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Abstra
tPrin
ipal 
omponent analysis (PCA) is an extensivelyused dimensionality redu
tion te
hnique, with impor-tant appli
ations in many �elds su
h as pattern re
og-nition, 
omputer vision and statisti
s. It employs theeigenve
tors of the 
ovarian
e matrix of the data toproje
t it on a lower dimensional subspa
e.However, the requirement of PCA eigenve
tors isa 
omputational bottlene
k whi
h poses serious 
hal-lenges and limits the appli
ability of PCA-based meth-ods, espe
ially for real-time 
omputations. This paperproposes an alternative framework, relying on polyno-mial �ltering whi
h enables eÆ
ient implementations ofPCA. We show
ase the appli
ability of the proposeds
heme on fa
e re
ognition. In parti
ular, we 
on-sider the eigenfa
es methods whi
h employ PCA. Thenumeri
al experiments reported indi
ate that the pro-posed te
hnique 
ompetes with the PCA-based methodin terms of re
ognition rate, while being mu
h more ef-�
ient in terms of 
omputational and storage 
ost.Keywords Prin
ipal Component Analysis, Polyno-mial Filtering, Fa
e Re
ognition.1 Introdu
tionPrin
ipal 
omponent analysis (PCA) [5℄ is one of themost popular dimensionality redu
tion te
hniques. Ithas numerous appli
ations in many areas su
h as pat-tern re
ognition, 
omputer vision, statisti
s and dataanalysis. PCA has been su

essfully applied in auto-mated fa
e re
ognition [14℄, resulting in the so 
alledmethod of eigenfa
es introdu
ed by Kirby and Sirovi
h[6℄, Sirovi
h and Kirby [12℄ and Turk and Pentland [10℄,[13℄. The eigenfa
es method is one of the most popu-lar appearan
e-based holisti
 approa
hes (see e.g., [1℄,[13℄) whi
h employs PCA on the 
ovarian
e matrix C,
onstru
ted by the training data.�Work supported by the Minnesota Super
omputing Institute

Typi
al implementations of the eigenfa
es methodrely upon eigende
omposition of the 
ovarian
e matrix.However, when the datasets are dynami
 and of larges
ale, the appli
ability of the above methods is limiteddue to their high 
omputational 
ost (whi
h is O(n3)for dense matri
es). This is even more evident in the
ase of real-time and adaptive algorithms (see e.g. [9℄).In these 
ases, the eigende
omposition must be updatedfrequently and the time 
onstraints are very stri
t. Tothat end, a lot of resear
h e�orts have been devotedto eÆ
ient eigenspa
e update s
hemes su
h as the oneproposed in [4℄.In this paper we propose an alternative implementa-tion s
heme whi
h approximates dire
tly the similaritys
ore without 
omputing the eigende
omposition of Cor any other matrix de
omposition. Denoting by A thedata matrix in the input spa
e, the new method relieson polynomial �ltering, where a well de�ned polyno-mial  of the matrix AA> or A>A is applied on thenew fa
e image and yields an approximation to the sim-ilarity s
ore that is very 
lose to the one obtained usingeigende
omposition. The polynomial  is 
hosen appro-priately su
h that it is a good approximation of the stepfun
tion.The polynomial �ltering framework was appliedsu

essfully in [7℄ for dimensionality redu
tion in infor-mation retrieval. In this paper we show
ase the appli-
ability of this te
hnique in a di�erent 
ontext, that offa
e re
ognition. We 
laim that the proposed frame-work 
an be applied in any method employing PCA toestimate similarities among data ve
tors. Numeri
al ex-periments indi
ate that the proposed framework is quite
lose to the PCA methods in terms of re
ognition ratewithout su�ering from their 
omputational and storagelimitations.The remaining se
tions of this paper are organizedas follows: Se
tion 2 provides an overview of the eigen-fa
es method using eigenvalue de
omposition. In Se
-tion 3 the eigenfa
es method is interpreted in terms of



