reaches 3 dB at low bit rate. At the same time, the
MP encoder produces a completely progressive stream, which
can be efficiently truncated at any arbitrary rate. We finally
demonstrate the increased flexibility of the proposed repre-
sentation by presenting a view-dependent coding algorithm,
which is typically useful in interactive applications with scarce
bandwidth resources.

This paper is organized as follows. In Section II, we give an
overview of related work on 3-D model compression schemes
and redundant expansions. Section III focuses on the construc-
tion of the overcomplete dictionary adapted to 3-D object prop-
erties, while in Section IV each step of the proposed 3-D object
coding scheme is described in detail. Section V presents experi-
mental results and comparisons with state-of-the-art algorithms.
In Section VI, we explain how the proposed scheme is used for
view-dependent applications. Finally, Section VII concludes the

paper.

II. RELATED WORK

Numerous works have addressed the coding of 3-D models,
and we just mention here the most relevant ones in the con-
text of the present paper. The first mesh geometry compression
scheme, introduced by Deering [1], is based on triangle strips
and triangle fans and implemented in GL [2] and OpenGL [3].
In GL, triangles are ordered to form strips, whose connectivity
is defined with a marching bit per triangle; it specifies to which
of the two free edges of the current triangle the next triangle has
to be attached. In OpenGL, triangles are attached alternatively
on left and right edges, and no connectivity information is trans-
mitted. The drawback of this technique is that most meshes have
twice as many faces as vertices: each vertex has to be transmitted
twice, on average.

Taubin and Rossignac later introduced the topological
surgery (TS) scheme [4], which is a single-resolution mani-
fold triangular mesh compression scheme that preserves the
connectivity. After extensions to arbitrary manifold meshes,
TS has become part of MPEG-4 standard. In TS, faces are
interconnected by a face forest, spanning the dual graph of the
mesh.2 The edges that do not belong to the face forest define a
vertex graph and interconnect all of the vertices of the mesh.
A simple polygon connectivity mesh is obtained by cutting a
mesh through a vertex graph and is eventually encoded along
with the vertex graph.

In order to obtain a multiresolution representation with
mesh-based coding schemes, several works proposed mesh
decimation techniques, which reduce the number of triangles,
vertices, and edges. They provide initially a coarse mesh model

2The dual graph of a polygonal mesh is the graph composed of the mesh faces
as dual graph nodes, and the internal mesh edges as dual graph edges.
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that is progressively refined by insertion of more detailed infor-
mation. One of the first progressive transmission schemes for
multiresolution triangular manifold meshes has been introduced
by Hoppe in [5]. A triangular manifold mesh is represented by
a base mesh followed by a sequence of successive vertex split
refinements. Taubin has introduced the progressive forest split
(PFS) scheme [6], which highly reduces the number of levels of
detail and thus unnecessary information. A forest split opera-
tion is in essence described by a group of consecutive edge split
operations. Together with TS, PFS represents the core of 3-D
mesh coding in the MPEG-4 standard. Alternatively, Karni and
Gotsman [7] have proposed a 3-D mesh compression method
based on spectral decompositions, where the mesh geometry
is projected onto an orthonormal basis derived from the mesh
topology.

A common characteristic of multiresolution mesh-based
compression schemes mentioned above is that most of the
geometry information of a coarse mesh is embedded within a
finer mesh, except for a set of vertices or edges that result from
vertex or edge split operations. This kind of surface sampling
does not necessarily lead to the best approximation at a given
resolution. On the other side, by representing a 3-D model as
a continuous function on a 2-D surface, positions of vertices
are determined by uniform sampling of this function, hence
they are different from one resolution to another. This results
in equal approximation enhancement over the 3-D object sur-
face, which is an important advantage of 2-D surface methods
versus mesh-based methods. Moreover, the mapping of a 3-D
object in the continuous space enables the use of various signal
transformation techniques towards building fully progressive
representations.

Schroder and Sweldens [8] proposed one of the earliest works
that represent 3-D models as functions defined on the surface
of a sphere, as an alternative to mesh-based approaches. They
introduced a lifting scheme to construct bi-orthogonal spher-
ical wavelets with customized properties. Shape compression
using spherical wavelets has become recently an active area of
research. The progressive coding scheme introduced by Kho-
dakovsky et al. [9] uses wavelet transform, zerotree coding and
subdivision-based reconstruction to improve the compression
ratio. Hoppe and Praun [10] have described a shape compression
technique using spherical geometry images, which represent the
surface remeshed into a regular 2-D grid. In comparison with or-
dinary image wavelets, spherical wavelets are shown to provide
better compression performance for surfaces that can be nicely
parametrized on the sphere. However, the related compression
techniques suffer from rippling artifacts for surfaces with long
extremities.

