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Abstract

A number of applications require to compute an approximation of the diagonal of a
matrix when this matrix is not explicitly available but matrix-vector products with it are
easy to evaluate. In some cases, it is the trace of the matrix rather than the diagonal that is
needed. This paper describes methods for estimating diagonals and traces of matrices in these
situations. The goal is to obtain a good estimate of the diagonal by applying only a small
number of matrix-vector products, using selected vectors. We begin by considering the use
of random test vectors and then explore special vectors obtained from Hadamard matrices.
The methods are tested in the context of computational materials science to estimate the
diagonal of the density matrix which holds the charge densities. Numerical experiments
indicate that the diagonal estimator may offer an alternative method that in some cases can
greatly reduce computational costs in electronic structures calculations.

1 Introduction and motivation

The problem of computing the diagonal of a matrix, or its trace, when the matrix is known
only via its actions on arbitrary vectors, arises in a number of applications. In regularized
solutions of least-squares problems solved in image restoration, one is required to estimate a
certain regularization parameter θ. The Generalized Cross-Validation approach to this problem
(see [8]) consists of seeking a value θ which minimizes a certain function of the form

‖(I −A(θ))g‖2

tr(I −A(θ))
with A(θ) ≡ I −D(DT D + θLLT )−1DT ,

where D is the blurring operator and L is the regularization operator. The trace involved in the
above expression is difficult to compute as it involves the inverse of a matrix. In [8] a method
based on statistical arguments was proposed for estimating this trace.

Approximating traces of operators is also needed in a few methods employed in the completely
different arena of electronic structures calculations. One such method proposed in the 1990s for
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computing density of states exploits Chebychev moments of a Hermitian matrix A, scaled to
have eigenvalues in [−1, 1], i.e.,

µk = tr(Ck(A)) =
∫ 1

−1
Ck(t)ρ(t) dt,

where Ck is the k-th degree Chebychev polynomial of the first kind, and ρ(t) represents the
density of states ρ(t) ≡ ∑

λi
δ(λ− λi). Statistical methods are again used to estimate the trace

tr(Ck(A)) for many values of k, and these are used to recover the density of states ρ. Still in the
same application area, one is often required to compute the diagonal of a certain eigen-projector
associated with the smallest m eigenvalues of a Hamiltonian matrix. The projector is a matrix
of the form P = V V T , where the columns of V are eigenvectors associated with the smallest m
eigenvalues. However, P can also be viewed as a function of A, specifically, P = f(A) where f
is a step function which has the value one in the interval containing the lowest m eigenvalues
and zero elsewhere. The goal now is to estimate the diagonal of this matrix without computing
the eigenvectors.

Both of these problems, estimating the diagonal or the trace of a matrix, are addressed in
this paper as they require similar techniques. Clearly, estimating the diagonal is more complex
than estimating the trace and this problem is not as common in the literature. However, a
good estimator of the diagonal of a projector may lead to exceptional improvements in density
functional theory – especially for systems with many atoms. Our goal in this paper is not as
much to show that methods based on diagonal estimators are competitive as it is to suggest a
number of possible options. Some of these methods have already been used in the literature, but
comparisons with standard approaches have not yet been made. For example, methods based
on stochastic estimations are, relatively speaking, very expensive because they tend to converge
slowly. When some structure of the matrix under consideration is known, then as will seen,
estimating the diagonal can become quite inexpensive. Both approaches are considered in turn.

2 Approximating the diagonal of a matrix

2.1 The stochastic framework

In [8] Hutchinson described an unbiased stochastic estimator for the trace tr(I −A), where I is
the identity matrix and A is the influence matrix associated with the calculation of Laplacian
smoothing splines. Since A involves the inverse of another matrix, its trace is not readily
available. Hutchinson extended ideas of Girard (see [5]) and presented an estimator of minimum
variance that is based on simulations of the discrete variable which assumes the values −1 and
1 with equal probability 1/2. In particular, to estimate the trace tr(A) of the matrix A, take
random vectors vk, i = 1, .., s with entries ±1 and then compute the average over the sample of
v>k Avk

tr(A) ≈ 1
s

s∑

k=1

v>k Avk. (1)

The above idea can be easily extended for the problem of estimating the diagonal of a matrix
A. Consider again a sequence of vectors v1, . . . , vs. For reasons that will become clear in later
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sections, the entries of these vectors do not have to be ±1. Then, diag(A), the diagonal of A
written as an n-dimensional vector can be estimated by the following vector sequence:

Ds =

[
s∑

k=1

vk ¯Avk

]
®

[
s∑

k=1

vk ¯ vk

]
, (2)

where ¯ represents componentwise multiplication of vectors, and similarly ® represents com-
ponentwise division of vectors. Figure 1 shows an algorithmic description of the stochastic
estimator.

Diagonal Estimator

(* Input * ) Function A(v) : Rn → Rn such that x = Av,
where A is the unknown matrix, number of steps s

(* Output * ) Approximate diagonal Ds of the matrix A
1. D0 = 0
2. for k = 1 . . . s

2.1 Generate current “random” vector vk

2.2 tk = tk−1 + (A(vk)¯ vk)
2.3 qk = qk−1 + (vk ¯ vk)
2.3 Dk = tk ® qk

3. end

Figure 1: Estimator for the diagonal of an unknown matrix A which is available only through
matrix-vector products.

If the vectors vk have entries ±1, then the trace of Ds is nothing but the Hutchinson trace
estimation of A. A careful look at the i−th entry of the approximation Ds to the diagonal of A
will provide some insight. Again, superscripts refer to components and subscripts refer to the
vector index within the sample.