Singular Value De
omposition (SVD). Next, in Se
tion4 the implementation of fa
e re
ognition using eigen-fa
es, via polynomial �ltering is des
ribed. Finally, Se
-tion 5 provides a series of numeri
al results verifying thepra
ti
al advantages of the proposed s
heme.2 The method of eigenfa
es2.1 Constru
tion of the fa
e spa
e Suppose thata fa
e image 
onsists of N pixels, so it 
an be repre-sented lexi
ographi
ally by a ve
tor x of dimension N .Let fxiji = 1; : : : ;Mg be the training set of fa
e images.The mean fa
e is given by� = 1M MXi=1 xi:(2.1)The 
ovarian
e matrix of the translated training data isC = 1MAA> 2 RN�N ;(2.2)where A = [~x1; :::; ~xM ℄ 2 RN�M is the matrix of thetranslated data points~xi = xi � �; i = 1; : : : ;M:(2.3)The eigenve
tors ul; l = 1; : : : ;M of the 
ovarian
e ma-trix C are usually 
alled \eigenfa
es", sin
e they re-semble fa
es when reshaped and illustrated in a pi
to-rial fashion. In pra
ti
e only a small number, say k,of eigenve
tors 
orresponding to the largest eigenvaluesare 
omputed and then used for performing Prin
ipalComponent Analysis (PCA) for fa
e identi�
ation. Thesubspa
e spanned by the eigenfa
es is 
alled fa
e spa
e.2.2 Fa
e re
ognition using eigenfa
es The fa
ere
ognition pro
edure 
onsists of two stages; the train-ing stage and the re
ognition stage. In the training stageea
h fa
e image xi of the known individuals is proje
tedon the fa
e spa
e and a k-dimensional ve
tor Pi is ob-tained Pi = U>k (xi � �); i = 1; : : : ;M;(2.4)where Uk = [u1; : : : ; uk℄ is the matrix with orthonormal
olumns, whi
h are the eigenve
tors asso
iated with thek largest eigenvalues.In the re
ognition stage, the new image x 2 RN tobe pro
essed, is translated and then proje
ted into thefa
e spa
e to obtain the ve
torPx = U>k (x� �):(2.5)The distan
e between Px and ea
h fa
e image is de�nedby d2i = kPx � Pik22= kPxk22 + kPik22 � 2P>x Pi; i = 1; : : : ;M;(2.6)

where k:k2 is the Eu
lidean norm. Furthermore, inorder to dis
riminate between fa
e images and non-fa
e images, the distan
e � between the original imagex and its re
onstru
ted image from the fa
e spa
e,xf = UkPx + �, is also 
omputed:� = kx� xfk2:(2.7)Note in passing that� = kx� �� UkPxk2= k(x� �)� UkU>k (x� �)k2;and therefore � represents simply the distan
e betweenx�� and its orthogonal proje
tion onto spanfUkg, i.e.,�2 = k(I � UkU>k )(x� �)k22(2.8) = kx� �k22 � kPxk22:(2.9)This metri
 is used to de
ide whether or not a givenimage is a fa
e.3 Eigenfa
es in terms of the SVDIn this se
tion we interpret the above training andre
ognition stages in terms of the trun
ated singularvalue de
omposition of A. The SVD [3℄ of a re
tangularN �M matrix A of rank r, is de�ned asA = U�V >;(3.10) U>U = IN 2 RN�N ;(3.11) V >V = IM 2 RM�M ;(3.12)where U = [u1; : : : ; uN ℄ and V = [v1; : : : ; vM ℄ areunitary matri
es and � = diag(�1; �2; : : : ; �M ); �1 ��2 � : : : � �r > �r+1 = : : : = �M = 0. The �i'sare the singular values of A and the ui's and vi's arerespe
tively the left and right singular ve
tors asso
iatedwith �i; i = 1; : : : ; r. We de�ne the i-th singular tripletof A as fui; �i; vig. It follows from the SVD that thematrix A 
an be expressed as a sum of r rank-onematri
es, A = rXi=1 �iuiv>i :Additionally, it is well known thatminrank(B)�k kA�BkF = kA�AkkFwhere Ak = Pki=1 �iuiv>i and k:kF is the Frobeniusnorm. It is helpful for what follows to rewrite the matrixAk as Ak = Uk�kV >k ;(3.13)where Uk (resp. Vk), 
onsists of the �rst k 
olumns ofU (resp. V ), and �k is a diagonal matrix of size k � k.