III. REDUNDANT REPRESENTATIONS ON THE 2-D SPHERE

A. Preliminaries

Redundant expansions have shown interesting approximation
properties in the decomposition of signals with multidimen-
sional singularities organized along embedded submanifolds,
like images [11], [12]. Redundant expansions provide a lot of
freedom in the design of the bases or dictionaries. In partic-
ular, it is possible to include rotation or anisotropy in the basis
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functions. These two properties are keys to the development
of efficient algorithms for the approximation of multidimen-
sional signals. In such a context, separable orthogonal bases like
wavelets have shown their limitations in terms of approximation
rate, whilst they are optimal for 1-D continuous signals with
point-like singularities.

Since 3-D models are signals composed of multidimensional
features, we propose to extend the work on redundant image ex-
pansions to the overcomplete decomposition of signals defined
on spherical manifolds. We decompose 3-D models as a series
of atoms, taken from a redundant dictionary of functions de-
fined on the 2-D sphere. Dictionaries are in general constructed
as a set of different waveforms, where each waveform is de-
fined by a generating function. Each generating function can
serve as a base for building the overcomplete dictionary, simply
by changing the function parameters or indexes (e.g., position
or scale indexes). While there is a priori no restriction on the
construction of the dictionary, the usage of generating functions
advantageously leads to structured dictionaries, whose indexes
directly correspond to atom characteristics. Furthermore, the
storage or transmission of the dictionary become unnecessary,
since atoms can be reconstructed only from their indexes.

The construction of the dictionary is certainly the most impor-
tant step towards efficient approximation algorithms. Increasing
the number of functions generally augments the redundancy of
the dictionary, and thus the approximation performance: there
is indeed an increasingly high probability that prominent signal
features can be efficiently captured by a single atom. At the same
time, it also increases the size of the dictionary, and most prob-
ably augments the coding rate, and the search complexity. We
now discuss in more detail the construction of the overcomplete
dictionary that we propose for expansions on the 2-D sphere. It
involves the three following steps:

* definition of the generating function(s) on the sphere;

¢ definition of the motion of atoms on the sphere, and their

rotation around their axis;

* implementation of the anisotropic scaling of atoms.

Since the signal to be approximated is defined in the space
of square-integrable functions on a unit two-sphere S2, de-
noted as L%(S?) (ie., f(0,p) € L>*(S?)), the atoms have
obviously to live in the same space. Let g denote a generating
function on the 2-D sphere. By combining motion, rotation,
and scaling, we form an overcomplete set of atoms g, where
v = (0,¢,%,a1,a2) € T is the atom index. This index is
described by five parameters that respectively represent the
position of the atom on the sphere (6, ¢), its orientation (1)),
and the scaling parameters (ap,az). In order to finally map
the atoms on the sphere, we use an inverse stereographic
projection from the complex plane to the 2-D sphere. The stere-
ographic projection [13] at the North pole can be expressed
as ® : S2 — C, where C represents the complex plane (see
Fig. 1). This can be written as

. o0\ .
D(w) = ¥ = pe’? = 2tan <§> el (1)
where w = (0,¢) and 0 < § < 7,—7m < ¢ < 7. Since the

stereographic projection is bijective, any point with polar coor-
dinates (p, ¢) and represented by a vector 7 = (pcosep, psing)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 11, NOVEMBER 2006

Fig. 1. Stereographic projection. A point on the 2-D sphere can be uniquely
mapped on the plane tangent to the North Pole.

on the tangent plane can be uniquely mapped back onto the 2-D
sphere. We use that property in the design of the dictionary, as
presented below.

B. Generating Functions

Under the assumption that simple 3-D models are mostly
composed of smooth surfaces and singularities aligned on
pieces of great circles, we propose to build the dictionary over
two generating functions. First, in order to efficiently capture
the singularities, we use a generating function that resembles
to a piece of contour on the sphere. In the space L?(R?), it can
be written as

2 2

Jrect (V) = —%(41:2 —2)exp (—W) 2)
where 7 = (=,y) is a vector in R?, and K is a normalization
factor. Note that this function is very similar to the one that has
been efficiently used for image coding in [11], [12], which is a
Gaussian function in one direction and its second derivative in
the orthogonal direction

1
Gimage (V) = §(4x2 —2)exp (—(:172 + yz)) . 3)

The motivation for the choice of a Gaussian kernel lies in its
optimal joint spatial and frequency localization. On the other
side, the second derivative in the orthogonal direction is used
to filter out the smooth polynomial parts of the signal and cap-
ture the signal discontinuities. However, the function defined in
(2) differs from (3), in the sense that it generates longer atoms
(slower decay) in the direction of Gaussian, but with the same
sharp decay in the direction of its derivative. This leads to im-
proved approximation of singularities on the 2-D sphere. The
generating function from (2) can further be expressed in polar
coordinates, as

1 2
groct(p7 (,0) = _?(492 C082 Y — 2) €xp (_%> . (4)

By inverse stereographic projection ®~! : RZ2 — S2, the gen-
erating function is mapped on the sphere, and can be written as

1 0 0
gur(0, @):—E <16 tan? 5003290 - 2) - exp <— tan? 5)
Q)
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where K is a normalization constant. The generating function
gur defines an edge-like atom that is centered exactly on the
North pole.

