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Abstract— This work addresses the coding of 3-dimensional
scenes, as captured by distributed vision sensors with catadioptric
cameras. Spherical images allow for avoiding distortion due to
the common euclidian assumption in the representation of the
plenoptic function. We consider here low complexity encoding
of the sensor outputs, in a framework where the cameras could
be placed anywhere in the scene, and where the sensors do not
communicate to each other. Since multiple spherical images of the
same scene most probably provide a redundant representation,
we propose to have different compression ratios for different
cameras, in order to reduce the overhead of information. The
decoder performs a joint decoding of the multiples images, by
motion estimation, and joint refinement by consistent inverse
quantization. It is finally shown that, even in the absence of any
information about the scene or the position of the cameras, the
proposed scheme offers improved performance with respect to
an independent encoding of the spherical images, especially at
low coding rate.

I. INTRODUCTION

FFICIENT representation and coding of 3-D scenes has

recently gained a lot of attention from the research
community, fostered by the development of emerging applica-
tions in exploration, movie production, virtual reality or even
surveillance. While most of the work in this area is focusing
on image-based rendering methods, this paper proposes to
address the representation of the plenoptic function directly in
the spherical domain, under the assumption of perfect vision
sensors. This choice presents the main advantage of avoiding
the potential discrepancies due to Euclidean approximations
in image-based rendering.

In this paper, we consider a framework where catadioptric
cameras are distributed arbitrarily in a 3-dimensional scene.
The spherical images captured by the multiple cameras are
likely correlated, especially the representation of objects that
are quite far from the cameras, relatively to the inter-camera
distance. In most practical deployment of such systems, sen-
sors often are constrained to implement low complexity tasks,
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due to stringent power constraints. In particular, we focus here
on a system where cameras do not communicate together, but
only with the central decoder. An efficient representation of the
complete scene therefore relies on low complexity distributed
coding, but joint decoding of the images sent by the multiple
cameras: this approach is well known as the distributed source
coding (DSC) paradigm [4].

The most closely related work is certainly the DSC coding
scheme proposed in [5], which however relies on the a
priori knowledge about objects position and their distance to
the cameras, in a euclidian framework. The traditional DSC
paradigm is generally based on Slepian-Wolf coding, with
coset codes for example [1], and allows to achieve good coding
performance when the correlation between sources can be
accurately modelled. In our framework, we however consider
that no a priori information is available about the scene, or
the sensor positions. In this context, we have work without
source correlation model, and we therefore suggest to use a
scheme which is based on successive quantization refinement.
Each cameras provides a multi-resolution representation of the
scene, possibly with a different fidelity. The multi-resolution
representation is implemented with a spherical Laplacian
Pyramid (sLP), whose main advantage resides in its isotropic
characteristics. A central decoder finally tries to identify the
redundant information between multiple images by motion
estimation, and reconstruct the scene by joint refinement with
consistent inverse quantization.

The rest of this paper is organized as follows. Section Il
presents the particular framework considered in this paper.
Section Il presents the distributed encoding strategy, and
Section 1V describes the joint decoding of spherical images.
Simulation results are presented in Section V, and Section
VI concludes in proposing directions for improvements of the
coding scheme.

Il. DISTRIBUTED CODING OF SPHERICAL IMAGES

We consider a framework where catadioptric cameras are
distributed in a 3-dimensional scene, without any restriction
about their particular locations. We further assume that the
system does not benefit from any a priori information about
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Fig. 1. Distributed coding of spherical images.

the scene itself. The vision sensors provide spherical images
of the scene, which are likely to be highly correlated in most
practical scenarios. The cameras do not communicate together
due to strict constraints in power consumption, but only
exchange information with a central decoder. The framework
is represented in Figure 1 in the case of two sensors, S; and
So. These sensors capture spherical images X; of the scene X,
whose compressed versions Y; are sent to the central decoder.

Under the previous assumptions, the problem consists in
providing an accurate representation of the scene X, recon-
structed from the decoder outputs X; and X5. This is a typical
distributed coding scenario, that is however further constrained
by the absence of information about the scene, and the sensor
positions. The sensors independently encode the spherical
images, that are jointly decoded by the central receiver, which
tries to efficiently identify the correlation between the different
images.