Ds
i =

∑s
k=1 vi

k

∑n
j=1 αijv

j
k∑s

k=1

(
vi
k

)2

= αii +

∑s
k=1 vi

k

∑
j 6=i αijv

j
k∑s

k=1

(
vi
k

)2

= αii +
∑

j 6=i

αij

∑s
k=1 vi

kv
j
k∑s

k=1

(
vi
k

)2 . (3)

On the average, the coefficient of αij in the above expansion will converge to zero provided that
the components of the vectors vk have balanced ± signs. This is true if the components of vk

are equiprobably drawn between the values of 1 and -1, justifying this choice in Hutchinson’s
trace estimator.

One problem with statistical techniques, such as the one presented here, is that they tend to
be slow. In order to get more effective algorithms, we may consider selecting the vectors vk more
carefully, rather than using random vectors. In order to justify the methods to be considered
later, we next examine conditions under which the diagonal estimator Ds is exact.
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2.2 Sufficient conditions for exactness

We now present a general sufficient condition which will ensure that the diagonal estimator given
by formula (2) is exact. Denoting by Ai the i−th column of A, and by vi

k the i-component of
the k-th vector vk, we can write:

s∑

k=1

(vk ¯Avk) =
s∑

k=1

(
vk ¯

n∑

i=1

(
vi
kAi

)
)

=
s∑

k=1

n∑

i=1

(vi
kvk ¯Ai)

=
n∑

i=1

s∑

k=1

(vi
kvk ¯Ai)

=
n∑

i=1

Ai ¯
s∑

k=1

(vi
kvk). (4)

Observe that
∑s

k=1(v
i
kvk) is the i−th column of the matrix V V >, where the vectors vk, k =

1, . . . , s are the columns of the matrix V ∈ Rn×s. Therefore, the diagonal estimator (2) can be
rewritten as :

Ds =
[
(A¯ V V >)e

]
® [(V ¯ V )e] , (5)

where e is the vector of all ones.
The nonzero pattern of the matrix V V > will clearly play an important role in the convergence

of the diagonal estimator. If the matrix V has mutually orthogonal rows, then the matrix V V >

will be diagonal, in which case all off-diagonal elements of A will be excluded from the bracketed
expression of the estimator (5). The same conclusion can be reached by looking at the expression
(3), since

∑s
k=1 vi

kv
j
k is the inner product of two rows of the matrix V . More generally we have

the following proposition.

Proposition 2.1 Let V ∈ Rn×s be a matrix the columns of which are used in the diagonal
estimator. If the i-th row of V is orthogonal to all those rows j of V for which aij 6= 0, then the
diagonal estimator will yield an exact result for aii, the i-th diagonal entry of A.

Proposition 2.1 clearly suggests that if the non-zero structure of a sparse matrix A is known,
then it may be possible to select the vectors vk in such a way that the off-diagonal elements of
A are eliminated from (3). This idea will be explored further in Section 2.3.

On the other hand, should nothing be known about the structure of the matrix A, then
according to equation (5) the best that we can do is to select the vectors vk in such a way that
the matrix V V > is as close to a diagonal matrix as possible. Of course, if the number of vectors
vk is smaller than the size of the matrix A (s < n), as is desirable in practice, then the rows
of the matrix V cannot be selected to be mutually orthogonal, and therefore the matrix V V >

cannot, in general, be diagonal. Thus, the question is how to select the vectors vk such that the
matrix V V > is the closest possible to being diagonal. In terms of the rows of the matrix V we
would like to minimize

Erms =

√√√√ 1
n(n− 1)

n∑

j=1

n∑

j′ 6=j

|VjV >
j′ |2, (6)
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where Vj is the j-th row of the matrix V . This is just the root mean square magnitude of the
off-diagonal entries of the matrix V V >. If the rows are scaled to have unit-norm, then the above
measure is just a scaled Frobenius norm of I − V V T . In addition, we may be interested in
minimizing the maximum absolute value of the off-diagonal elements in V V >

Emax = max
1≤j′<j<n

|VjV
>
j′ |. (7)

Because of symmetry, only the strict upper (or lower) triangular part of V V > need to be con-
sidered.

2.2.1 Grassmannian spaces and code books

Problems similar to the one discussed above arise in various other fields. A prominent example
refers to line packing in Grassmannian spaces [3]. The Grassmannian1 space G(M, N) is the
set of all N -dimensional subspaces of the real Euclidean space RM . Consider, for example, the
problem of best separating n lines that pass through the origin in R3. In other words, we are
interested in finding the best arrangement of these lines so that the acute angle between any
two lines is maximized. In the setting of the diagonal estimator the equivalent problem is to
maximize the acute angle between any two rows Vi, Vj of the matrix V in (5). The Grassmannian
space then is G(s, 1) and the number of lines is n >> s.

Another manifestation of the same problem is in communications and refers to the design of
code books that minimize the maximal cross-correlation amplitude (see [13], [18] and references
therein). In particular, the rows of the matrix V are codewords, which are taken to have unit
norm. Then, the length of the code is s and the number of codewords is n. In this case, we are
either interested in minimizing Emax or Erms. The following bounds are known [16]

Erms ≥
√

n− s

(n− 1)s
, (8)

with equality if and only if
∑n

j=1 VjV
>
j = n

s I and

Emax ≥
√

n− s

(n− 1)s
, (9)

with equality if and only if

|VjV
>
j′ | =

√
n− s

(n− 1)s
, ∀j 6= j′. (10)

Designing codes that meet the optimality bound (9) for Emax with equality is a difficult problem
that is still open for the case of general pairs (n, s), while it has found elegant closed form
solutions for special values of (n, s) and complex valued unit norm codewords [18]. On the other
hand, designing real valued codes that meet the Erms bound with equality is considered to be
an easy problem. Examples include binary codes such as a truncated Hamming codes with size
M = 2n, distance d and code length s.