Second, in order to represent efficiently the smooth areas in
the 3-D models corresponding to low-frequency (LF) compo-
nents, we propose to use a second generating function for the
construction of the dictionary. The second function is built on a
2-D Gaussian function in L?(S?)

0
grr(8,¢) = exp <— tan? 5) . 6)

Equation (6) represents an isotropic function, centered at the
North Pole. The extension of the dictionary to contain atoms
built on two generating functions actually improves the approx-
imation rate, but does not increase the search complexity. In
our implementation, the dictionary is indeed divided into two
distinct parts, one with LF atoms (LF part) and the other of os-
cillating or high-frequency atoms (main part), which are used
successively to form the signal expansion.

C. Motion on the Sphere

Now that the generating functions have been defined, we form
the redundant dictionary by applying geometrical transforma-
tions to these functions, on the 2-D sphere. In other words, the
dictionary is constructed by moving the generating functions on
the sphere, by rotation of the functions around their axis, and by
anisotropic scaling.

Motion and rotation belong to the group of affine transfor-
mations of the unit 2-D sphere S2. They are both realized by a
single rotation p € SO(3), where SO(3) is the rotation group
in R*. It is equivalent to apply the unitary operator II, on the
matrix of Cartesian coordinates (z, y, z) of the unit sphere, de-
noted as P

P =1,P = R()U(O)R(p)P,  0€SO(3) (7

where { P}3x v is the matrix of (x, y, z) coordinates of the non-
transformed unit sphere, and { P, }3x n is the matrix of (x,y, z)
coordinates of the transformed unit sphere. Three rotation ma-
trices R(¢), U(6) and R(1)) realize the rotation given by Euler
angles (¢, 6, 1)), which respectively describe the motion of the
atom on the sphere by angles 6 and ¢ and the rotation of the
atom around its axis with an angle 1. These rotation matrices
are given by

cosp sinp 0

R(p) = | —sinp cosp 0
0 0 1

cosf 0 sind

U(9) = 0 1 0

—sinf 0 cosf
cost siny 0
R(p)=| —siny cosyp 0
0 0 1
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The generating function, as defined in (5), is therefore trans-
formed into an atom that can be moved to the particular point
(6, ) on the sphere and rotated.

D. Anisotropic Refinement of Atoms on the Sphere

In order to approximate the elongated characteristics of 3-D
models, we further deform atoms by anisotropic refinement that
scales the generating function differently in each orthogonal di-
rections, with scale factors a1 and ay. We perform the scaling
operation on the plane tangent to the North pole and then map
the resulting atom on the sphere S? by inverse stereographic
projection as described before. Let ¥ = (z,y) denote a vector
in the tangent plane; the anisotropic scaling operator is then ex-
pressed as

D(ay,a2)g(7) = Cg(arz, azy) )

where the constant C' is a normalization factor. The coordinates
of the vector after scaling v; become

Ts = Q1T = a1pCOS Y
Ys = a2y = azpsin . ©
In polar coordinates, this translates into

Va2+y?= p\/a% cos? ¢ 4 a3 sin? ¢

as sin

Ps
(10)

Ys
s = arctan — = arctan .
Ty a1 COS @

Anisotropic refinement of high-frequency atoms, as given in
(2), is obtained by substitution of the polar coordinates with the
ones obtained after scaling. They can be written as

1
grect(ﬂ; 90) = - ? (4a%p2 COS2 Y — 2)

2 (a2 cos? ¢ + a2 sin®
- exp <_P ( 1 14 2 90) (11

4

By inverse stereographic projection ®~! : R? — S2, the re-
shaped atom is mapped on the sphere and can be written as

1 0
gur(0, ) = — e <16a% tan? 3 cos? p — 2)
0
- exp <— tan? 3 (a% cos? o + a3 sin? <p)> (12)

where K> is a normalization factor. On the other hand, the low-
frequency atoms after anisotropic refinement, can be written as

0
grr(8, ) = exp <— tan? B (a% cos? ¢ + a3 sin® go)) . (13)

In summary, the dictionary is obtained by anisotropic scaling,
rotation, and displacement of atoms, which are implemented
by first transforming the unit sphere with respect to rotations
and then evaluating the generating function on the transformed
sphere. Anisotropic scaling is finally applied on the displaced
atom, as explained above. Such a process is performed for both
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(2) (b)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 11, NOVEMBER 2006
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Fig. 2. Anisotropic atoms (a) on the North pole (¢ = 0, = 0),9 = 0,a; = 8,a> =8,(b) 8 = (7/4), ¢ = (7/2), v =0,a; = 8,a> = 8,(c) § = (7/4),
¢ = (m/2),% = (x/4),a1 = 16, a> = 4. (d) Low-frequency atom: § = (7/4), p = (x/4),¢ = (x/4),a, = 8,a> = 8.

