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Abstract— This paper addresses the problem of optimizing the
playback delay experienced by a population of heterogeneous
clients, in video streaming applications. We consider a typical
broadcast scenario, where clients subscribe to different portions
of a scalable video stream, depending on their capabilities. Clients
share common network resources, whose limited rate directly
drives the playback delays imposed to the different groups of
receivers. We derive an optimization problem, that targets a fair
distribution of the playback delays among heterogeneous clients,
as well as minimal buffer usage. A server-based scheduling
strategy is then proposed, that takes into account the properties
of the targeted clients, the channel status, and the structure
of the media encoding. A polynomial-time algorithm providing
close to optimal results is introduced and it is shown to offer
significantly reduced playback delays per client population, as
compared to traditional scheduling strategies. In the same time,
PSNR performance is not affected, which altogether leads to an
overall improvement of the quality of service.1

I. I NTRODUCTION

Internet video streaming applications usually make use
of client buffering capabilities to smooth the discrepancies
between the video source rate, and the available channel
bandwidth. Buffering then allows for a smooth playback of
the stream, but it generally induces a playback delay at the
client, and thus impacts the general quality of service.

The particular problem we consider in this paper consists
in a broadcast scenario where scalable media is streamed
to a variety of heterogeneous clients, such as smart phones,
notebooks or workstations. Due to their different capabilities,
these clients subscribe to different resolutions of the media
stream. They however share a common broadcast channel,
whose limited rate directly affects the resolution of the stream
that can be sent, and the playback delay induced by buffering
at the client. The order in which data from the different
hierarchical layers are sent by the server directly influences
the distribution of the playback delays among the different
receiver groups. The server may decide to first send the
lower resolution data, or base layer, and thus to favor the
least powerful clients, whose playback delay is then minimal.
Such a policy however highly penalizes the other groups of
clients, that receive an important share of base layer before

1This work has been partly supported by the Swiss National Science
Foundation.

the enhancement layers, resulting generally in an increased
playback delay.

In this paper, we propose a server-based scheduling strategy
that targets a fair distribution of the playback delays among
the different groups of clients. It takes into account the
network status, the client capabilities, and the video stream
characteristics to optimize an average quality of service for
all the subscribers. To the best of our knowledge, this work
is a first effort to address the playback delay optimization
problem, together with and the buffer minimization problem
for broadcast to heterogeneous clients.

The paper is organized as follows: we provide an overview
of the system under consideration and discuss media schedul-
ing in Section II. In Section III we formalize the considered
problem and discuss its implications. Section IV shows our
simulation results. Finally we conclude with Section V.

II. SCALABLE V IDEO STREAMING

A. System Overview
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Fig. 1. General overview of the system under consideration.

We considerL-layered hierarchically coded bitstreams that
are stored on a streaming server (see Figure 1). In such coding
scenarios, all inferior layers from1 up to l − 1 must be
present at the decoder in order to decode layerl. Depending on
the encoding choice, adding a layer may increase the PSNR
of the decoded video, the framerate, or the framesize. Each
layer is completely determined by its source trace, or playout
trace sl(t), 1 ≤ l ≤ L, indicating how many bits the layer
consumes during playout at all time instantst. The channel
connecting the server to the receivers is defined by its bitrate
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Fig. 2. Left: Playback delay and buffer underflow prevention.Right:
Schedulable play-out trace and a corresponding sending rate trace.

c(t), indicating how many bits the channel is able to transmit
at any timet, and a potential network latency∆. Generally,
the server’s channel knowledge is extracted from client or net-
work feedback. In this paper we will assume perfect channel
knowledge at the server, as offered by guaranteed services for
example. For other types of service, our approach leads to an
upper bound on achievable performance.L sets of receivers
connect simultaneously to the media stream, where each set
Rl, 1 ≤ l ≤ L groups clients that subscribe to all layers up to
l of the media stream.