1See also the web site: http://www.research.att.com/∼njas/grass/index.html
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2.3 Probing techniques for diagonal estimation

When the matrix A is sparse and its non-zero structure is known, efficient algorithms are known
(see [2] and [4]) which utilize matrix-vector multiplications to approximate the entries of A.
These algorithms exploit the structure of the matrix A in order to use only a small number
of matrix-vector products to generate the matrix A. They have been quite successful in the
context of estimating sparse Jacobians of a linear mapping F : Rn → Rm. In particular, these
methods are commonplace in standard nonlinear equation solvers, when it is difficult to evaluate
Jacobian matrices explicitly.

A special case of the above methods applies to banded matrices and is known as probing.
Even when the matrix A is not banded, but rather the magnitude of its entries exhibits a
decaying behavior away from the main diagonal, probing techniques can still be used to yield
approximations to the matrix. The decay of off-diagonal entries away from the main diagonal
occurs in a many applications where locality plays a central role. For example, in molecular
systems of insulators, particles that are far apart are frequently found to be only very weakly
coupled. This induces an “almost” banded structure of the density matrix in electronic structure
calculations [6], [7].

Next, we briefly outline the main idea behind probing. For details, see [2], for example.
Consider a tridiagonal matrix T ∈ Rn×n, which is the simplest case of a banded matrix with no
trivial upper and lower bandwidths,

T =




a1 b2

c2 a2 b3

c3 a3 b4

. . . . . . . . .
cn−1 an−1 bn

cn an




. (11)

The main observation is that the column set of T consists of three subsets:

S1 = {1, 4, 7, . . . , 1 + 3i, ...} S2 = {2, 5, 8, . . . , 2 + 3i, ...} S3 = {3, 6, 9, . . . , 3 + 3i, ...}

each of which has the characteristic of not sharing any common rows with the other two sets.
Thus, all columns from the set S1 can be computed by multiplying T by the vector v1 which
has the entry one in positions 1, 4, · · ·, 1 + 3i, · · ·, and zero elsewhere. Similarly, the columns in
S2 and S3 can be extracted by multiplying T by the vectors

v2 = [0, 1, 0, 0, 1, 0, 0, . . .]> v3 = [0, 0, 1, 0, 0, 1, 0, . . .]>,

respectively. The above idea can be extended to general sparse matrices with an arbitrary
sparsity pattern used a method based on coloring the adjacency graph of the sparse matrix [2],
[4].

In the case of a banded matrix A, the stochastic diagonal estimator presented earlier (see
Fig. 1), can yield an efficient and accurate approach for estimating the diagonal of A. The key
observation comes from equation (3) which we re-write as

ds
i = αii +

∑

j 6=i

αij

∑s
k=1 vi

kv
j
k∑s

k=1

(
vi
k

)2 .
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Let the columns of the matrix V = [v1, v2, . . . , vs] be the pseudorandom vectors used in the
stochastic estimator. The computed approximation ds

i to the i-th diagonal entry will be exact
(i.e., equal to αii) when either αij = 0, for i 6= j, or the i-th row of V is orthogonal to the j-th row
of V . Note that the computation involved in the above stochastic estimator is mathematically
equivalent to multiplying the matrix A componentwise by the matrix V V > and taking the sum
of the columns of the resulting matrix. Let us now consider a banded matrix B with upper
bandwidth bu and lower bandwidth bl. Then the application of the stochastic estimator will
be successful provided that we ensure that the matrix V ∈ Rn×s, s = max{bl, bu} will have
orthonormal rows. In this case only s products are required with the matrix to obtain an exact
diagonal. In contrast, probing can also be used to compute the whole matrix, but it requires
bl + bu − 1 matrix-vector products.

2.4 Using optimal codes and Hadamard vectors

In light of the discussion in Section 2.2 we now study the use of vector sequences vk, k = 1, . . . , s
with binary entries. In particular, the following important property will be exploited [13]:

Proposition 2.2 There exist a sequence of s vectors vk with binary entries that achieves the
bound (8), if and only if s equals 2 or is a multiple of 4.

Hadamard matrices are a special class of matrices which satisfy the above assumptions.

Definition 2.1 An n × n matrix H = [hij ] is a Hadamard matrix of order n if the entries of
H are either +1 or -1 and if HH> = nI, where I is the identity matrix of order n.

Essentially, Hadamard matrices are scaled unitary matrices with entries ±1. Interestingly, they
are known to achieve both bounds (8) and (9). A few examples of Hadamard matrices are

[
1 1
1 −1

]
and




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 .

It is easy to build Hadamard matrices of high dimensions in a recursive way by exploiting
Kronecker products of matrices. This is the result of the following theorem [15].

Theorem 2.1 Given Hadamard matrices H1 of order n and H2 of order m, the Kronecker
product of these two matrices, represented by




h11H2 h12H2 . . . h1nH2

h21H2 h22H2 . . . h2nH2

. . . . . . . . . . . .
hn1H2 hn2H2 . . . hnnH2




is a Hadamard matrix of order n ·m.