3D model RESAMPLING f(@, ga) SMP {Cn {qn ARITHMETIC bitstream
> (INTERPOLATION) PR EUREER ENCODER
’ {n} T

Fig. 3. 3D-SMP encoding scheme.

oscillating atoms as expressed in (12) and for low-frequency
ones given in (13). By a proper choice of the transformation
parameters, one finally obtains an overcomplete dictionary
of functions, which is used to represent simple 3-D models.
Sample atoms are illustrated in Fig. 2.

IV. MATCHING PURSUIT ENCODER FOR 3-D OBJECTS

A. Matching Pursuit Overview

Finding the sparsest representation of a simple 3-D model,
with functions taken from a redundant dictionary, as the one de-
scribed before, is in general an NP-hard3 problem. MP [14] pro-
vides a solution to this approximation problem, with a tractable
computational complexity. Under its generic form, MP is an al-
gorithm that iteratively decomposes a signal into a linear com-
bination of waveforms or atoms. Interestingly, very few restric-
tions are imposed on the dictionary construction, besides the
fact that it should at least span the space of the signal to rep-
resent. In other words, the dictionary is defined as a set of vec-
tors D = {g~}er in a Hilbert space H. In order to be able to
represent each vector in H as a linear combination of unit norm
vectors in D, the dictionary must satisfy the completeness prop-
erty (i.e., D spans H).

Let f € H denote a function that we want to approximate
with a linear expansion over D. With MP, an M -term linear
expansion is obtained by successive approximations of R™f
through orthogonal projections on dictionary vectors

M
f=Y (R"f.97)9,, + RN*'f

n=0

(14)

where R" f is the residue after n — 1 iterations of the algorithm
(R°f = f). One must choose, at each iteration, the atom
that best approximates R™f, with the maximal projection
|(R"f, g+, )| over the dictionary

[(R"f, 9v.)

3A problem is NP-hard if an algorithm for solving it can be translated into
an algorithm for solving any other NP (nondeterministic polynomial time)
problem.

= supyer (R" f,94)|- (15)

When M — oo, under the assumption that the dictionary is
complete, it can be shown that

N

=Y AR"f,9y)9.-

n=0

(16)

Under the same assumption, it has also been proven that the
residue decays exponentially in a finite dimensional space [14].
The decay rate depends on the correlation between the residue
and the dictionary elements, so that the construction of an ef-
ficient dictionary, adapted to the structure of the signal f, is a
crucial step.

Overall, MP offers a suboptimal solution to the optimal
(sparsest) signal representation problem, since it iteratively
approximates the signal, in a totally greedy manner. However,
it allows for an efficient approximation of the signal by rapidly
capturing its most important components, which is an inter-
esting property towards the design of a scalable coder. At the
same time, it does not impose any condition on the dictionary
construction, and the complexity at decoder is kept small.

B. 3D-SMP Encoder

Our objective is to build on the nice approximation proper-
ties offered by redundant expansions in order to obtain com-
pressed versions of 3-D models. The block diagram of the pro-
posed encoder, which is a 3-D model encoder based on spherical
MP (3D-SMP), is represented in Fig. 3. MP selects a series of
atoms from the dictionary described above with their relative
coefficients. Atoms are then sorted along the decreasing mag-
nitude of their coefficients. The coefficients are then uniformly
quantized, with a decaying quantization range. It takes advan-
tage of the property that the energy of MP coefficients is limited
by an exponentially decaying upper bound. A piecewise linear
approximation of that upper bound is used for quantization, in-
spired from the scheme proposed in [15]. Quantized coefficients
and discrete atom indexes are finally encoded with an arithmetic
coder [16] in order to obtain a compact representation. Inter-
ested readers are referred to [12] for more details about quanti-
zation and entropy coding of MP atoms.

The initial block of the codec extracts a set of vertices p; =
(wi,yi,2;) € I, 1 C R3, which represents a point cloud of a 3-D
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]

Fig. 4. 3D-SMP decoding scheme.

model. It generally describes a set of nonuniformly spaced sam-
ples on the 2-D sphere S? and defines a function f : 2 — R
as R; = f(0;, ). Since the proposed coding scheme requires
the spherical data to be sampled on an equiangular (6, ) grid,
an interpolation step may be needed. Because of its low com-
plexity, we have chosen a simple nearest-neighbor interpolation
method, where each value on the equiangular spherical grid R;¢
is interpolated as an average of its four nearest neighbors. In ad-
dition to enabling the use of processing algorithms like the fast
spherical Fourier transform, an equiangular spherical grid has a
regular structure that can be exploited at the decoder for regen-
erating the mesh connectivity removed by the encoding process.

C. 3D-SMP Decoder

On the other end, the decoder, as represented in Fig. 4, first
performs the entropy decoding and inverse quantization. It then
reconstructs the approximated 3-D model as a spherical function
by linear combination of atoms whose relative weights are given
by the MP coefficients. The reconstruction step at the decoder
side has a quite low computational complexity, roughly propor-
tional to the number of atoms (and hence the coding rate).