B. Media Scheduling

In such scenarios, the most important logical part of the
streaming server is the scheduler: given the source trace and
the channel knowledge, it decides when to send data, in order
to meet criteria such as desired distortion or delay [1] [2],
or maximum utilization of the available channel bitrate. The
scheduler outputs a stream of ratex(t) ≤ c(t), ∀t, thesending
rate, indicating how many bits are sent on the channel at a
given time. After the first bit of the stream is sent by the server,
a client in populationRl waits for a timeDl, during which
it buffers the data it receives, to ensure that its receiver buffer
will never underflow, i.e., the playback will not be disrupted.
We callD = {Dl}L

l=1 the set of playback delays at the clients.
We will use capital letters(S, C, X) for the cumulative rate

functions, e.g.,C(t) =
∫ t

0
c(u)du is the number of bits the

channel can transmit up to timet. Note that the cumulative
rate functions are all non-decreasing int. Using this notation
[3][4], Figure 2 illustrates de concept of playback delay. If
the client starts playback at the reception of the first bit, a
buffer underflow occurs at timetc. Starting playback at the
client afterD makes sure that the buffer underflow does not
occur. We say that a traces(t) is schedulableover a channel
with available bandwidthc(t)2, with a playback delayD, if
the following condition holds for allt:

S(t−D) ≤ C(t−∆) (1)

If condition (1) is met, this implies that the server can
find a scheduling such that each of the following, necessary
conditions are satisfied for allt:

S(t−D) ≤ X(t−∆) (2)

X(t) ≤ C(t) (3)

x(t) ≤ c(t). (4)

2We assume here that there is no specific flow control policy, and thatc(t)
is fully usable by the streaming application.
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Fig. 3. The video trace is 2 GOPs of the MPEG-4 encoded Foreman
sequence. The channel is CBR. The left column depicts the source rate
s(t), channel ratec(t) and the illustrated sending rate. The middle column
shows the same in cumulative domain, and the right column shows the Buffer
occupation as a function of time:X(t)− SD(t). Top: LOSscheduling. The
sending rate follows the source rate whenever possible. WheneversD(t) >
c(t), data is sent at the latest possible earlier opportunity, thus minimizing
the buffer occupancy∀t. The maximum amount of buffering needed is 11468
bits (seetop-right). Middle: Another sending rate that minimizes the needed
buffer size, but not for allt. XB(t) 6= XLOS . Note that at times 0 to 4 for
example bits are put into the buffer that are only retrieved afterD = 10, and
that are only sent later under theLOSpolicy. Bottom:A generic sending rate.
Note thatsupt B(t) = 21264 > 11468 bits (seebottom-right).

In that case, it can be guaranteed that there is a scheduling
solution.

C. Last opportunity schedulingLOS

We now introduce theLast Opportunity Scheduling (LOS)
which will be important in what follows. ALOS-Scheduler
sends data at the latest possible opportunity given their de-
coding deadline, so that the overall buffer occupancy is kept
small. We set∆ = 0, without loss of generality. If (1) is
verified, there exists a family of sending ratesX such that
eachX(t) ∈ X satisfies (2), (3) and (4). There further exists
a sending rate inX that minimizes the buffer occupancy at all
timest at the receiver. We will call this sending rateXLOS(t).
Suppose that we have(C(t), S(t), D) such that (1) holds. We
definesD(t) as follows:

sD(t) =
{

0 , 0 ≤ t < D
s(t−D) , t ≥ D

SD(t) is the corresponding cumulative function.SD(t), as
seen from the server, is the number of bits that the receiver
has already drained from its buffer at timet, starting at time
t = D. X(t) is the number of bits that the server has sent to
the server up to timet. Thus, at any timet the filling level of
the receiver’s buffer can be expressed asX(t) − SD(t). The
minimal buffer occupancy is generated by the sending rate:

XLOS(t) = arg min
X(t)∈X

(X(t)− SD(t)) , ∀t. (5)

It is clear that for any sending rateX(t) ∈ X s.t. X(t) 6=
XLOS(t):

XLOS(t) ≤ X(t), ∀t (6)



Although the Last Opportunity Scheduler
LOS (c(t), sD(t)) is not necessarily the only one generating
XLOS(t), it represents a straightforward solution to (5). An
illustration is given in Figure 3.

Suppose that we need to transmit a bit that needs to be
present at the receiver at its timestampts. As X(t) is a
cumulative function, sending the bit earlier than needed, say
at time te < ts while having a further opportunitytLOS ,
te < tLOS ≤ ts to send it, increasesX(t) for t in [te, tLOS ],
and thus increases also the buffer occupancy at the receiver.
It becomes clear that the minimal buffer occupancy is given
by the sending rateXLOS(t), as defined in (5).

LOS Scheduling will be important in what follows to
construct a set of playback delays for a set of receivers

{
Rl

}
.