In using Theorem 2.1 it is not required to store a resulting large Hadamard matrix H, since it is
possible to construct its columns on demand. In particular, when these columns are to be used
in the diagonal estimator of Figure 1, we can construct them from the entries of two smaller
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Figure 2: Pattern of the non-zero elements of the matrix V V >, where the columns of vk of V
are the first s = 32 (left) and s = 64 (right) rows of the Hadamard matrix of dimension n = 128.

Hadamard matrices H1 and H2. All we need to ensure is that m ·n is larger than the maximum
allowed number of matrix-vector products s.

Proposition 2.2 suggests that if we were to use all rows of the Hadamard matrix as the
vectors vk for the diagonal estimator, then V V > = nI. Thus, the estimator will yield exactly
the diagonal of the unknown matrix. However, this would be too expensive. Hadamard rows
become interesting only when we employ a few number, say s of them, where s ¿ n. Figure 2
illustrates the non-zero pattern of the matrix V V > when using s = 32 (left) and s = 64 (right)
Hadamard rows. In the diagonal estimator the error will be induced by off-diagonal entries of
the original matrix A that occupy the diagonals illustrated in plots of Figure 2. Clearly, as the
number s of Hadamard rows increases we have fewer undesired diagonals.

If the matrix A is banded, with bandwidth b = bu+bl, then we need to use 2dlog2(max{bl,bu})e+1

Hadamard rows. Furthermore, if the off-diagonal entries of A exhibit a decaying behavior away
from the main diagonal, then it is reasonable to expect that a small number s of Hadamard
rows will be sufficient to yield very good accuracy.

3 Applications to computational material science

A particularly interesting case for the application of the diagonal estimator involves matrices
which have a decay property, in the sense that their entries decay rapidly away from the main
diagonal. Matrices of this type which arise in Density Functional Theory (DFT) calculations
are “density matrices”, and one critical computation is precisely to compute approximations to
their diagonals. Density matrices hold the key to virtually all important properties of atomic
systems in a DFT approach. In particular, its diagonal entries are equal to charge densities
of the electronic distribution. The traditional way of computing this diagonal is to obtain
eigenvectors of the Hamiltonian of the system associated with the no occupied states. This
approach is reliable but expensive. In recent years, significant research efforts have been devoted
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Figure 3: The Heaviside function for the eigenvalues of the Hamiltonian.

to developing methods whose cost scales linearly with the number of atoms considered. All these
so-called Order-N methods (see for example [6]) are based on the decay properties of the density
matrix.

A different approach is to approximate the density matrix by expanding the Fermi-Dirac
operator of the Hamiltonian on a basis of Chebychev polynomials (see [10]). The density matrix
is then available in the form of matrix-vector products. Therefore, estimating the diagonal
of the density matrix, and thus the charge densities, is a typical application for the diagonal
estimator. Furthermore, the decaying properties of density matrices can be efficiently exploited
in the context of the estimator with Hadamard rows. In the following we briefly introduce
the polynomial approximation of density matrices and present the application of the diagonal
estimator in this case.

3.1 Computing charge densities without diagonalization

The charge density at a point r in space is commonly computed from the eigenvectors Ψi of the
Hamiltonian matrix via the formula

ρ(r) =
no∑

j=1

|Ψj(r)|2, (12)

where the summation is taken over all occupied states. The multiplicative constant 2 which
corresponds to the spin of the electrons is dropped from the above formula for simplicity.

In order to use (12), eigenvectors of the Hamiltonian are normally required. However, it is
possible to compute ρ(r) in a few different ways without eigenvectors. When the eigenfunction
ψj(r) is discretized with respect to r, then the charge density at a point ri is ρ(ri) ≡ ρii, which
is the diagonal entry of the functional density matrix

P = V V > with V = [ψ1, . . . , ψno ]. (13)

Observe that P is a projector on the subspace spanned by the eigenvectors corresponding to
occupied states. Thus, any orthogonal basis V of the same space can be used. Order-N methods
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Figure 4: Approximation of the Heaviside function using Chebychev expansion with (thick
lines) and without (thin lines) Jackson dampening, for increasing number of Chebychev factors
M = 64, 128 and 256. Note that for illustration purposes we use a different chemical potential
µ (which is effectively the cutoff point in the Heaviside function) for the different values of M .

are based on finding an approximation to P by exploiting some of its properties, such as near
bandedness (in planewave bases), and a few relations between P and the Hamiltonian matrix.

The density matrix P can be characterized in functional form as

P = f(H), (14)

where H is the Hamiltonian of the system and

f(ε) =
1

1 + exp( ε−µ
kBT )

. (15)

The function f is the Fermi-Dirac distribution, kB is Boltzmann’s constant, µ is the chemical
potential and T is the temperature. Here we are interested in the case that T → 0 and thus f
is just the Heaviside (or step) function, illustrated in Figure 3.

In [10] the density matrix was approximated by directly approximating the Heaviside func-
tional by means of expansion in a basis of Chebychev polynomials. The undesired phenomenon
of Gibbs oscillations in the neighborhood of λno , caused by the discontinuity of the original
function being approximated by polynomials, can be avoided by Jackson smoothing (see Figure
4) [9, 12, 14].