The decoder then generates the decoded 3-D object in the
form of a standard polygonal mesh, as accepted by all modern
computer graphics application and hardware. Since the encoder
has completely discarded the mesh connectivity information of
the original 3-D model, the decoder has to generate new connec-
tivity. This problem can be formulated as a surface reconstruc-
tion problem from an unorganized point cloud, which is still an
active area of research, and many surface reconstruction algo-
rithms already exist (e.g., [17]). Since we are primarily dealing
with simple models parameterized as one spherical function, we
can use the a priori knowledge of the (6, ¢) coordinates for each
vertex on the spherical grid and construct a semi-regular con-
nectivity structure. A mesh with semi-regular connectivity has
almost all vertices of valence 6 (i.e., six incident edges), except
for a few isolated extraordinary vertices. The connectivity ma-
trix is defined with indexes of three incident vertices for each
face. In order to obtain a semi-regular triangular mesh, we can
divide the spherical grid into rings limited by two successive
values of # and then triangulate each ring to produce a trian-
gular strip. Such a mesh construction is illustrated in Fig. 5(a),
which shows the triangular subdivision of the sphere. Fig. 5(b)
represents the same grid but applied to the Venus model. All
vertices are of valence 6, except for the two poles, so that the
resulting mesh is indeed semi-regular.

For more complex models whose representation requires
multiple spheres, the method explained above is not directly
applicable, since the boundary between two neighboring
spheres does not necessarily coincide with a great circle on the
sphere. In these cases, a simpler solution would be to use a
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Fig. 5. Generating connectivity matrix. (a) Sphere connectivity. (b) Connec-
tivity on the Venus model.

more generic surface reconstruction algorithm. The proposed
3D-SMP scheme uses the algorithm explained in [18].4

V. EXPERIMENTAL CODING RESULTS

A. Preliminaries

Two models are used in our experiments: Venus and Rabbit.5
Venus satisfies the assumption of a simple genus-zero model;
thus, it is represented via one spherical function. Rabbit is not a
simple model, and we decompose it into three spheres separated
by two parallel planes: one below the head and the other below
the arms of the Rabbit. Each spherical function is obtained by
interpolation within the point cloud on the corresponding part
of the model. Afterwards, SMP is independently run on each
of these three spheres and finally gathered into a single decom-
position by ordering the atoms in a decaying order of their co-
efficient values. One additional atom parameter is introduced to
denote the sphere that the atom belongs to. The quantization and
entropy coding steps are the same as for the one-sphere decom-
positions. Finally, three spherical functions are reconstructed at
the decoder, and point clouds are merged using a surface recon-
struction algorithm, as explained in Section IV-C. The original
and interpolated models are shown in Fig. 6.

It should be noted that the PSNR values obtained after inter-
polation are actually the upper bounds for the overall quality,
since the interpolated models are given as inputs to the 3D-SMP
compression scheme. The interpolation error is expressed with
relative L? error and in PSNR (dB), as computed with the
MESH software.6 The relative L2 error is actually a ratio
of the rms, which measures the squared symmetric distance
between two surfaces averaged over the first surface, relative to

4The reconstruction server is available at http://cgal.inria.fr/Reconstruction/
submit.html.

5The models have been downloaded from http://www.cyberware.com.
6MESH is available at http://mesh.epfl.ch.
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Fig. 6. (a) Original Venus model. (b) Interpolated Venus model at resolution Ny X N, = 128 x 128, PSNR = 65.7983 dB, L? = 5.1296-10*. (c) Interpolated
Venus model at resolution Ny X N, = 256 X 256, PSNR = 70.1930 dB, L? = 3.09278 - 10~*. (d) Original rabbit model. (¢) Interpolated Rabbit model on
three spheres at resolution Ny x N, = 128 x 128, PSNR = 64.1790 dB, L? = 6.18091 - 10—*.

a bounding box diagonal d. The PSNR for 3-D meshes is thus
expressed as

PSNR (dB) = 20 log (%) = 20log (%) . a7

B. Implementation

In the dictionary presented in Section III, the atom indexes,
which represent the parameters of the generating functions, ob-
viously take discrete values. In general, a fine granularity in
atom indexes leads to high redundancy and, most likely, to a
high approximation rate. At the same time, it leads to a large
dictionary with possibly high coding cost. The design of an op-
timal dictionary is still an open problem that is beyond the scope
of this paper. Here, we propose to use a dictionary built mostly
on empirical choices for atom parameter values. First, we use
the equiangular spherical grid to drive the values of the posi-
tion parameters # and ¢; both parameters are uniformly dis-
tributed on the interval [0, 7] and [—, 7), respectively, with a
resolution that is identical to the input signal. The rotation pa-
rameter v is uniformly sampled on the interval [—7, ), with
the same resolution as 6 and . This choice is mostly due to
the use of spherical convolution in the MP algorithm, as ex-
plained below. Finally, scaling parameters are distributed in a
logarithmic manner, from 1 to half of the resolution of the input
signal, with a granularity of one third of octave. Due to the def-
inition of the atoms [see (12)], scaling parameters are inversely
proportional to the size of the atoms. The largest atom has a scale
1 and it covers half of the sphere. For low-frequency atoms, the
maximal value for the scaling parameters is chosen to be 1/16
of the signal resolution. Motion and rotation parameters are dis-
cretized in the same way as for anisotropic atoms.