Indeed, it can also be shown that for a fixed set of playback
delaysD, usingLOSon each layer of the stream individually,
the buffer occupancy at each set of receiversRl is minimized
at all times, givenD.

III. PLAYBACK DELAY OPTIMIZATION

A. Problem Formulation

Consider a channel given by its cumulative rate traceC(t),
and a set ofL hierarchically coded layers given by their
cumulative source rate traces{Sl}L

l=1. The channel connects
a streaming server toL sets of receivers{Rl}L

l=1, that simul-
taneously subscribe to layers up tol. Our aim is to find a set
of playback delaysD = {Dl}L

l=1, D1 ≤ D2 ≤ . . . ≤ DL ≤
Dmax, that minimizes a global metricϕ(·) over the set of
possible playback delay sets:

Df = arg min
D

(
ϕ(D0, ..., DL)

)
(7)

such that for anyl ≤ L, Sl
D(t) ≤ C(t), where Sl

D(t) =∑l
i=1 Si

(
t−Di

)
. This is, from (1), a sufficient condition for

the traceSl
D(t) to be schedulable over the channelc(t). Let

Dl
min denote the smallest possible playback delay for layers

up to l. In order to have afair distribution of the penalty
on the playback delays, we choose to minimize the standard
deviation of the relative penalties induced by a set of playback
delaysD. The global metricϕ(·) becomes:

ϕ(D0, ..., DL) = σ
(
(D0 −D0

min), ..., (DL −DL
min)

)
. (8)

In the same time, we want to minimize the buffer occupancy
at the receivers for a given set of playback delays. We propose
to solve the optimization of the playback delays, and buffer
occupancy in two steps, using the previously outlinedLOS
strategy.

B. Playback Delay Analysis

In this subsection we will introduce some general results,
inspired from [4], that are important in order to formally derive
lower bounds on the playback delays, which is a crucial step
towards solving (7).

Suppose that we have two increasing non-zero functions
F (t) and G(t) such thatlimt→∞ F (t) ≥ limt→∞G(t). We

define the (maximum) horizontal distance betweenF (t) and
G(t) as follows:

h(G,F ) = sup
t

(
F−1 (G(t))− t

)
, (9)

where F−1(t) = min {t : F (t) ≥ x} is a pseudo-inverse of
F (t). The following relations hold:

h(G,F ) = 0 ⇔ F (t) ≥ G(t),∀t and (10)

∃τ s.t. F (τ) = G(τ) (11)

h(G,F ) < 0 ⇔ F (t) > G(t),∀t (12)

h(G,F ) > 0 ⇔ ∃τ s.t. F (τ) < G(τ). (13)

Two useful properties ofh(·) will be used in the optimization :
1) If h(G,F ) > 0 and G′(t) = G(t − h(G,F )), then

h(G′, F ) = 0. In other words,h(G,F ) is the minimum
shift we need to apply onG(t), so thatF (t) ≥ G′(t),
∀t.

2) Let F (t), G(t) and G′(t) be non-decreasing functions
such thatG′(t) > G(t), ∀t. Then:h(G′, F ) > h(G,F ).
Indeed by the definition ofh(·) andF−1(·), and because
F (t) is non-decreasing, the result follows immediately,
asF−1 (G′(t)) > F−1 (G(t)), ∀t. Similarly, if G′(t) <
G(t), ∀t thenh(G′, F ) < h(G,F ).

Let ~δ denote any set ofL decreasingly ordered positive values:
~δ = {δ1, δ2, . . . , δL}, δ1 ≥ δ2 ≥ . . . ≥ δL ≥ 0. We
will use the following notation∀l, 1 ≥ l ≥ L: Gl

~δ
(t) =∑l

i=1 Gi (t + δi) andGl
0(t) =

∑l
i=1 Gi(t).

Lemma 3.1:Consider a set ofL non-decreasing functions
{Gl(t)}L

l=1 and a non-decreasing functionF (t), all defined on
the temporal axis. We have,∀l, 1 ≥ l ≥ L and∀~δ:

Dl
0 = h

(
Gl

0, F
)

< h
(
Gl

~δ
, F

)
= Dl

~δ
(14)

Proof: As the functions{Gl(t)}L
l=1 are non-decreasing,

we have,∀l, 1 ≥ l ≥ L and ∀δl > 0: Gl(t) < Gl (t + δl).
Thus,∀l, 1 ≥ l ≥ L and∀~δ:

Gl
0(t) < Gl

~δ
(t) ,∀t (15)

From above, it follows thatDl
0 < Dl

~δ
.

