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Abstract

Principal component analysis (PCA) is an extensively
used dimensionality reduction technique, with impor-
tant applications in many fields such as pattern recog-
nition, computer vision and statistics. It employs the
eigenvectors of the covariance matrix of the data to
project it on a lower dimensional subspace.

However, the requirement of PCA eigenvectors is
a computational bottleneck which poses serious chal-
lenges and limits the applicability of PCA-based meth-
ods, especially for real-time computations. This paper
proposes an alternative framework, relying on polyno-
mial filtering which enables efficient implementations of
PCA. We showcase the applicability of the proposed
scheme on face recognition. In particular, we con-
sider the eigenfaces methods which employ PCA. The
numerical experiments reported indicate that the pro-
posed technique competes with the PCA-based method
in terms of recognition rate, while being much more ef-
ficient in terms of computational and storage cost.

Keywords Principal Component Analysis, Polyno-
mial Filtering, Face Recognition.

1 Introduction

Principal component analysis (PCA) [5] is one of the
most popular dimensionality reduction techniques. It
has numerous applications in many areas such as pat-
tern recognition, computer vision, statistics and data
analysis. PCA has been successfully applied in auto-
mated face recognition [14], resulting in the so called
method of eigenfaces introduced by Kirby and Sirovich
[6], Sirovich and Kirby [12] and Turk and Pentland [10],
[13]. The eigenfaces method is one of the most popu-
lar appearance-based holistic approaches (see e.g., [1],
[13]) which employs PCA on the covariance matrix C,
constructed by the training data.
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Typical implementations of the eigenfaces method
rely upon eigendecomposition of the covariance matrix.
However, when the datasets are dynamic and of large
scale, the applicability of the above methods is limited
due to their high computational cost (which is O(n?)
for dense matrices). This is even more evident in the
case of real-time and adaptive algorithms (see e.g. [9]).
In these cases, the eigendecomposition must be updated
frequently and the time constraints are very strict. To
that end, a lot of research efforts have been devoted
to efficient eigenspace update schemes such as the one
proposed in [4].

In this paper we propose an alternative implementa-
tion scheme which approximates directly the similarity
score without computing the eigendecomposition of C
or any other matrix decomposition. Denoting by A the
data matrix in the input space, the new method relies
on polynomial filtering, where a well defined polyno-
mial 9 of the matrix AAT or AT A is applied on the
new face image and yields an approximation to the sim-
ilarity score that is very close to the one obtained using
eigendecomposition. The polynomial v is chosen appro-
priately such that it is a good approximation of the step
function.

The polynomial filtering framework was applied
successfully in [7] for dimensionality reduction in infor-
mation retrieval. In this paper we showcase the appli-
cability of this technique in a different context, that of
face recognition. We claim that the proposed frame-
work can be applied in any method employing PCA to
estimate similarities among data vectors. Numerical ex-
periments indicate that the proposed framework is quite
close to the PCA methods in terms of recognition rate
without suffering from their computational and storage
limitations.

The remaining sections of this paper are organized
as follows: Section 2 provides an overview of the eigen-
faces method using eigenvalue decomposition. In Sec-
tion 3 the eigenfaces method is interpreted in terms of



Singular Value Decomposition (SVD). Next, in Section
4 the implementation of face recognition using eigen-
faces, via polynomial filtering is described. Finally, Sec-
tion 5 provides a series of numerical results verifying the
practical advantages of the proposed scheme.

2 The method of eigenfaces

2.1 Construction of the face space Suppose that
a face image consists of IV pixels, so it can be repre-
sented lexicographically by a vector x of dimension V.
Let {z;]i = 1,..., M} be the training set of face images.
The mean face is given by

1 M
i=1

The covariance matrix of the translated training data is

(2.1)

1
(2.2) C = MAAT € RV

€ RN*M {5 the matrix of the

where A = [Z1,...,Z 0]
translated data points

(2.3)

The eigenvectors u;, [ = 1,..., M of the covariance ma-
trix C' are usually called “eigenfaces”, since they re-
semble faces when reshaped and illustrated in a picto-
rial fashion. In practice only a small number, say k,
of eigenvectors corresponding to the largest eigenvalues
are computed and then used for performing Principal
Component Analysis (PCA) for face identification. The
subspace spanned by the eigenfaces is called face space.