In our implementation, the full dictionary is divided into low-
frequency atoms grp, and high-frequency ones. During the first
iterations, the MP algorithm uses the low-frequency subdic-
tionary, and later switches to the anisotropic subdictionary when
the energy of the coefficients starts to saturate or, more precisely,
when

"]
[[£27]]2

— const

(18)

where C™ denotes a projection after n — 1 iterations. In each of
these subdictionaries, the MP algorithm performs a full search

to determine the highest energy atom. Our implementation uses
the fast spherical transform [19] to compute the convolution
of atoms on the sphere. In particular, we used in our imple-
mentation the SpharmonicKit library,” which is part of the YAW
toolbox.3 Such a transform allows to identify the position and
rotation of an atom on the sphere, which has the best correla-
tion with the signal. One spherical convolution allows to deter-
mine the parameters (6, ¢, 1) for each atom with given scale pa-
rameters. Therefore, our implementation iterates over the scale
parameters: for each couple (aq, az), it computes the spherical
convolution between the corresponding atom on the North Pole
and the residual signal R™ f. The convolution coefficient with
the largest magnitude corresponds to the position and rotation
parameters (6, p, 1) of the best matching atom for that pair of
scales. The coefficient of the corresponding atom is computed
with the inner product of two functions defined on the sphere
given by

(R"f.q) = / / R (0, 0)g(0, 9)sinddbdp.  (19)
0 ¢

Finally, the algorithm selects, among all pairs of scales, the atom
with the largest coefficient, removes its contribution from the
residual signal and repeats the whole procedure until a stopping
criteria is met (e.g., a predefined number of atoms, or an energy
threshold). The search algorithm is described in Algorithm 1.

Algorithm 1: Full search of the dictionary

for all scale couples (a1(j), az2(k)) do
C= COIlVSph(Rnf, g(O, 07 07 al(j)v a?(k)))

Cmax = max C'(m, n, p)
1<m<N0,1<n<N¢,1<p<N,;,

6 =0(m); p =p(n); Y =1(p)

P<J7 k) = <Rnf,g(07 2 ’l/}; al(j)7 a2(k))>
end for
Pmax = maxj7k(P(j, k))

a1 = a1(j); az = as(k)

7[Online]. Available: http://www.cs.dartmouth.edu/~geelong/sphere/.
8[Online]. Available: http:/fyma.fyma.ucl.ac.be/projects/yawtb/.
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Fig. 7. Venus reconstructed after decoding (resolution 256 X 256). (a) 100 coefficients (0.58 kB). (b) 200 coefficients (1.03 kB). (c) 300 coefficients (1.5 kB). (d)

400 coefficients (1.94 kB). (e) Input model.

(b) (d) (e)

Fig. 8. Rabbit reconstructed after decoding (three spheres, resolution 128 X
128). (a) 100 coefficients (0.64 kB). (b) 200 coefficients (1.05 kB). (c) 300 co-
efficients (1.45 kB). (d) 400 coefficients (1.84 kB). (e) Input model.

Note that a full-search MP algorithm can become quite com-
plex when the dictionary size is large. However, the search com-
plexity can be significantly reduced by efficient arrangement of
atoms [20] or parallelization [21], possibly at the expense of a
small decrease in the approximation rate. The decoding com-
plexity is however very low and is performed in linear time.

C. Numerical Results

Venus and Rabbit models, as reconstructed by the decoder,
are represented in Figs. 7 and 8, respectively, for different num-
bers of atoms. It can be seen that MP rapidly captures the most
important features of the 3-D model and progressively refines
the representation with finer details. The type of coding artifacts
is quite different than the degradations observed in mesh-based
coders and is visually less annoying at low rates. It can be seen
also that the gain in representation accuracy is less important
when the number of iterations increases. As expected, MP is
mostly efficient for low-bit-rate compression.

Figs. 9 and 10 present the rate—distortion performance of
the proposed 3D-SMP algorithm for the Venus and Rabbit
models in terms of both (a) PSNR and (b) L? error. Distor-
tion values are evaluated with respect to the original models,
meaning that they take into account both the interpolation
and the decoding error. These figures compare the 3D-SMP
encoder performance with the following state-of-the-art en-
coders: 1) TG: Touma—Gotsman nonprogressive coding [22];
2) Alliez—Desbrun progressive coding [23]; and 3) PGC: pro-
gressive coding scheme by Khodakovsky et al. [9]. Due to the
differences in input formats and coding approaches, we use
the following method to obtain fair performance comparisons
between these four very different approaches. As PGC uses
its own mesh format, the input models are downloaded from

the PGC website. The base mesh for the PGC is encoded
using TG with 8 bits per vertex. The input models for TG and
Alliez-Desbrun methods are the models that have been used
to obtain the interpolated version for 3D-SMP encoder,!0 but
decimated to 1400 faces (using the Qslim software!!), in order
to have a comparison in the same rate region. Different rates
for the TG algorithm are obtained by changing the number of
bits per vertex for encoding. Note that the rate is actually given
by the filesize, or the total number of bits, rather than in bits per
vertex, since the proposed 3D-SMP coding scheme uses one
single mesh (256 x 256 or 128 x 128 vertices in the current
implementation).

