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ABSTRACT Section 3 describes the multiresolution analysis for spherical im-

ages, that is used in the motion estimation algorithm. Section 4

This paper presents a novel local motion estimation algorithm fopresents the local motion estimation algorithm for omnidirectional
omnidirectional images. The algorithm captures correlation bel’mages and Section 5 shows experimental results.

tween two spherical images of a scene, taken from arbitrary view-
points, with the objective to reduce the encoding rate of these im-
ages. It first performs a multiresolution decomposition of the spher- 2. GEOMETRY OF OMNIDIRECTIONAL IMAGES
ical images, in order to improve the consistency of the motion es2.1 Omnidirectional Imaging System

timation, with a limited computational complexity. Then, it de-
termines pairs of similar solid angles and matches blocks of the . . ’ ; .
two omnidirectional images, directly in the spherical domain. This ypical parabolic catadioptric sensor. It is realized as a parabolic

approach allows a simple motion estimation implementation, tha"tT:'rrohriwr;l'Ch Irs Plat(i:rfd Ilnnfront (éfaicf;m:jer?] ?:?pr(r)x'?iﬂng aﬂ ortho-
avoids potential discrepancies induced while unfolding omnidirecJr@PNICa’ly projecting lens as depicted on Figure -. n such a case,

tional images to implement a classical motion estimation on imagedn€ @Y of light incident with the focus of the parabola is reflected
The proposed algorithm is shown to provide a quite efficient imag 0 a ray of light parallel to the parabola’s axis. This construction is
prediction, and the prediction error is almost exclusively compose&

of high frequency noise.

1. |NTRODUCT|ON @ parabolic mirror

Efficient representation and coding of 3-D scenes has recently
gained a lot of attention from the research community, fostered
by the development of emerging applications in exploration, movie
production, virtual reality or even surveillance. While most of the
work in this area is focusing on image-based rendering methods,
this paper proposes to address the representation of the plenoptic
function directly in the spherical domain, under the assumption of
perfect vision sensors. This choice presents the main advantage of
avoiding the potential discrepancies due to Euclidean approxima-
tions in image-based rendering.

In the proposed framework, several omnidirectional cameras
capture a static 3-D scene, from arbitrary viewpoints. Each of these
cameras outputs an omnidirectional image that can be mapped on

a sphere, through inverse stereographic projection [1, 2]. Howeve igure 1: Omnidirectional system with parabolic mirror: the par-

the output images from multiple cameras are obviously correlated, i’ mirror is placed at parabolic foci#;, while the other focus
and a rate efficient representation of the overall 3-D scene first rez. '

quires the removal of redundancy between the different views. This 21s atinfinity [1].

paper proposes a local motion estimation algorithm, that captures

the correlation between omnidirectional images taken from arbi- ) S

trary viewpoints. The choice of local motion estimation, as oppose®-2 Mapping of the Omnidirectional Image on the Sphere

to global rotation estimation used in computer vision [3,4], is drivenThe entire information seen by the observer can be described with
by the perspective of an efficient coding of the plenoptic function.the plenoptic function [6] which gives the intensity distribution of
The proposed algorithm is built on a multiresolution representatiofhe pencil of light rays incident to the observer. Obviously, the most
of spherical images, in order to provide a consistent motion fieldpatyral representation of this distribution is in the spherical coordi-
even with images captured at very different viewpoints. The mulnate system. Working in the natural coordinates of the observer has
tiresolution coarse-to-fine motion estimation method used for clasmany advantages. It allows for directly estimating the position or
sical images [5] has been adapted to the spherical framework, in Ofiirection of objects in the sensor’s environment. Many Computer
der to report similarities between solid angles, instead of commoRyjsjon algorithms also take advantage of geometric invariance such
blocks of pixels. The multiresolution motion estimation is shownag for example, the relative orientation of the sensor and objects in
to provide a very efficient prediction of spherical images, and thene scene. Thus, our goal is to recover the spherical coordinates,
residual error is kept small and concentrated in high frequencies. g ¢ [0, 7] and¢ € [0,2m), of incoming rays of light at the parabola
The paper is organized as follows. Section 2 overviews th@ocus.%;, which locates our ideal observer.
framework used in this work, and the omnidirectional camera setup. |t was shown in [1] that there is an equivalence between any
central catadioptric projection and a composition of two conformal
This work has been supported by the Swiss National Science Foundamappings on the sphere. In order to see how an omnidirectional
tion, under grants PP-002-68737 and 200021-101880/1. image is mapped on the sphere, we first consider a cross-section

he system for obtaining omnidirectional images, in our case, is a

quivalent to a purely rotating perspective camera.

lens

image plane




p.g€ A ={neN:n<2B;} and for some range of bandwidth
B={Bj € 2N, j € Z}. These grids allow us to perfectly sample any

band-limited functionF € L?(S%) of bandwidthBj, i.e., such that

P f(m,n) = 0 for all m> Bj. Moreover, this class of sampling grids
is associated to a Fast Spherical Fourier Transform [9].