Thus, if we trun
ate the SVD to keep only the k largestsingular triplets we obtain the 
losest (in a least-squaressense) approximation to A.Observe that the matrix Uk 
ontaining the k largestleft singular ve
tors of ~A = 1pMA, is exa
tly the matrix
omputed by PCA 
ontaining the largest eigenve
tors ofthe 
ovarian
e matrix. This follows from the fa
t thatC = ~A ~A> = U�V >V �>U> = U��>U>;is the eigende
omposition of the 
ovarian
e matrix.Using this observation, equation (2.4) 
an be writtenin the formPi = U>k ~xi = U>k ~Aei= U>k [Uk UN�k℄ � �k 00 �M�k � � V >kV >M�k � ei= [Ik 0℄ � �kV >k�M�kV >M�k � ei= �kV >k ei; i = 1; : : : ;M:Denote by P = �kV >k the matrix whose 
olumns arethe proje
tions Pi; i = 1; : : : ;M , of every known fa
eimage to the fa
e spa
e. Assuming that all ve
tors arenormalized, the similarity measurement (2.6) among thenew image x and all known images, 
an be equivalently
omputed by the similarity ve
tor sk,sk = P>Px = Vk�>k U>k (x� �)(3.14) = ~A>k (x� �);
ontaining a similarity s
ore between the new fa
eimage and ea
h of the known images. Thus, the
omputation of the similarity ve
tor sk employs a rankk approximation of the translated matrix A. We dis
ussthe assumption of normalized proje
ted ve
tors in thefollowing se
tion.Note also that using the SVD, equation (2.8) ex-presses the metri
 � as the distan
e from x � � to thespa
e spanfUkg of the dominant left singular spa
e. Inthe sequel, we show how to approximate the similarityve
tor sk in (3.14), as well as the distan
e � in (2.8) with-out using eigende
ompositions. The proposed s
hemerelies on polynomial �ltering.4 Eigenfa
es using polynomial �lteringPolynomial �ltering allows to 
losely approximate thee�e
t of redu
ed rank approximation used in PCAmodels. Denote by  (A) a matrix polynomial of degreed on the matrix A, i.e., (A) = �dAd + �d�1Ad�1 + : : :+ �1A+ �0I:Assuming that A is normal (i.e., A>A = AA>) andletting A = Q�Q> be its eigende
omposition, observe

that  (A) =  (Q�Q>) = Q (�)Q>. Therefore, thepolynomial on A is translated to a polynomial on itseigenvalues. We are now ready to des
ribe how one 
anuse polynomial �ltering to approximate the similarityve
tor dire
tly, avoiding 
ompletely eigenvalue 
ompu-tations.Let ~x = x � � be the translated new image. Inorder to estimate the similarity measurement, we use apolynomial  of ~A> ~A su
h thats =  ( ~A> ~A) ~A>~x=  (V �>�V >)V �>U>~x= V  (�>�)V >V �>U>~x= V  (�>�)�>U>~x:(4.15)Compare the last expression above with (3.14). Choos-ing the polynomial  (t) appropriately will allow us tointerpretate this approa
h as a 
ompromise between the
orrelation [2℄ and the PCA approa
hes. Assume nowthat  is not restri
ted to being a polynomial but 
an beany fun
tion (even dis
ontinuous). When  (t) = 1 8x,then  (�>�) be
omes the identity operator and theabove s
heme would be equivalent to the 
orrelationmethod. On the other hand, taking  to be the stepfun
tion  (t) = � 0; 0 � t � �2k1; �2k � t � �21(4.16)results in  (�>�) = � Ik 00 0 � where Ik is the identitymatrix of size k and 0 is a zero matrix of an appropriatesize. Then, equation (4.15) may be re-written as:s = V  (�>�)�>U>~x= � Vk Vn�k � � �>k 00 0 � � U>kU>m�k � ~x= � Vk�>k 0 � � U>kU>m�k � ~x= Vk�>k U>k ~x= ~A>k ~x(4.17)whi
h is pre
isely the rank-k approximation provided inequation (3.14).Using polynomial �ltering we 
an also approximatethe \fa
eness" (i.e., whether or not a given image
ontains a fa
e) of an image as it is expressed byequation (2.8). Using the SVD, observe that (C)(x� �) =  ( ~A ~A>)(x� �)=  (U�V >V�>U>)(x� �)= U (��>)U>(x� �):(4.18)Note that if  is exa
tly the step fun
tion (4.16), thenk (C)(x��)k2 = kUkU>k (x��)k2 = kPxk2 whi
h would