The Chebychev expansion of order M , with Jackson smoothing, of the function h : [−1, 1] →
R, is defined by

h(x) ≈ α0

2
+

M∑

m=1

gm,MαmTm(x), (16)

where gm,M and αm are the Jackson and the Chebychev factors respectively and Tm(x) =
cos(m arccos(x)) are the Chebychev polynomials of the first kind. The density matrix (13) is
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essentially a projector on the subspace spanned by eigenvectors corresponding to a number of the
smallest eigenvalues of the Hamiltonian. In the density matrix case, the projection is essentially
defined by the Heaviside function of H. In general, we could define projectors on arbitrary, even
disjoint, parts of the spectrum. All we need is to approximate the corresponding scalar function
on a basis of Chebychev polynomials (using an expansion similar to (16)) and then approximate
the projection using this expansion on the matrix at hand.

It was shown in [10] that for the Heaviside function there exist explicit formulas for the
factors gm,M and αm, which depend on µ. Furthermore, the Chebychev polynomials Tm(x) can
be recursively defined according the standard three term recurrence (see [1])

Tm+1(x) = 2xTm(x)− Tm−1(x), T0 = 1, T1 = x. (17)

Let us now assume that the extreme eigenvalues λmin, λmax of the Hamiltonian H, as well as
the chemical potential µ are known. Therefore, we can shift and scale the Hamiltonian, in order
to move its eigenvalues into the interval [−1, 1], as well as the chemical potential, such that

Ĥ = cI + dH, µ̂ = c + dµ where c = −λmax + λmin

λmax − λmin
and d =

2
λmax − λmin

.

Shifting and scaling the Hamiltonian H will not affect its eigenvectors, and so the density matrix
will remain the same. Applying the Chebychev expansion for the new Hamiltonian Ĥ results in
the following approximation for the density matrix

P ≈ α̂0

2
I +

M∑

m=1

ĝm,M α̂mTm(Ĥ), (18)

where I is the identity matrix. Since (18) is a polynomial expansion of P , multiplying a vector
v with P results in a sequence of matrix vector products with the Chebychev polynomials. In
Figure 5 we illustrate an algorithm (Algorithm 2) for the multiplication of the approximated
P by a vector v. The vector Tk−1(Ĥ)x denotes the product of the input vector x with the
Chebychev polynomial matrix Tk−1(Ĥ). Clearly, the 3-term recurrence (17) of the Chebyshev
polynomials is exploited for this calculation. At each step k, where k = 2 : M , we need to
multiply the Hamiltonian with the vector Tk−1(Ĥ)x. The computational cost of Algorithm 2
amounts to (M − 2) matrix vector multiplications and (M − 1) xAXPY operations (with each of
them costing O(N) operations).

Due to the low cost of Algorithm 2, approximating the diagonal of the density matrix, and
thus the charge densities, appears to be a good candidate for the proposed diagonal estimator
which requires only matrix-vector products. Furthermore, when the density matrix exhibits
significant decay properties, one may expect that satisfactory accuracy to the diagonal entries
can be achieved by applying only a limited number of matrix-vector products. Clearly, the
potential for cost reduction compared to diagonalization of the Hamiltonian is significant and
this provided the initial motivation for this research.

3.2 Using Chebychev vectors

Recall that M is the number of Chebychev polynomials in the expansion (18) and s the number
of vectors employed in the diagonal estimator. Using Algorithm 2 in the diagonal estimator
(Fig. 1, line 2.2), will require O(M × s) matrix-vector products with the Hamiltonian matrix.
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Algorithm 2

(* Input * ) Hamiltonian Ĥ, coefficients α̂k, gk, k = 1, . . . ,M
input vector x

(* Output * ) Approximate vector v such that v ≈ Px,
where P is the density matrix

1. T0(Ĥ)x = x

2. T1(Ĥ)x = Ĥx

3. v = 1
2α0x + ĝ1α̂1T1(Ĥ)x

4. for k=2:M
4.1 Tk(Ĥ)x = 2ĤTk−1(Ĥ)x− Tk−2(Ĥ)x
4.2 v = v + ĝkα̂kTk(Ĥ)x

5. end

Figure 5: Algorithm for multiplication of the Chebychev approximation of the density matrix
P with a vector x.

If convergence is slow, meaning that s needs to be large, then the total number of matrix-vector
products with the Hamiltonian could become unacceptably large.

One remedy to this problem is to exploit the recurrence relations of Chebychev polynomials,
and to use as vk’s in the diagonal estimator the vectors of the Chebychev basis itself. Specifically,
assume for simplicity that the eigenvalues of the Hamiltonian are between -1 and 1 so that the
expansion (18) for the density matrix P holds.

We first recall a well known property of Chebychev polynomials which is a simple consequence
of elementary trigonometric identities:

Tm(x)Tk(x) = cos(m arccos(x)) cos(k arccos(x))

=
1
2
(cos((m + k) arccos(x)) + cos((m− k) arccos(x)))

=
1
2
(cos((m + k) arccos(x)) + cos((|m− k|) arccos(x)))

=
1
2
(Tm+k(x) + T|m−k|(x)). (19)

Consider now the following sequence of vectors,

vk = Tk(Ĥ)v0, k = 1, . . . , s,

where Tk is the Chebychev polynomial of order k and v0 is some initial vector. If Pvk is computed
for the purpose of estimating the diagonal of P , we find that

Pvk ≈ α̂0

2
vk +

M∑

m=1

ĝm,M α̂mTm(Ĥ)vk (20)

=
α̂0

2
vk +

M∑

m=1

ĝm,M α̂mTm(Ĥ)Tk(Ĥ)v0 (21)
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=
α̂0

2
vk +

1
2

M∑

m=1

ĝm,M α̂m[Tm+k(Ĥ)v0 + T|m−k|(Ĥ)v0] (22)

=
α̂0

2
vk +

1
2

M∑

m=1

ĝm,M α̂m[vm+k + v|m−k|]. (23)