It can be seen that 3D-SMP significantly outperforms the
state-of-the-art compression methods TG and Alliez—Desbrun,
as well as the PGC wavelet-based coder at low bit rates. MP then
tends to saturate towards high bite rates, as was observed earlier.
For the Venus model, the performance is slightly better than
that for the Rabbit model. This behavior is actually expected
since the resolution of the employed SMP for Rabbit is smaller.
Therefore, we can certainly expect better performance for the
Rabbit model at higher resolutions. It has to be noted also that
the input model for the SMP is an interpolated version of the
original model, and this introduces a distortion that is indepen-
dent of the coding method. Fig. 11 shows a visual comparison
of Venus encoded with 3D-SMP using 250 coefficients and res-
olution 256 x 256, and encoded with the the PGC algorithm, for
the same filesize of 1287 B. It can be seen that both coders offer
similar performance, but the coding artifacts are quite different.
The 3D-SMP coder generally provides a smoother approxima-
tion of the model, but fails to capture the highly textured regions
like the hair, for example. The proposed encoder offers an inter-
esting alternative to classical approaches, with excellent com-
pression performance at low bit rates and, at the same time, an
inherently progressive representation. Additionally, it offers a
great flexibility in the stream construction, which can be advan-
tageously exploited in adaptive applications, like view-depen-
dent rendering, which is presented in Section VI.

VI. VIEW-DEPENDENT RENDERING

This section proposes a simple application that uses the in-
creased flexibility offered by the use of a structured dictionary
of functions, in addition to the progressive nature of the stream

9[Online]. Available: http://www.multires.caltech.edu/software/pgc/.
10[Online]. Available: http://www.cyberware.com/samples/index.html.

"1[Online]. Available: http://graphics.cs.uiuc.edu/~garland/software/qslim.
html.
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Fig. 9. Rate—distortion performance for the Venus model (resolution 256 X 256). (a) PSNR. (b) L? error.
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Fig. 10. Rate—distortion performance for the Rabbit model (resolution 128 x 128). (a) PSNR. (b) L? error.

(b)

Fig. 11. Venus with a filesize of 1287 B. (a) 3D-SMP. (b) PGC.

generated by the MP decomposition. In scenarios where very
high compression is necessary or when the transmission channel
represents an important bottleneck, it becomes interesting to use
view-dependent rendering algorithms. In such cases, the 3-D
model does not need to be completely downloaded and decoded

before being displayed, and the rendering can be made to be de-
pendent on the viewpoint. The server transmits in priority the
parts of the model that are visible while cutting off the invis-
ible parts. View-dependent progressive transmission and ren-
dering can therefore significantly improve the performance of
3-D graphics streaming applications.

All of the previous work done in this area uses classical
3-D multiresolution coding techniques based on mesh simpli-
fication algorithms by vertex split operations. For example,
Yang et al. [24] split the 3-D model into progressively encoded
partitions, which are reorganized so that the visible ones are
transmitted with higher priority. Zach et al. [25] proposed a
view-dependent mesh connectivity encoding scheme which
reorganizes the vertex tree, while Wang and Li [26] employed
an absolute path coding of vertices. Recently, Bischoff and
Rossignac introduced the TetStreamer [27], which performs
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Fig. 12. Intersection of the unit sphere and the conical surface originating from
the viewpoint P.

a view-dependent front-to-back (in the visibility order) en-
coding of 3-D models. However, we note that none of the mesh
geometry compression schemes based on wavelets [8]-[10]
has addressed this issue, even if some solutions inspired from
region-of-interest coding in images could be envisaged.

The use of a structured dictionary in the proposed MP encoder
presents a great advantage for manipulation of the compressed
stream. In particular, it allows for a quite simple extension to-
ward view-dependent transmission and rendering. Since a 3-D
model is decomposed into a linear combination of atoms speci-
fied by their position and scale parameters, it can be partially
transmitted by selecting the atoms visible only from a given
viewpoint. Assume that the viewpoint can be associated with
a window visibility defined on the unit sphere (i.e., w(f, ) €
L?(S5?)). Such a window function on the sphere is obtained by
an inverse stereographic projection of a circle on the tangent
plane, with the center at the North Pole and the radius p. The
window function can be expressed as

1, if2tan(4) <p,—-r<p<m
0,0)=1q 2/ = =r="
w(f: ¢) {0, otherwise.