C. Minimal delay for one set of receivers

Applying this property to cumulative source rate traces, we
derive a lower bound on the playback delay for the clients in
set Rl. If Sl

0(t) > C(t), for somet, the smallest playback
delay for layerl, is given by:

Dl
0 = h

(
Sl

0, C
)
, (16)

whereSl
0(t) =

∑l
i=1 Si(t) is the sum of all the layers without

relative shifts. Since layers are hierarchically ordered, we
know, by application of Lemma 3.1, thatDl

0 is the lower bound
on all possible playback delays for layerl, thusDl

min = Dl
0.

Furthermore, as all the rate traces are positive valued functions,
Sl+1

0 (t) ≥ Sl
0(t), ∀t, so from (III-B) we haveDl+1

min ≥ Dl
min.

Note that any playback delay lower thanDl
min will result

in a buffer underflow at the receiver, while any larger play-
back delay will allow reception without experiencing a buffer



underflow. This allows us to formulate a quick algorithm to
find Dl

min using a simple bisection search, see Algorithm
1. It is important to note that, by achieving the minimum

Algorithm 1 Dmin = getDmin (C(t), S(t))
1: Dlow ⇐ 0
2: Dhigh ⇐some large value
3: while

(
Dhigh −Dlow

)
> 1 do

4: Dtest ⇐
⌊

Dlow+Dhigh

2

⌋

5: if S (t−Dtest) ≤ C(t), ∀t then
6: Dhigh ⇐ Dtest

7: else
8: Dlow ⇐ Dtest

9: end if
10: end while
11: Dmin = Dtest

playback delay for a given layerl, we do not necessarily
achieve the minimum playback delay for any other layer. It
rather represents a bound that will be used in the optimization
algorithm that aims at solving (7). This can be illustrated using
a simple 2-layer example, depicted in Figure 4. In Figure 4-
top, we setD1 = D1

min, without considering higher layers. In
that case playout of layer 1 can begin afterD1

min = 2 frames.
If we consider layer 2 (Figure 4-middle) without taking into
account lower layers individually, playout of layers 1 and 2 can
begin afterD2

min = 127 frames. Note the induced playback
delay penalty of 125 frames for clients in setR1. Figure 4-
bottom shows thegreedyrate allocation scheme:D1 is fixed
to D1

min and the playback delay for layer 2 is computed using
the remaining channel bitrate. The playback delay for layer 2
grows to 219 frames, inducing a relative penalty of 92 frames.
We are finally facing a typical tradeoff situation: as we increase
the relative playback delay penalty for lower layers, we leave
more available channel bits that can be used to decrease the
playback delay penalty for higher layers.

D. Optimization Algorithm

Finding Df = {Dl
f}L

l=1, the solution to the global opti-
mization problem, is the hardest part of the joint problem.
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Fig. 4. Scheduling 300 frames of Foreman (QCIF). The 2 layers represent
the MPEG-4 FGS base layer and the first bitplane of the enhancement layer.
The channel is available for 450 time units, providing a mean rate of 128kbps,
which drops to 64kbps between times 100 and 200.

Once we haveDf , we know how to schedule the layers in
order to minimize the buffer occupancy, namely we need to
useLOS scheduling. FindingDf is a combinatorial problem,
and solving it generally implies a full search algorithm which
belongs to classNP. Based on the example introduced above
we can however make some observations about the structure
of the solution space. We will first considergreedy layered
scheduling as given by Algorithm 2. Using the greedy al-
location scheme, the playback delay is minimized for the
first layer given the available bitrate, and using the remaining
bitrate, we iterate on higher layers. This scenario results in
an upper boundDL

g on the playback delay for the highest
layer L, in the sense that increasingDL beyondDL

g will no
longer liberate channel bits that could be used to minimize the
playback delays of lower layers. Indeed, fixing eachDl

g, l < L
to the shortest possible delay, given the available bitrate at
that iteration, which results from the same procedure on the
previous layer, all the spare bitrate for layerL will be available
at the latest possible instant in time. We also have seen that

Algorithm 2
({

xl
g

}
,
{
Dl

g

})
= Greedy

(
c(t), {sl(t)})

1: c1(t) ⇐ c(t)
2: for l = 1 to L do
3: D ⇐ getDmin

(
Cl(t), Sl(t)

)
4: xi

g = LOS
(
cl(t), sl

D(t))
)