For each (approximate) product Pvk, only M + 1 vector additions (xAXPY operations) are re-
quired, which is far cheaper than the cost of Algorithm 2 which multiplies a general (random)
vector with the density matrix P . Of course, we still have to compute the Chebychev basis
[v0, . . . , vs]. Once more, we can take advantage of the three term recurrence of Chebychev
polynomials and reduce the computational cost, since

vk = Tk(Ĥ)v0 = 2ĤTk−1(Ĥ)v0 − Tk−2(Ĥ)v0, k = 1, . . . , s. (24)

When a large number s of Chebychev vectors are needed in the diagonal estimator, then
computing these vectors a priori will quickly become intractable due to memory requirements,
especially when the Hamiltonian H is large. Thus, we need to compute the Chebychev vectors
only when we need them. In order to compute the k-th product Pvk, when k > M only vectors
k −M through k + M are required. Therefore, storage requirements for each product Pvk can
be limited to 2M +1 Chebychev vectors. Also when k ≤ M , then we need a few of the vectors v0

to vk+M , the number of which does not exceed 2M + 1. The procedure is outlined in Algorithm
3 (see Figure 6). For the sake of clarity and simplicity, the stochastic estimator described in
Figure 6 starts from the k-th Chebychev vector where k = M + 1.

A final note on the method described in this section is that the whole process can be restarted.
In particular, when the maximum number of steps s has been reached, we compute a new set of
initial Chebychev vectors vk, k = 0, . . .M , starting with a new random vector v0. However, it is
necessary to keep the partial sums in vectors qk and rk (see Algorithm 3). The rationale behind
the restarting strategy is to avoid possible stagnation of the convergence of the estimator, since
the three term relation between the Chebychev vectors suggests that they are correlated and
not completely random.

4 Experimental evaluation

In this section we test the performance of the diagonal estimator in a variety of situations. The
experiments were performed using MATLAB 6.5.

4.1 Experiments with sample sparse banded test matrices

This section investigates the effectiveness of the proposed diagonal estimator with random vec-
tors and Hadamard rows, using test matrices from the Matrix Market2. In particular, we used
the following matrices: GRE 512, MHD416A, AF23560, NOS6, BCSSTK07 and ORSREG 1. A few de-
tails on these matrices are given in Table 1. They are all banded as well as sparse (in particular,
they are not dense within the band.) This property readily suggests that the diagonal estimator
with Hadamard rows should give very accurate results with a small number of matrix-vector
products.

2http://math.nist.gov/MatrixMarket
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Algorithm 3: Diagonal Estimator with Chebychev
vectors for the density matrix P

(* Input * ) Hamiltonian Ĥ, coefficients α̂m, gm, m = 1, . . . , M ,
initial Chebychev vectors vk, k = 0, . . . ,M ,
total number of steps s

(* Output * ) Approximate diagonal Ds of density the matrix P

1. Generate the first M Chebychev vectors via the three
term recurrence (17)

2. d0 = 0, q0 = 0, r0 = 0
3. for k=M+1 : s

3.1 Generate current Chebychev vector vk = 2Ĥvk−1 − vk−2

3.2 tk,0 = α̂0
2 vk

3.3 for m=1 : M
3.3.1 tk,m = tk,m−1 + 1

2 ĝm,M α̂m(vk+m + vk−m)
3.4 end
3.5 qk = qk−1 + (tk,M ¯ vk)
3.6 rk = rk−1 + (vk ¯ vk)
3.7 dk = qk ® rk

4. end
5. Set Ds = ds

Figure 6: Algorithm 3. Diagonal estimator for the density matrix using Chebychev vectors.

In our first experimental set, random vectors vk are used for the diagonal estimator. The
entries of the vectors were drawn from a normal distribution with zero mean, variance one
and standard deviation one (we used the MATLAB routine randn). In Table 2 we illustrate the
mean relative error for the diagonal entries of these matrices, error = 1

n

∑n
i=1 |(di − d̂i)/di|. We

employed an increasing number of random vectors. Note that there are matrices for which we
used a number of vectors that is larger than the size of the matrix. However, as it is pointed out
in the introduction of this paper, for a matrix with n entries on the main diagonal only n vectors
(canonical basis) are required. In these cases we did not restrict the number of vectors used to
s = n, but rather we preferred to use the same number of vectors across all test matrices. We
note that the diagonal estimator quickly yields somewhat accurate approximations for a very
small number of vectors (s = 10). However, convergence, although steady in most cases, appears
to be slow for subsequent steps.

We next investigate the diagonal estimator with Hadamard rows. Table 3 illustrates the
results. The second column contains again the mean relative error. As expected, the Hadamard
estimator requires far fewer matrix-vector products than the stochastic estimator. In some cases
four vectors already suffice to yield exact results. For example, although the total bandwidth
of the matrix NOS6 is sixty-two (62), we are able to accurately compute its diagonal using only
four Hadamard rows. This is due to the fact that the “forbidden diagonals” of the matrix V V >

coincide only with zero entries of the matrix at hand.
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Matrix size nnz lower b/w upper b/w
GRE 512 512×512 4140 48 48
MHD416A 416×416 8562 25 65
AF23560 23560×23560 484256 305 305
NOS6 675×675 1465 31 31
BCSSTK07 420×420 4140 48 48
ORSREG 1 2205×2205 14133 442 442

Table 1: Characteristics of test matrices from Matrix Market. The matrices are sparse and
banded. The third column illustrates the number of non-zero elements, while the fourth and
fifth columns illustrate the upper and lower bandwidth of the matrices respectively.