3.2 Spherical Laplacian Pyramid

, The first step in our algorithm consists in low pass filtering the data,
| an operation we perform in the Fourier domain for speeding up the
7, i, computations. We use an axisymmetric low-pass filter defined by

its Fourier coefficients :
d ‘% \ F‘O’o(m) _ 70'02m2. (2)

Suppose the original datBy is bandlimited, i.e, fo(m,n) = 0,

. . . e . ¥m > B, and sampled offy. The bandwidth parametex, is cho-
Figure 2: Cross-section of mapping the omnidirectional image oRye, 5o that the filter is numerically close to a perfect half-band filter
the sphere [1] Hg, (M) = 0, Ym > By/2. The low pass filtered data is then down-
sampled on the nested sub-g#g, which gives the low-pass chan-
nel of our pyramidF;. The high-pass channel of the pyramid is
computed as usual, that is by first upsamplifagon the finer grid

%, low-pass filtering it withHg, and taking the difference witfo.
Coarser resolutions are computed by iterating this algorithm on the
low-pass channdh and scaling the filter bandwidth accordingly,

of the paraboloid. This is shown on Figure 2 . All points on the
parabola are equidistant to the focéd and the directrixd. Let

| pass through?7; and be perpendicular to the parabolic axis. If a
circle has centef#; and radius equal to twice the focal length of the
paraboloid, then the circle and parabola intersect twice thé bnd . |
the directrix is tangent to the circle. The North Phlefthe circleis "€+ 91 = 2 0p.

the point diametrically opposite to the intersection of the circle andmer:iafigtr)]uI?)u?ear?c}tgt(liqetrh?;uvl\ﬁerel;(s;lal?tict)rr]lercle_laref:én(ta:t?c?nOgolmglgé
the directrix. PoinP is projected on the circle from its center, which ' Y P

givesM,. This is equivalent to a projective representation, Whereused. For example one could compute successive low resolution

the projective space (set of rays) is represented as a circle here. Oﬁ%?ﬁ’: [ig]proxmatlons by hard thresholding in a spherical wavelet

easily sees thdil, is the stereographic projection of the polmt :

to the linel from the North poleN, wherell is the intersection of

the ray.%#,P and the circle. We can thus conclude that the parabolic 4. MULTIRESOLLK[IC?SIR'\IA%TIJAON ESTIMATION

projection of a poinP yields pointl, which is collinear withlly

andN. Extending this reasoning to three dimensions, the projectiomue to the distortion introduced in the unwrapped images, we

by a parabolic mirror is equivalent to projection on the sphBrg ( choose to implement the local motion estimation algorithm directly

followed by stereographic projectiofiig). We can thus recover in the spherical domain. The algorithm is based on a L-level mul-

the spherical coordinates of incoming light rays through a simpleiresolution approach, that pairs solid angles from two spherical im-

inverse stereographic projection of the sensor images. ages (see Figure 3). Assume that the motion estimation aims at
Similar mapping schemes can be derived for different systemompting a predictio, of the spherical imag&, from Fy, that

constructions (with hyperbolic or elliptic mirror), by employing the i 5 image of the same scene, but captured from a different (arbi-

inverse stereographic projection from a point specified by the chogary) viewpoint. Both spherical images are first filtered and down-

sen construction, as explained in [1]. sampled, to generate a multiresolution representation of the scene,
° as described before. The multiresolution approach clearly limits the
3. DYADIC MULTIRESOLUTIONON S complexity of the motion estimation, and improves the consistency

of the motion field.

. . . . ) . ) The local motion estimation performs as follows. The low-
In this section, we introduce a dyadic multiresolution representatiolst resolution spherical imag® _; is divided into uniform solid
of omnidirectional images. In the following, we will model these angles, of sizd\/lé'e-*l % Néd%‘l. The predicted bIockng in

s_ignals by elements of t_he Hilbert space of square-integrable fun%._,l are then paired with the best matching blocks with the same
tions on the two-dimensional spher&(S, dy), wheredu(6.¢) = g-obi the reference imagB__1, within a search window of
dcosfd¢ is the rotation invariant Lebesgue measure on the sphere, |~ 1 e dthe | . f thel A full hi
These functions are characterized by their Fourier coefficients%s < S > around the location of thg ;. A full search for

3.1 Sampling and Filtering

f(m,n), defined through spherical harmonics expansion : each blockg, ; determines the best predictors in a MSE sense,
A f,'_fl, and the corresponding motion vectors. Note that, even if the
f(mn) = ./s? du(6.9)Ynn(6,9)F(6.9), blocksg] , are all distinct, the blockg/ ; may be overlapping.