We concentrate now on the particular problem where the
bandwidths between the sensors and the central decoder are
also constrained, with unbalanced rate allocation. In this case,
the compression ratio varies between sensors, and the lowest
rate images benefit from the information in other images to
refine their quality at the central decoder. In other words,
one camera, e.g., S, serves as the main camera, which
sends a fine representation Y; of the scene to the decoder;
all other cameras (S,;n > 1) send a coarser granularity
version of the scene, which will be improved at the decoder
by joint decoding with other images, in particular Y;. Note
that the extension of the problem to symmetrical scenarios
where the rate constraints are equivalent for each sensor is
straightforward. Even if we focus here on the unbalanced rate
constraint case, the coding scheme proposed in this paper is
flexible enough to be adapted to the symmetrical case, where
the problem interestingly becomes quite similar to a balanced
multiple description coding paradigm.

I1l. DISTRIBUTED ENCODERS

The multiple spherical views acquired by recent catadioptric
cameras are generally characterized by an enormous amount
of information. Among methods adapted to handle this type
of data, we can mention the spherical wavelet [2], which is
a multi-resolution approach to handle the images directly on
the sphere, and the Laplacian Pyramid [3] scheme that can
be extended to the spherical case. The spherical wavelet is
well suited to analyze the spherical data, but due to the lower
redundancy of the spherical Laplacian pyramid, we use the
latter for compression.

The spherical Laplacian pyramid (sLP) decomposition per-
forms as follows. A spherical image S is first convolved
with a lowpass filter and downsampled to provide a low
resolution representation of the original image, S!. Subtracting
the upsampled and interpolated version of S! from the initial
image S results in the detail sphere S}. This process can be
further iterated to produce the sub-spheres S2 and S2 from
S!, and eventually leads to a multiresolution representation
of the spherical image. The multiresolution representation is
particularly interesting in the unbalanced rate constraints sce-
nario, and quite beneficial for a hierarchical motion estimation
at the decoder, as explained later. It is worth pointing out that
this representation is redundant; in fact, the redundancy can
be simply evaluated as p = %N, where N represents the
original number of pixels, and L is the number of levels in
the decomposition.

Compression of the spherical images is then achieved by
scalar quantization of the coefficients in the spherical Lapla-
cian pyramid, and finally entropy coding. Note that, even if
the sLP is a redundant transform, simple scalar quantization
provides sufficient performance in our framework that mostly
targets low bit rate coding of images. The bit budget attributed
to a sensor is allocated to the different sub-spheres of the
sLP, proportionally to the variance of the coefficients. The bit
budget allocated to each sensor is given by the rate constraints
of the system, or imposed by the central decoder that tries
to efficiently reduce the overall coding rate of the multi-
camera system. In the two camera setup considered here, the
compressed image Y; and Y5 are respectively allocated a bit
budget of R; and R, bits, with Ry < R;. The coefficients
of each sub-sphere of both spherical Laplacian pyramids are
quantized by an entropy constrained quantizer, driven by the
coefficient energy distribution.

1V. JOINT DECODING WITH REFINED INVERSE
QUANTIZATION

When multiple compressed views are present at the decoder,
their correlation can be exploited to enhance the quality of
the representation of the 3-dimensional scene. In particular,
the coarsely quantized image Y> can be refined by using
information present in the image with higher coding rate, Y7.
In order to identify the correlation between spherical images,



we propose to use a motion estimation procedure at decoder
[6]. The motion estimation tries to identify similar objects
present in different images, and allows to create a motion
compensated image Y> from the high resolution image Vi,
which provides an approximation of the low resolution image
Y.

In our scheme, motion vector estimation is performed on
approximation sub-spheres, in order to refine the detail sub-
spheres in the sLP. It is achieved by initially dividing the
approximation sub-sphere of the second view % into macro-
blocks. Macro-blocks on the second view are then matched
with the best approximating macro-blocks in the first view,
in a mean square error sense. The displacement between
corresponding macro-blocks is considered as a motion vector.
In order to get a finer representation of the detailed sub-
sphere ygg, we use the previously obtained motion vector to
build a motion compensated sub-sphere using the first view,
as ol = MC(W1}). The compressed image sub-sphere Y7,
and its motion compensated approximation yﬁ are merged
together to refine the decoding of the low coding rate sub-
sphere, according to the merging procedure explained here-
below. The refined sub-sphere is used with the approximation
sub-sphere )»Z to reconstruct the higher level approximation
sub-sphere yzaLfl). In parallel, the corresponding sub-sphere
in the first view is also generated as ); (¥~ This procedure
is further iterated on the successive levels of the sLP, until
the second view X, is fully reconstructed. The first view X,
is decoded by the simple inversion of the Laplacian pyramid
decomposition.