4.2 Matrices with decaying off-diagonal entries

We now experiment with matrices whose off-diagonal elements exhibit a decaying behavior. We
use the diagonal estimator with Hadamard rows.

We consider the following family of (dense) matrices:

A ∈ Rn×n, αij =

{
1 i = j
1

|i−j|k i 6= j
(25)

for k = 1, 2, 3 and 4. In addition, we also consider sparse versions of the above matrices: We
randomly set a percentage c of the off-diagonal entries of the matrix A to zero.

We start with the dense versions of the matrix A and consider n = 3000 (experiments with
different values for n gave very similar results). The left plot in Figure 7 illustrates the mean
error 1

n

∑n
i=1 |(di − d̂i)| (note that we do not divide with di since it is equal to 1). For the sparse

case, we experimented with n = 10000 and an average nnz ≈ 100 non-zero elements per row.
Again the magnitude non-zero elements of the test matrix are defined according to (25). The
results are illustrated in the right plot of Figure 7. In both cases it is seen that the stronger the
decay, the better the accuracy achieved by the diagonal estimator with Hadamard rows. Our
experience with sparse matrices with decaying off-diagonal elements suggests that the proposed
diagonal estimator can yield quite satisfactory results. In many instances, 32 Hadamard rows
or fewer are enough to get 3-4 digits of accuracy.

4.3 Experiments with density matrices

We now experiment with density matrices and Hadamard rows in our diagonal estimator. In
particular, we use a parametrized model Hamiltonian that has been well studied in the context
of evaluating iterative algorithms for the approximation of charge densities [11, 17]. In this
model there are Nb bands and Ns substates per band. The diagonal entries of the Hamiltonian
(i = i′, j = j′)

Hij,ij = (i− 1)∆ + (j − 1)δ, δ ¿ ∆. (26)

For the intraband coupling terms (i = i′, j 6= j′)

Hij,ij′ = Ce−|j−j′| (27)
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AF23560 GRE 512 MHD416A
] vectors error ] vectors error ] vectors error
10 0.28 10 0.60e-1 10 4.3
20 0.19 20 0.41e-1 20 5.2
30 0.16 30 0.33e-1 30 2.9
40 0.13 40 0.27e-1 40 2.6
50 0.12 50 0.25e-1 50 2.9
100 0.084 100 0.19e-1 100 2.2
200 0.059 200 0.11e-1 200 1.1
500 0.037 500 0.71e-1 500 0.7
1000 0.027 1000 0.49e-2 1000 0.77

ORSREG 1 BCSSTK07 NOS6
] vectors error ] vectors error ] vectors error
10 0.22 10 0.32e-2 10 1.00e-4
20 0.15 20 0.19e-2 20 0.72e-4
30 0.12 30 0.16e-2 30 0.58e-4
40 0.10 40 0.13e-2 40 0.45e-4
50 0.091 50 0.11e-2 50 0.40e-4
100 0.065 100 0.86e-3 100 0.30e-4
200 0.046 200 0.65e-3 200 0.21e-4
500 0.029 500 0.39e-3 500 0.13e-4
1000 0.020 1000 0.26e-3 1000 0.10e-5

Table 2: Mean absolute relative errors of the stochastic diagonal estimator using increas-
ing number of random vectors. The error (columns 1,3 and 5) is computed as error =
1
n

∑n
i=1 |(di − d̂i)/di|, where n is the dimension of the matrix.

and for the interband coupling terms (i 6= i′, j 6= j′)

Hij,i′j′ =
C

nod(|i− i′|+ 1)
e−|j−j′|, (28)

where in all of the above i = 1, . . . , Nb and j = 1, . . . , Ns. Table 4 summarizes the parameters
used (based on those used in [11, 17]). Since this model Hamiltonian is a dense matrix, its size is
kept relatively low, specifically we take Nb×Ns = 2000. For the parameter nod which affects the
decaying properties of the off-diagonal entries of the density matrix we used the values 5, 50, 500
and 5000.

We emphasize that when calculating charge densities we employ an approximation at two
levels. First, we rely on the Chebychev expansion (18) to approximate the density matrix P and
then we employ the diagonal estimator in order to approximate the charge densities (diagonal
of P ). In this paper we are primarily interested in studying the approximating qualities of
the diagonal estimator. Therefore in what follows we test its results compared to the (exact)
diagonal of the approximated density matrix P̃ (right hand side of the polynomial expansion
(18)) rather than the exact charge densities.

In order to approximate the density matrix P we have used a Chebychev expansion of degree
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AF23560 GRE 512 MHD416A
] vectors error ] vectors error ] vectors error
4 0.99 4 0.14 4 0.56
8 0.5 8 0.064 8 0.50
16 0.0028 16 0.049 16 0.0039
32 0 32 0.015 32 0
64 0 64 0.012 64 0
128 0 128 0 128 0
256 0 256 0 256 0
512 0 512 0 512 0
1024 0 1024 0 1024 0

ORSREG 1 BCSSTK07 NOS6
] vectors error ] vectors error ] vectors error
4 0 4 0.81e-3 4 0
8 0 8 0.26e-3 8 0
16 0 16 0 16 0
32 0 32 0 32 0
64 0 64 0 64 0
128 0 128 0 128 0
256 0 256 0 256 0
512 0 512 0 512 0
1024 0 1024 0 1024 0

Table 3: Mean absolute relative errors of the diagonal estimator using increasing number of
Hadamard rows. The error (columns 1,3 and 5) is computed as error = 1

n

∑n
i=1 |(di − d̂i)/di|,

where n is the dimension of the matrix.

