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Abstract

We present a method for segmenting the thalamus
and its subnuclei from Diffusion Tensor Magnetic
Resonance Images(DT-MRI) using coupled, region
based, level sets in 3D. Fach surface, formed from
the zero’th level set of the level set function, is as-
sociated with the most representative tensor con-
tained within the surface. All neighboring vozels
are then assigned to a region by finding the surface
which representative tensor is most similar to the
actual tensor. From these similarity measures a
region based force is defined and the surfaces are
dependent on each other through a coupling force

[1].

1 Introduction

Diffusion Tensor Magnetic Resonance Imaging(DT-
MRI) is a new modality that permits non-invasive
quantification of the water diffusion in living tis-
sues. The Diffusion Tensor(DT) provides informa-
tion about the intensity of the water diffusion in
any direction at a certain point. The water diffu-
sion in the brain is highly affected by its cellular
organization. In particular axonal cell membrane
and myelin sheath are the main components re-
stricting water mobility [2]. Hence the measured
DT becomes highly anisotropic and oriented in ar-
eas of compact nerve fiber organization, providing
an indirect way of fiber tract identification. To-
day, DT-MRI is mostly used for determining brain
connectivity using fiber tractography algorithms
[3, 4, 5, 6].

Only recently, DT-MRI have been used for seg-
mentation purposes. The first approaches began
by performing a fiber tractography and then used
the result for segmentations. The most recent ap-

proaches have used Partial Differential Equations(PDE),

variational methods and level sets [7, 8, 9]. In
Jonasson et al. [7] we presented a geometric flow
implemented with level set methods for fiber tract
segmentation by measuring the diffusive similar-
ity between voxels. Since then several papers con-
taining very nice theoretical work using PDE’s and
level set methods for segmentation of DT-MRI have
been published. Wang et al. [8] was the first to
define regions from the DT and used region based
forces for the front propagation. The region-based
force is defined from a distance metric between ten-
sors not too different from the concept of similarity
measures we presented in Jonasson et al. [7, 10].

First we will briefly present the concept of dif-
fusion tensors and basic theories on region based
front propagation with level set implementation.
We will then show how to use similarity measures
for diffusion tensors to propagate a surface and
how this can be used for white and gray matter
segmentation.

2 Background

2.1 Diffusion tensors

DT-MRI permits in vivo measures of the self-diffusion

of water in living tissues. The tissue structure will
affect the Brownian motion of the water molecules
which will lead to an anisotropic diffusion that is
measured by diffusion weighted MRI along at least
six independent axes. A normalizing image with-
out diffusion weighting is also required. As a sec-
ond order approximation, the measured anisotropic
motion can be modeled by an anisotropic Gaussian
that can be parameterized by the diffusion tensor
in each voxel to create a 3D field of diffusion ten-
Sors.



The diffusion in a certain direction, d(&) is given
by the double contraction of the DT with the vec-
tor , &, d(#) = D& . A way of directly comparing
the diffusion between two tensors is to use a sim-
ilarity measure, S, that compares the diffusion in
the direction of all unit vectors on a sphere, Z,
using the double contraction:
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This gives us a percentage of the common dif-
fusion for the two tensors.
To find the most representative tensor data set,

Jones et al. [11] uses a distance metric between two
tensors, (A, B):

d(A,B):=\(A—B):(A-B). (2

A similar distance metric between a pair of im-
ages, ¢ and j is then defined as:

dij = > d(D;, D). (3)
all voxels

The root means square distance between a ten-
sor in a voxel in the ¢’th image and the correspond-
ing voxel in the other data set becomes:
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(4)
The most representative data set is then the
data set with the lowest value of ¢;.
We will use this approach later to define the
most representative tensor of the set of tensors con-
tained within our level set.

2.2 Geodesic Active Regions

The Geodesic Active Region model was first in-
troduced by Paragios et al. [1]. The approach
is based on the theory of geometrical flows and
curvature- or curve shortening flows. The model
consists on segmenting an image into different re-
gions by calculating the probability of every inten-
sity value in the image of being in each region. The
key hypothesis that is made to perform the seg-
mentation is that the image is composed of homo-
geneous regions. Hence, the intensity properties
of a given region can be determined using a Gaus-
sian distribution. The segmentation is then done
by evolving contours that are implemented using
level set methods. The theory is well developed
for the 2D case and the main part of the theories

remains valid and works well for segmentation of
3D objects.