The refinement stage that merges information from motion-
compensated and low coding rate sub-spheres finally performs
as follows. Assume that z; and z- are quantized coefficients
of similar views of the same object, according to the mo-
tion estimation step. They however belong to two different
spherical images, and their values after quantization are thus
likely to be different. If they however represent the same
coefficient =, we can consider in a first approximation that
r1 =~ xy = x. Since this coefficient x has been quantized
with two different quantizers having different step sizes A;
and A, the dequantized values at the decoder are:

T

Yy = round( i} )Al + M1
Ay

yo = round(Z—F2 YAy + o,
Ag

where pq and uo represent the mean values of the two sub-
spheres. Since z — 0.5 < round(z) < z + 0.5, we have:

z—0.5A; <y <24+ 054
z — 0.5A9 < Y2 < T + 0.5A27

that combine in:

—0.5(A1 + Az) <y1 —y2 < 0.5(A1 + Ag). 1
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Fig. 3. The two real spherical images acquired in the laboratory.

It means that dequantized coefficients v, and y-, taken from
first and second view respectively, which represent the same
coefficient x, should satisfy the inequality given in Eq. (1).
Therefore the refinement stage simply evaluates the difference
between dequantized versions of corresponding coefficients,
and refines the value of coarsely quantized coefficient if the
inequality given in Eq. (1) is satisified. In this case, both y;
and y- are indeed considered to represent the same coefficient.
When Eq. (1) is not verified, the value of the quantized
coefficients is simply left unchanged. Typically, the inequality
Eqg. (1) does not hold for coefficients that represent different
parts of the same object, or when the motion vector estimation
fail to identify object translation between two views. The joint
decoding procedure with refinement is illustrated in Figure 2.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

The performance of the distributed coding algorithm with
joint refinement at decoder is now evaluated in the symmetrical
two-sensor scenario. The described distributed source coding
scheme has been applied to two spherical images (Fig. 3)



Fig. 4. Stripe-based motion estimation on spherical images.

acquired in the laboratory, which represent an object on the
table. The spherical Laplacian Pyramid has been used to
decorrelate the views with three level of decomposition, using
Haar filters adapted to the spherical framework. Furthermore,
a stripe based motion estimation strategy is adopted in order
to reduce the complexity of motion estimation stage: macro-
blocks are searched in a portion of a stripe rather than with
a full search approach, as illustrated in Figure 4. Also, the
quantization of the approximation sub-spheres in both images
is identical, in order to ensure that the motion estimation
at the first approximation level is accurate. We use adaptive
arithmetic coder as the entropy coding stage.

We compare the performance of joint decoding with refine-
ment, with independent decoding of both spherical images.
Figure 5 represents the evolution of the quality (PSNR) as
a function of the coding rate, for both images. Figure 5-(a)
reports the performance of the encoding of the first view,
which is the high coding rate image in our scenario. Figure 5-
(b) compares the performance of the proposed DSC scheme,
and the independent decoding approach for the second image.
We can notice that a gain of nearly 4 dB is obtained at low rate
by the proposed DSC approach over the independent decoding
scheme. The results show that the gain is substantial for low to
medium bit rate, whereas at high rate, the gap decreases; this
can be explained by the fact that at high rate, any gain due to
quantization refinement can be compromised by an unprecise
motion estimation, and by the small differences between the
same region viewed from different points of view in case of
non uniform light conditions. Further improvement could be
obtained if the encoded part at low bit rate is exploited by the
joint decoding. This can be obtained by using two different
quantizers (mid-rise and mid-tread), in order to combine the
two different quantizers results into better representation of
some values. Improved performance can also be obtained by
incorporating the quantizer in the Laplacian pyramid struc-
ture, in order to limit the propagation of quantization error
throughout the various levels of the pyramid, that becomes
non-negligible when coding rate increases.
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Fig. 5. Rate distortion curve of: (a) the first view; (b) the second view with
the proposed DSC scheme and the no joint decoding approach.

V1. CONCLUSIONS AND FUTURE WORKS

We proposed a scheme for distributed coding of spher-
ical images, that relies on motion compensation for joint
refinement at decoder. The rate distortion performance in a
framework where encoders with a priori unknown position
do not communicate together, exhibits an improvement over
independent decoding of the spherical images, especially at
low rate. We plan to improve the consistent reconstruction step
by generalization to more efficient filters. Finally, the addition
of a Slepian-Wolf coding stage adapted to the particular
framework considered in that paper, is expected to yet improve
the performance towards higher coding rate.
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