M = 32. In all cases of nod we are interested in the density matrix associated with the 50 smallest
eigenvalues of the Hamiltonian.

Table 5 illustrates the results. We point out that larger values of the parameter nod tend to
increase the diagonal dominance of the resulting density matrix by decreasing the magnitude
of its elements away form the main diagonal. It is clear, that at least 128 Hadamard rows are
required for the case nod = 5, while only 16 Hadamard rows are required to achieve roughly the
same accuracy for the Hamiltonian with nod = 5000. Since we approximate the density matrix on
a set of M = 32 Chebychev polynomials the latter case results to 128×32 = 4096 matrix-vector
products with the Hamiltonian, which induces a cost similar to that of direct diagonalization
of the Hamiltonian. However, one must appreciate that the diagonal estimator with Hadamard
rows (or with random vectors) has very limited memory requirements, which can be considered
to be negligible compared to the memory requirements of direct diagonalization.

On the other hand, for nod = 5000 only 16× 32 = 512 matrix-vector products are required,
leading to a much more modest cost. It is exactly for such cases that we can expect the
diagonal estimator to provide a competitive alternative to standard methods which rely on
explicit eigenvalue calculations.
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Figure 7: Mean absolute error for the family of matrices (25). Left: dense case with n = 3000.
Right: Sparse case with n = 10000 and an average of 100 non-zero elements per row.

Nb Ns δ ∆ C nod

10 200 10−4 10−1 10−1 *

Table 4: Parameters used for the model Hamiltonian (26)-(28). For nod we used the values
5, 50, 500 and 5000.

4.3.1 Diagonal estimator with Chebychev vectors

When a large number s of vectors is required in the diagonal estimator and at the same time
we need a long Chebychev expansion (large M) then, clearly the overall cost rapidly increases
as s ×M . One can anticipate this to pose significant problems when very large Hamiltonians
are considered. In order to avoid this problem, we suggested using Chebychev vectors in the
diagonal estimator (see Sec. 3.2). Clearly, these vectors are correlated and thus convergence
of the diagonal estimator is anticipated to be slow. However, an inspection of Algorithm 3
(see Fig. 6) shows that at each step only 2M + 1 vectors are needed in memory rendering the
method particularly suitable for very long simulations. In Fig. 8 we illustrate the resulting
diagonal using Chebychev vectors for the model Hamiltonian (26)-(28) with nod = 5000. We
used 30 restarts and s = 1024 Chebychev vectors at each restart. Again M = 32 and we
approximated the diagonal of the density matrix associated with the 50 smallest eigenvalues of
the Hamiltonian. Our goal in this experiment is not to show that this setting is competitive
but rather to illustrate that using Chebychev vectors can achieve convergence. Clearly, for large
values of the charge density the estimator yields satisfactory results, with early converge in the
simulation. For small values of charge densities we witness a significant error. Our experience
has showed that very small values of charge densities require very long simulations in order to
be captured accurately. On the other hand, very small values of charge densities can be safely
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Number of Hadamard rows
nod 4 8 16 32 64 128
5 21.7 24.5 12.8 7.2 3.9 1.6e-2
50 3.2 3.6 1.6 8.6e-1 4.5e-1 2.1e-3
500 3.4e-1 3.5e-1 1.7e-1 8.7e-2 4.6e-2 2.21e-4
5000 6.3e-2 2.64e-2 1.8e-2 8.8e-3 4.6e-3 2.28e-5

Table 5: Mean absolute relative errors of the diagonal estimator using increasing number of
Hadamard rows and increasing parameter nod for the model Hamiltonian (26)-(28). The error
(columns 2-7, rows 3-6) is computed as = 1

n

∑n
i=1 |(di − d̂i)/di|, where n is the dimension of the

matrix.

treated as being zero, and thus it is only the order of the magnitude of the charge density that
is of interest, which is captured by the estimator.

5 Conclusion

We presented a few algorithms for the approximation of the diagonal of a matrix in the case
where the matrix is not readily available but it is easy to compute its product with an arbitrary
vector.

We extended ideas based on statistical arguments, due to Hutchinson [8], Girard [5] and
others, and described a “stochastic” diagonal estimator which uses random vectors. The analysis
of the convergence properties of the estimator led us to make connections between the problem at
hand with the problem of line packing in Grassmannian spaces and that of the design of optimal
codebooks in communications. This suggested utilizing rows of Hadamard matrices, instead of
random vectors, that can effectively take advantage of special properties of the matrix at hand,
such as bandedness or strong decaying of the magnitude of off-diagonal elements of the matrix.
We should point out that we did not perform an exhaustive search for “optimal” sequences of
vectors, the existence of which is predicted by the Welch bounds of Section 2.2.1. We only
showed that Hadamard rows can yield significantly better results than the simple use of random
vectors.

In Density Function Theory, a primary method used in electronic structures calculations,
one is faced with the problem of computing electronic charge densities. In matrix terms, these
are the diagonal entries of a projector associated with a number of the smallest eigenvalues of
the Hamiltonian. Previous work by several authors has shown that this density matrix can
be accurately expanded in polynomial bases, rendering it an ideal candidate for the diagonal
estimator presented in this paper. Our claim and hope is that in several interesting situations
which lead to sufficient decay of the off-diagonal entries, the diagonal estimators discussed in
this paper can be used as effective and inexpensive alternatives to standard eigenvalue-based
methods, in part because of their very small memory requirements and their simplicity.
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