A general flow for a 3D closed surface can be
described as:

as
o = F+rN, (5)

where F' is an image based speed function, x is
an intrinsic speed dependent on the curvature of
the surface, S is the surface, N is the surface and
t is the time.

To solve this time dependent PDE we use the
level set method, introduced by Osher et al. [12],
where the evolving surface is considered as a con-
stant level set of a function of a higher dimension.
By doing this we obtain a numerically stable algo-
rithm that easily handles topology changes of the
evolving surface. In our case the function of higher
dimension is the signed distance function, ¢(¢), of
the evolving surface. It has been shown by Osher
et al. [12] that the evolution of the zero level set
coincide with the evolution of S(¢). Thus, the evo-
lution of the signed distance function is described
by:

00
o = (0 [V6]. (6)

3 Method description

We have developed a method for segmentation of
DT-MRI that works for white matter as well as
gray matter structures. We have based our work
on the concept of geodesic active regions and level
sets, as presented in the previous section. The re-
gions are set by using tensor similarity measures
that can be seen as a probability of a voxel be-
longing to a certain region. First the tensor that
best represents the tensors contained within each
level set is computed according to the method pre-
sented by Jones et al. [11]. These representative
tensors are then associated to each evolving sur-
face and every voxel in the vicinity of the evolving
surfaces are then associated to a region. This is
done by calculating the similarity between the ten-
sor in that voxel and the representative tensors of
the different regions. The similarity measure that
we use for comparing the tensors is the integrated
similarity presented in (1).

The similarity measure will give us a percent-
age of the common diffusion each tensor has with
the different regions. Even though it is not exactly
a probability measure it can be considered as one,
the closer the value is to one the higher the proba-
bility that the tensor belong to that region. With



that definition a region based force can be defined
according the theories of Paragios et al. [1]:

o IS(D, Diyp.i)
Fi=—log <ma$(IS(D7Dtyp,j¢i)) 0

where IS is the integral similarity described in
(1). Dy¢yp is the most representative tensor asso-
ciated with the level set, ¢; and is computed ac-
cording to (4). It is continuously recalculated as
the surface evolves and therefore contains a new
set of tensors. F; will be growing the surface, S;,
in the direction where the diffusion in the voxels
are the most similar to the representative tensor,
Dyyp,i of the tensor set lying inside S; than the
typical tensors of the other surfaces, Sj;. If the
similarity with Dyyp ; is smaller than Dyyp 21, the
voxel is more likely to belong to another region the
surface will shrink.

Each one of our surfaces, i, are now evolving
according to:

0S;

ot

where F; is the regions based force (7), ; is

the mean curvature and H; is the coupling force
as described in Paragios et al. [1].

= (F1+I€1+H1)NZ (8)

4 Result

The thalamus and its nuclei has been segmented on
three different patients. The initial surfaces for the
thalamus segmentation has been chosen by looking
at colormaps, as in Fig. 1. Each surface represent
a significant structure surrounding the thalamus.
The results for one of the patients can be seen in
Fig. 2. The segmentation if the thalamus was
then used as a mask for the segmentation of the
thalamic nuclei. The resulting surfaces are shown
in 3D and as 2D contours on fractional anisotropy
maps, see Fig. 3. The colors of the surfaces are de-
termined from the direction of principal diffusion
of the most representative tensor inside the sur-
face. The nuclei in the 2D cut have been identified
into four different parts, the Anterior group, the
Lateral group, the Posterior group and the Medial
group. The nuclei are marked with the correspond-
ing letters, A, L, P, M.
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Figure 1: Placing the initial surfaces for the seg-
mentation of the thalamus. Image above shows the
color map of a horizontal section of a tensor field.
The image shows how the surfaces have been ini-
tially placed, one in the surrounding fibers, one in
the CSF and the third one in the thalamus itself.

Figure 2: The segmentation of the thalamus dis-
played to the left on the whole brain and to the
right a zoom of the thalamus is made.



Figure 3: Segmentation of the thalamic subnuclei.
The colors of the surfaces are determined from the
direction of principal diffusion of the most repre-

sentative tensor inside the surface.

Right image

shows 2D cut of segmentation, the nuclei have been
identified, see text.
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