2.2 Face recognition using eigenfaces The face
recognition procedure consists of two stages; the train-
ing stage and the recognition stage. In the training stage
each face image x; of the known individuals is projected
on the face space and a k-dimensional vector P; is ob-
tained

(2.4) Pi=Ul(z; —p), i=1,...,M,

where Uy, = [us,...,u,] is the matrix with orthonormal
columns, which are the eigenvectors associated with the
k largest eigenvalues.

In the recognition stage, the new image = € RN to
be processed, is translated and then projected into the

face space to obtain the vector
(2.5) P, = U] (@ - p).

The distance between P, and each face image is defined
by

Q,
o
|

| P, — P;||?

(2.6) = |PJ2+|P2-2P P i=1,...,M,

where |.||2 is the Euclidean norm. Furthermore, in
order to discriminate between face images and non-
face images, the distance ¢ between the original image
z and its reconstructed image from the face space,
xp = Up Py + p, is also computed:

(2.7) e=|z—xg|2.
Note in passing that
e = [z—p—UPl?
I(z = 1) = U (z = )2,

and therefore € represents simply the distance between
x — p and its orthogonal projection onto span{Uy}, i.e.,

(2.8) &€ =
(2.9) =

I = UrU ) (@ — w13
lz = pell3 — 1P 13-

This metric is used to decide whether or not a given
image is a face.

3 Eigenfaces in terms of the SVD

In this section we interpret the above training and
recognition stages in terms of the truncated singular
value decomposition of A. The SVD [3] of a rectangular
N x M matrix A of rank r, is defined as

(3.10) A = UXVT,

(3.11) U'U = Iyé€eRVN,

(3.12) Vv Iy € RMXM

where U = [uq,...,uny] and V = [v1,...,vym] are

unitary matrices and ¥ = diag(oy,009,...,00m), 01 >
oy > ... >0, > 041 = ... = oy = 0. The ;s
are the singular values of A and the u;’s and v;’s are
respectively the left and right singular vectors associated
with o;, i = 1,...,r. We define the i-th singular triplet
of A as {u;,0;,v;}. It follows from the SVD that the
matrix A can be expressed as a sum of r rank-one

matrices,
T
A= E Uiuiv;r.
i=1

Additionally, it is well known that

min _ [|A = B|[r = [|A - Axllr
rank(B)<k
where A = Zle o;u;v; and ||.|F is the Frobenius

norm. It is helpful for what follows to rewrite the matrix
Ay as
(3.13)

where Uy, (resp. Vi), consists of the first k& columns of
U (resp. V), and Xy, is a diagonal matrix of size k x k.

A = UpSp V',



Thus, if we truncate the SVD to keep only the k largest
singular triplets we obtain the closest (in a least-squares
sense) approximation to A.

Observe that the matrix U containing the k largest
left singular vectors of A = \/LMA, is exactly the matrix
computed by PCA containing the largest eigenvectors of
the covariance matrix. This follows from the fact that

C=AAT =vuxv'veUT =Uus2'UT,

is the eigendecomposition of the covariance matrix.
Using this observation, equation (2.4) can be written
in the form

Pi = Uk fZ:U]:A&
T S 0 v, '
= Uk [Uk Uka} |: 0 EMfk Vg_k €;

= [I O ;
1 0 [ EM,;QVA}% } ‘
= OV, e, i=1,...,M.

Denote by P = %;V," the matrix whose columns are
the projections P;, ¢ = 1,..., M, of every known face
image to the face space. Assuming that all vectors are
normalized, the similarity measurement (2.6) among the
new image = and all known images, can be equivalently
computed by the similarity vector sy,

(3.14) s = PP, =W U] (z—p)
= AZ(Z - “)a

containing a similarity score between the new face
image and each of the known images. Thus, the
computation of the similarity vector s; employs a rank
k approximation of the translated matrix A. We discuss
the assumption of normalized projected vectors in the
following section.

Note also that using the SVD, equation (2.8) ex-
presses the metric € as the distance from = — u to the
space span{Uy} of the dominant left singular space. In
the sequel, we show how to approximate the similarity
vector sg in (3.14), as well as the distance € in (2.8) with-
out using eigendecompositions. The proposed scheme
relies on polynomial filtering.