The implemented block-matching algorithm also takes into account
whereY;;,, is the complex conjugate of the spherical harmonic ofthe periodicity in the azimuthal direction.
order (m,n). Multiresolution is an efficient tool that allows to de- The motion estimation is then iteratively refined at successive
compose a signal at progressive resolutions and perform coarse tesolution levels. The blocks at resolutibnb;, are divided into
fine computations on the data. The two most successful embodjour sub-blocks of siz&' 151 x N'~154-1 at the next resolution
ments of this paradigm are the various wavelet decompositions [7 0 ¢

i -1 _ 5l -1 _ gl i
and the Laplacian Pyramid (LP) [8]. In this section, we will adaptlleve'I —1, with 265" = 85 and29; = 0, due to the change in
the latter scheme to omnidirectional images. the resolution level. The motion vectors from the lower resolution

Our omnidirectional images are mapped to spherical coordilevell serve as initial estimations of the motion vectors of the four

nates according to Section 2.2 and re-sampled on an equi-angufab-blocks corresponding to the blobk These estimations are
grid: then refined based on the spherical images at resolltidh with

a full search in a window of siz€ =15 x 81551 around the
G ={(6jp,9jq) €S : Ojp = <2’Z+le>"7 9=} (1) location specified by the motion vector from the lower resolution




MOTION VECTORS inverted to highlight the distribution of the residual error (a white

T pixel corresponds to no error). The number of decomposition levels
isL =5. The size of the blocks has been set4to4. The size of the
level 0 Motion search window can vary from one resolution level to another. We
' Estimation ' have chosen the window size for the lowest level t3Be 32 and
for all higher levels8 x 8. This way, the proposed algorithm can

capture big motions with low search complexity. It can be seen that
the motion estimation is quite efficient, since the predicted image

provides a very good approximation @f. Also, the prediction er-

ror is almost exclusively located along high frequency components,

as expected from the high-pass characteristics of motion estimation.
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Motion
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Figure 3: Algorithm for local motion estimation of spherical im-
ages.

that has been up-sampled accordingly. The same process is applied gigre 4: Spherical image displayed on the sphere, level I=1
iteratively up to the finest resolution, and eventually outputs the field

of motion vectors. These motion vectors, along with the spherical
imagefo, are used to form the prEdicti(ﬁb of Gg. The prediction
error is finally denotedy = Gg — Gp.

Algorithm 1 Multiresolution local motion estimation
| =L—1. MV =[0,0],¥i, 5§ = 57, 8 = Z&, Bo=full resolu-
tion
repeat
| _ol50 5l _ ol 50.
Oy =2'0g. 8y =204,
Divide Gj into | uniform blocks of sizeM' 8}y x N'8};;
i=0;
repeat .
(pi,Gi) < position ofg;
MV < up-sampleMV}', ;;
Q — {(p,q)} such that
. | . |
pe[p+MVi(1)— % 1 b+ MV (1) + 2% and
; SFY ; g9,
g€ g +MV(2) - > + 1,6+ MV (2) + =]} g
fl = argminpMSE(g;, f); - FJ‘
(s,tj) < position of f{;
MV [pi +S,Gi +];
i—i+1;
until i > 1
| —1— 1;
until | <0

Figure 6: Second original spherical ima@,.

5. EXPERIMENTAL RESULTS

This section presents the results of the local motion estimation al- Figure 9 represents the motion field that corresponds t8the
gorithm proposed above. Figure 4 shows one spherical image at th8ye| of resolution. It can be seen that the motion field is mostly
second finest resolution level. Figures 5 and 6 show the originatonsistent with the spherical image information. For example, mo-
spherical images of a static scene captured from two different viewtjion vectors are very small in uniform and static areas like the table
points. These images represent real spherical images, but they gt the right-hand side of the predicted image). As expected from a
shown here as planar images in {ife¢) plane, to provide visibil-  |ocal motion estimation algorithm driven by MSE criteria, the mo-
ity of all image features. Figure 7 represents the predicBgrof tion vectors do not however necessarily follow semantic objects, but
the second frame, with the local motion estimation algorithm, andather pair areas with similar luminance information. This behavior
Figure 8 shows the corresponding prediction eEgrthat has been can be encountered for large motions where the change in lightning



Figure 7: Motion predicted imagévo.
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Figure 10: Relative energy of the prediction error, for different
block and search window sizels £ 5).

important building block in a rate-distortion efficient encoder for

Figure 8: Motion prediction erroEgp.

(1]

conditions can induce discrepancies. On the other side, the obtaine{p]
motion field precisely depicts smaller movements.

(3]

(5]

(6]

Figure 9: Motion field at resolution level 3.

(7]

Figure 10 presents the evolution of the residual energy rela-
tive to the original image energy, as a function of the size of the
solid angle, and the size of the search window. It can be seen thatSl
a larger search window at the coarsest resolution level generally
improves the quality of the motion estimation. Moreover, smaller
block size provides a better prediction, since details can be better
approximated. In a coding perspective however, a trade-off needq9]
to be found between the accuracy of the motion estimation, and the
coding cost, which generally increases with the number of motion
vectors.

(10]
6. CONCLUSIONS

In this paper a local motion estimation algorithm has been pre-
sented, that captures the correlation between omnidirectional im-
ages taken from arbitrary viewpoints. A multiresolution approach
has been proposed to improve the motion filed accuracy, while
limiting the computational complexity of the motion estimation
scheme. The local motion estimation algorithm has been shown
to be quite efficient since the residual error is kept very small and
mostly located around edges or high frequency components in the
predicted image. The proposed scheme can certainly represent an

distributed omnidirectional images.
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