allow to obtain � from (2.8). If the polynomial  is anapproximation of the step fun
tion, this will provide anestimate of the distan
e metri
 �, needed to de
ide onthe fa
eness of an image, without the availability of Uor Uk.Therefore, the approa
h of polynomial �ltering inPCA models 
an give virtually the same result as eigen-de
omposition, without resorting to the 
ostly eigen-value de
omposition or any other matrix de
omposi-tion. Furthermore, the need to store additional (denseor sparse) matri
es as is the 
ase in PCA, is 
ompletelyavoided as is the need to update these matri
es, whenthe subspa
e used for learning 
hanges dynami
ally.The sele
tion of the 
ut-o� point is somewhat similarto the issue of 
hoosing the parameter k in the PCAmethod. However, there is a salient di�eren
e betweenthe two: 
hoosing a large k in PCA may render themethod mu
h more expensive, while sele
ting a high
ut-o� in polynomial �ltering does not a�e
t 
ost sig-ni�
antly.Re
all that in the 
omputation of the similarityve
tor we assumed that the proje
ted ve
tors Pi haveunity norm. Here are two solutions to over
ome thisproblem. Before applying the proposed s
heme wenormalize all input data ve
tors xi. Next, we 
omputethe similarity s
ore and sort the samples in des
endingorder. Then we have two options. Using the �rstk � M samples, either we 
an employ PCA or we 
anuse k-nearest neighbor 
lassi�
ation. Observe that sin
ek � M , the 
ost of exa
t PCA will be very limited,and 
ertainly orders of magnitude smaller than PCA onthe original data matrix. Similarly, applying k-nearestneighbor 
lassi�
ation on a very small set of data pointswill have very limited 
ost. We observed empiri
allythat the �rst option yields slightly better results andthis is the option that we in
luded in our experiments(Se
tion 5) with k = 30.5 Numeri
al resultsAll experiments are implemented in MATLAB 6.5 ona Xeon�2.4GHz. We use three datasets that arepubli
ally available: YALE, ORL and a subset ofAR. The YALE database [1℄ 
ontains 165 images of15 individuals that in
lude variation in both fa
ialexpression and lighting. In the prepro
essing phase,ea
h fa
e image is 
losely 
ropped, and the size ofimages after the 
ropping phase is de
reased to 112�92.The ORL (formerly Olivetti) database [11℄ 
ontains 40individuals and 10 di�erent images for ea
h individual.In this 
ase no prepro
essing is done. Finally, the ARfa
e database [8℄ 
ontains 126 subje
ts with 4 di�erentfa
ial expressions for ea
h individual.In what follows, error rates are estimated using a

k = 40 ORL (%) YALE (%) AR (%)
=2 2.5 26.06 8.33
=3 3.5 25.45 8.53
=4 2.75 26.06 7.14
=5 3 26.06 6.15Table 1: Error rates of the PPF method for variousvalues of 
, on all fa
e databases.