This is illustrated in Fig. 12, where the tangent plane is shown
as a line passing through the North Pole N. The part of the sphere
that is visible from the viewpoint is delimited by a conical sur-
face formed by the union of all of the straight lines that pass
through the viewpoint and are tangent to the unit sphere. This
part is shown in Fig. 12 as the darker shaded part of the sphere.
Let r denote the radius of the circle obtained by intersecting the
cone and the sphere (r = M A). From the similarity of triangles
AOPA and AOAM, it follows that

(20)

where [ = OP. From the similarity of triangles AOAM and
AOBN, we obtain

21
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(b)

(0 (d)

Fig. 13. View-dependent coding of Venus, 0 = 7; 8§ = 1%; 42.8% of the
model is transmitted (214 out of 500 atoms). (a) Visible part of the decoded
model. (b) Difference between the original model and the decoded model for
the visible part, (c) Invisible part of the decoded model. (d) Difference between
the original model and the decoded model for the invisible part.

The radius p is therefore directly determined by the distance
between the viewpoint and the 3-D model.

To generate a view-dependent reconstruction of the 3-D
model, each atom g,,% = 1,..., M, in the signal decomposi-
tion is simply multiplied with the window function. This results
in a windowed atom g2, which represents the part of the atom
visible from the viewpoint P
1=1

M. (22)

geeey

95.(0,0) = g4, (8, ) - w(b, 0),

Only the atoms that keep a significant contribution after win-
dowing are finally considered for view-dependent transmission
and rendering. The selection of atoms is based on the compar-
ison of their maximal value, with a predefined relative threshold
8. If there exists a pair (6, ¢) such that
g% (6, ¢) max g, (¢',¢") > 6
(6"%")

then the atom g., is transmitted.

It has to be noted that the uniform window proposed above
obviously attributes the same importance to all of the atoms
that are visible from the viewpoint P. However, other windows
are straightforward to implement. For example, if one wants to
emphasize the importance of atoms closer to the view direction
(OP), a Gaussian window can be used, as given by

wy(0,¢) = { (ef?p (

—4tan? %
202

), if2tan%§p,—7r§<p§7r
otherwise.

Fig. 13 presents the results of view-dependent coding and
transmission, applied to the Venus model. The threshold ¢ is set
to 1% of the nonwindowed atom peak value, and the variance
of the Gaussian window function is set to ¢ = 7. It can be seen
that the difference between the original model and the decoded
model is very small in the visible parts of the model, resulting
mostly from the error due to lossy coding. On the other hand, the
difference between the original model and the decoded model is
much bigger in the parts of the model which are not visible from
the given viewpoint. Hence, the emphasis is correctly put on the
part of the model that is visible, as expected. Furthermore, the
view-dependent transmission of atoms allows for a significant
decrease in required bit rate, since only 42.8% of the model has
been transmitted in the scenario under consideration.

By increasing o, more precise view-dependent encoded
models are obtained as more atoms are transmitted. This of



1348 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 11, NOVEMBER 2006

course implies that the bit rate is also increased. A change
of o can be therefore used for the coarse tuning of the rate—
distortion tradeoff. For a finer adaptation, the threshold value
6 can be changed. As the viewpoint may change during the
interactive 3-D model rendering, the rest of the atoms can be
progressively transmitted in lower priority, until the complete
scene is received. Finally, the view-dependent rendering by
atom windowing is a simple algorithm that allows to prioritize
atoms from the MP decomposition. Obviously, more sophis-
ticated methods could be proposed with application-specific
requirements, yet taking advantage of the structured nature of
the redundant dictionary used in the proposed MP encoder.

VII. CONCLUSION AND FUTURE WORK

This paper proposed a novel approach for the coding of 3-D
objects. The models are mapped on a 2-D sphere and decom-
posed over a redundant dictionary of multidimensional atoms,
which is built in order to efficiently capture the most promi-
nent features of the signal. An encoding algorithm based on MP
has been used to generate progressive representations of the 3-D
objects. The proposed encoder has been shown to outperform
state-of-the-art progressive coders, especially at low bit rates. At
the same time, it offers a truly progressive representation with
increased flexibility in the stream manipulation. The structured
nature of the dictionary has been advantageously used in the de-
sign of a simple view-dependent rendering application, which
may prove to be useful in services with important transmission
bottlenecks. The proposed algorithm still leaves numerous pos-
sibilities for future improvements. The interpolation step, which
uses a very basic nearest-neighbor method, has an important in-
fluence that penalizes the compression performance. We are also
currently working on better parametrization of input models and
on generalizing the multiple spheres decomposition approach
for the coding of more complex 3-D models. Finally, since it
has been shown that redundant decompositions are mostly ben-
eficial at low rates, the proposed scheme can offer an efficient
coding solution for the base layer in scalable applications. Simi-
larly to hybrid image coding schemes [28], enhancement layers
based on spherical wavelets, for example, could nicely comple-
ment the proposed scheme for high-bit-rate coding.
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