4 Eigenfaces using polynomial filtering

Polynomial filtering allows to closely approximate the
effect of reduced rank approximation used in PCA
models. Denote by ¥(A) a matrix polynomial of degree
d on the matrix A, i.e.,

P(A) = gAY + 64 AT 4L AT 6L

Assuming that A is normal (i.e., ATA = AAT) and
letting A = QAQT be its eigendecomposition, observe

that ¥(A) = »(QAQT) = Q¢ (A)Q". Therefore, the
polynomial on A is translated to a polynomial on its
eigenvalues. We are now ready to describe how one can
use polynomial filtering to approximate the similarity
vector directly, avoiding completely eigenvalue compu-
tations.

Let £ = = — p be the translated new image. In
order to estimate the similarity measurement, we use a
polynomial ) of AT A such that

Y(ATA)ATz

= VT2V HVe'UTz
= VypETR)WTVRTUTz
Vy(2'8)2'U "z

S =

(4.15)

Compare the last expression above with (3.14). Choos-
ing the polynomial ¢ (t) appropriately will allow us to
interpretate this approach as a compromise between the
correlation [2] and the PCA approaches. Assume now
that 9 is not restricted to being a polynomial but can be
any function (even discontinuous). When 9(t) = 1 Vz,
then ¢(XTY) becomes the identity operator and the
above scheme would be equivalent to the correlation
method. On the other hand, taking i to be the step
function

[0, 0<t<o}
(4.16) ¢(t){ L o2 <t <ol
I, 0

results in (X '%) = } where Iy, is the identity

0 0
matrix of size k and 0 is a zero matrix of an appropriate
size. Then, equation (4.15) may be re-written as:

s = VyE'2)x'UE
20 vl o] -
RS HIENE
Ul
= [ wx] 0}[U;kk]x
= WYLU/!z
(417) = Alz

which is precisely the rank-k approximation provided in
equation (3.14).

Using polynomial filtering we can also approximate
the “faceness” (i.e., whether or not a given image
contains a face) of an image as it is expressed by
equation (2.8). Using the SVD, observe that

$(CO)@—p) = Y(AAT)(z - p)
= YUXVVETU(z— p)
(4.18) = Up(EENU (z — p).

Note that if ¢ is exactly the step function (4.16), then
[4(C)(z—p) |2 = IUU (z—p)|2 = || Pz||2 which would



allow to obtain e from (2.8). If the polynomial ¢ is an
approximation of the step function, this will provide an
estimate of the distance metric ¢, needed to decide on
the faceness of an image, without the availability of U
or Uy.

Therefore, the approach of polynomial filtering in
PCA models can give virtually the same result as eigen-
decomposition, without resorting to the costly eigen-
value decomposition or any other matrix decomposi-
tion. Furthermore, the need to store additional (dense
or sparse) matrices as is the case in PCA, is completely
avoided as is the need to update these matrices, when
the subspace used for learning changes dynamically.
The selection of the cut-off point is somewhat similar
to the issue of choosing the parameter k£ in the PCA
method. However, there is a salient difference between
the two: choosing a large & in PCA may render the
method much more expensive, while selecting a high
cut-off in polynomial filtering does not affect cost sig-
nificantly.

Recall that in the computation of the similarity
vector we assumed that the projected vectors P; have
unity norm. Here are two solutions to overcome this
problem. Before applying the proposed scheme we
normalize all input data vectors z;. Next, we compute
the similarity score and sort the samples in descending
order. Then we have two options. Using the first
k < M samples, either we can employ PCA or we can
use k-nearest neighbor classification. Observe that since
k <« M, the cost of exact PCA will be very limited,
and certainly orders of magnitude smaller than PCA on
the original data matrix. Similarly, applying k-nearest
neighbor classification on a very small set of data points
will have very limited cost. We observed empirically
that the first option yields slightly better results and
this is the option that we included in our experiments
(Section 5) with k& = 30.

5 Numerical results

All experiments are implemented in MATLAB 6.5 on
a Xeon@2.4GHz. We use three datasets that are
publically available: YALE, ORL and a subset of
AR. The YALE database [1] contains 165 images of
15 individuals that include variation in both facial
expression and lighting. In the preprocessing phase,
each face image is closely cropped, and the size of
images after the cropping phase is decreased to 112x92.
The ORL (formerly Olivetti) database [11] contains 40
individuals and 10 different images for each individual.
In this case no preprocessing is done. Finally, the AR
face database [8] contains 126 subjects with 4 different
facial expressions for each individual.