ross validation \leave-one-out" strategy. In order to
ompute the error rate with respe
t to a 
ertain fa
ialexpression, the image asso
iated with it is used as a testimage. In order to re
ognize the test image, all images,ex
luding the test one, are proje
ted to the redu
edsubspa
e. Then, the test image is proje
ted as well andre
ognition is performed using a nearest neighbor rule.Denote by ei as the number of misses 
ounted a
rossthe subje
ts for a given fa
ial expression i. Denote alsoby Nf the number of di�erent fa
ial expressions/posesasso
iated with ea
h individual in the database. De�nee = 1Nf PNfi=1 ei; i = 1; :::; Nf : Thus, e is the mean errorrate averaged a
ross all di�erent fa
ial expressions. Inwhat follows, denote by PCA the \eigenfa
es" methodand by PPF the polynomial �ltering method.Example 1 In the �rst example we investigate thebehavior of the PPF method with respe
t to the degreeof the polynomial  . Table 1 illustrates the error rateof PPF with respe
t to 
. The parameter 
 a�e
tsthe degree of the polynomial approximation to the stepfun
tion. The higher the value of 
 the higher the degreeof the polynomial. Observe that in most 
ases the value
 = 4 seems to give the most satisfa
tory results. Tothat end, in what follows, we use 
 = 4 for PPF.Example 2 We now investigate the e�e
t of thedimension k of the redu
ed spa
e on the re
ognitionperforman
e of the methods. We use MATLAB's svdbuiltin fun
tion sin
e the matrix is dense and this waywe avoid the expli
it use of the matri
es AA> or A>A.We experiment with k = 20 : 20 : 100 (in MATLABnotation) and measure the error rate (%) for all fa
edatabases.Table 2 illustrates the error rate e versus the dimen-sion k measured on the ORL, YALE and AR datasetsrespe
tively. All tables 
ontain the 
orresponding timemeasurements t (in se
) for ea
h method. The timingsfor PCA methods measure the time needed to 
onstru
tthe subspa
e (i.e., 
omputing the eigenve
tors) and per-form the re
ognition of the test image (i.e., one step of\leave-one-out" 
ross validation). The timings for PPFmethods measure the time needed to re
ognize the testdata point via polynomial �ltering.Con
erning the ORL database, observe that PPF



ORL PCA PPFe t e tk=20 3.5 32.74 3 2.52k=40 2.75 30.68 2.75 2.49k=60 3.25 30.93 3.25 2.48k=80 3.25 32.96 3 2.52k=100 3 32.03 3 2.49YALE PCA PPFe t e tk=20 29.70 5.93 25.45 1.15k=40 27.88 6.02 26.06 1.16k=60 27.27 6.10 25.45 1.14k=80 27.27 6.22 25.45 1.16k=100 26.06 6.33 25.45 1.15AR PCA PPFe t e tk=20 8.34 82.02 6.35 5.71k=40 6.75 82.02 7.34 5.71k=60 6.15 83.12 7.14 5.71k=80 6.15 83.67 6.75 5.70k=100 5.75 83.64 6.35 5.71Table 2: Error rates e (%) and timings t (in se
) ofboth methods for various values of k, on all the fa
edatabases.

ompetes with PCA in terms of error rate. Further-more, the PPF method is mu
h more eÆ
ient a
hievingsigni�
ant speedups over its PCA 
ounterpart. On theYALE dataset, the results are quite similar with PPFoutperforming PCA not only in timings but in error rateas well. Finally, on the AR dataset, the results are sim-ilar to ORL, with the PPF methods being quite 
loseto PCA in terms of error rate and being mu
h moreeÆ
ient in terms of 
omputational 
ost.6 Con
lusionWe have des
ribed an alternative framework for imple-menting PCA without eigenvalue 
al
ulations. The pro-posed framework relies on polynomial �ltering, in or-der to render the same e�e
t as PCA, for dimension-ality redu
tion. We illustrated the appli
ability of theproposed te
hnique in the eigenfa
es method for fa
ere
ognition. The numeri
al experiments indi
ated thatthe new s
heme has very 
lose performan
e to the PCAmethod, while being mu
h more eÆ
ient in terms of
omputational 
ost and storage.
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