In what follows, error rates are estimated using a

k=40 | ORL (%) | YALE (%) | AR (%)
y=2 2.5 26.06 8.33
v=3 3.5 25.45 8.53
v=4 2.75 26.06 7.14
¥=5 3 26.06 6.15

Table 1: Error rates of the PPF method for various
values of 7, on all face databases.

cross validation “leave-one-out” strategy. In order to
compute the error rate with respect to a certain facial
expression, the image associated with it is used as a test
image. In order to recognize the test image, all images,
excluding the test one, are projected to the reduced
subspace. Then, the test image is projected as well and
recognition is performed using a nearest neighbor rule.
Denote by e; as the number of misses counted across
the subjects for a given facial expression ¢. Denote also
by Ny the number of different facial expressions/poses
associated with each individual in the database. Define

N . .
e = ! i=1,...,Ny. Thus, e is the mean error

N i=1€is
rate aileraged across all different facial expressions. In
what follows, denote by PCA the “eigenfaces” method
and by PPF the polynomial filtering method.

Example 1 In the first example we investigate the
behavior of the PPF method with respect to the degree
of the polynomial . Table 1 illustrates the error rate
of PPF with respect to . The parameter v affects
the degree of the polynomial approximation to the step
function. The higher the value of v the higher the degree
of the polynomial. Observe that in most cases the value
v = 4 seems to give the most satisfactory results. To
that end, in what follows, we use v = 4 for PPF.

Example 2 We now investigate the effect of the
dimension k of the reduced space on the recognition
performance of the methods. We use MATLAB’s svd
builtin function since the matrix is dense and this way
we avoid the explicit use of the matrices AAT or AT A.
We experiment with & = 20 : 20 : 100 (in MATLAB
notation) and measure the error rate (%) for all face
databases.

Table 2 illustrates the error rate e versus the dimen-
sion k measured on the ORL, YALE and AR datasets
respectively. All tables contain the corresponding time
measurements ¢ (in sec) for each method. The timings
for PCA methods measure the time needed to construct
the subspace (i.e., computing the eigenvectors) and per-
form the recognition of the test image (i.e., one step of
“leave-one-out” cross validation). The timings for PPF
methods measure the time needed to recognize the test
data point via polynomial filtering.

Concerning the ORL database, observe that PPF



ORL PCA PPF

e t e t
k=20 3.5 32.74 3 2.52
k=40 2.75 | 30.68 | 2.75 | 2.49
k=60 3.25 | 3093 | 3.25 | 2.48
k=80 3.25 | 32.96 3 2.52
k=100 3 32.03 3 2.49
YALE PCA PPF

e t e t
k=20 29.70 | 5.93 | 25.45 | 1.15
k=40 27.88 | 6.02 | 26.06 | 1.16
k=60 27.27 | 6.10 | 25.45 | 1.14
k=80 27.27 | 6.22 | 25.45 | 1.16
k=100 | 26.06 | 6.33 | 25.45 | 1.15
AR PCA PPF

e t e t
k=20 8.34 | 82.02 | 6.35 | 5.71
k=40 6.75 | 82.02 | 7.34 | 5.71
k=60 6.15 | 83.12 | 7.14 | 5.71
k=80 6.15 | 83.67 | 6.75 | 5.70
k=100 5.75 | 83.64 | 6.35 | 5.71

Table 2: Error rates e (%) and timings ¢ (in sec) of
both methods for various values of k, on all the face
databases.

competes with PCA in terms of error rate. Further-
more, the PPF method is much more efficient achieving
significant speedups over its PCA counterpart. On the
YALE dataset, the results are quite similar with PPF
outperforming PCA not only in timings but in error rate
as well. Finally, on the AR dataset, the results are sim-
ilar to ORL, with the PPF methods being quite close
to PCA in terms of error rate and being much more
efficient in terms of computational cost.

6 Conclusion

We have described an alternative framework for imple-
menting PCA without eigenvalue calculations. The pro-
posed framework relies on polynomial filtering, in or-
der to render the same effect as PCA, for dimension-
ality reduction. We illustrated the applicability of the
proposed technique in the eigenfaces method for face
recognition. The numerical experiments indicated that
the new scheme has very close performance to the PCA
method, while being much more efficient in terms of
computational cost and storage.
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