5: for all t such that0 ≤ t ≤ T + D do
6: cl+1(t) ⇐ cl(t)− xl

g(t)
7: end for
8: Dl

g = D
9: end for

we can easily computeDL
min. We can thus drastically limit

the range of values in whichDL can evolve. Starting from
there, we can loop through the possible values ofDL in the
range[DL

min, DL
g ]. Fixing a valueDL, we compute the bitrate

available for layers 1 toL− 1 as:CL−1(t) = C(t)−XL(t).
Given this channel bitrate, we then compute the range of
possible delays for layerL−1, [DL−1

min ; DL], fix a valueDL−1

and iterate down through the lower layers. While searching,
we are thus limiting the search space to only feasible solutions.
Although this reduces the number of iterations of the search
algorithm, the worst case complexity remains unchanged.

E. Heuristic-based Algorithm

We therefore consider a sub-optimal quick heuristic to find
an approximation ofDf . It is based on the a priori information
we have about the structure of the optimal solution. Indeed,
any set of delaysDh =

{
Dl

h|Dl
h = Dl

min + kl

}L

l=1
, where

kl are equal positive integers (kl = K, 1 ≤ l ≤ L) sets
ϕ (Dh) = 0. In other words the source traces of all layers need
to be delayed byK units relative to their respective minimal
playback delayDl

min. Given the set of minimum playback
delaysDmin, we thus construct the aggregate source rate trace
SL
Dmin

(t), defined as:

SL
Dmin

(t) =
L∑

i=1

Si
(
t−Di

min

)
(17)



Using this, we can computeK as the minimum delay that is
needed to receiveSL

Dmin
(t−K) over the channel of rateC(t).

Thus:

K = h
(
SL
Dmin

, C
)

(18)

So kl = K, ∀l can be computed by using Algorithm 1 once.
We know that an upper bound on the playback delay for the

highest layerL is given byDL
g , so we can reduce the value we

found toDL
h = min

(
DL

h , DL
g

)
, by adjustingkL accordingly.

We then reduce the value for layerL−1 in the same way: the
upper bound is derived by greedily scheduling theL−1 lower
layers over the channel of bitrateCL−1(t) = C(t) −XL(t).
Iterating this reduction procedure on all the lower layers gives
us the final result. This algorithm executes in polynomial time
and our simulations show that it finds results close to the
optimum. If the optimum set of playback delays is such that
ϕ (Df ) = 0, the algorithm finds the optimum itself.

IV. RESULTS

Foreman Composite
D2

min Df D2
min Df

D1 212 54 D1 241 59
D2 212 259 D2 241 297

TABLE I

FAIR PLAYBACK DELAYS Df IN FRAME UNITS. CHANNEL : 100KBPS CBR.

The video traces we used in our simulations are Foreman
(300 frames), and a composite sequence made up of Foreman,
Coastguard and News (total of 900 frames), both QCIF at
30 Hz framerate. We used the MoMuSys MPEG-4 FGS [5]
reference codec to encode the sequences into a base layer and
an enhancement layer. TheGOP size is 150 frames, and it
only contains P-frames. The enhancement layer has been cut
along the bitplane boundaries to construct further layers.

Table I shows results for both sequences sent over a channel
of mean rate 100kbps. The channel can transmit 2 layers in
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Fig. 5. Dashed curve: aggregate playout curve with playback delaysDf . The
aggregate playout curve using playback delayD3

min is shown for reference.

D3
min Df Dh

(reference) (optimum) (heuristic)
D1 594 63 63
D2 594 97 97
D3 594 655 655

iterations n/a 4824189 10

TABLE II

OPTIMAL VS HEURISTIC PERFORMANCE(DELAYS IN FRAME UNITS)

both cases. The gain in playback delay for receivers of setR1

is of the order of seconds when using our fair distribution.
Figure 5 and Table II show the results of another simulation

run: we consider sending the composite sequence over a
piecewise CBR channel with rate changing between 128,
256 and 384kbps, which can transmit 3 layers. Using a fair
playback delay distribution playout at receivers of setsRl,
l = 1, 2, 3 can start playback after a delay ofDl, l = 1, 2, 3
respectively, as given in Table II. Note the gain in delay for
clients in setsR1 and R2, compared to a playback delay of
594 frames ifD3

min is used for all clients (dotted line in
Figure 5). The relative playback delay penalty per client set,
compared to their respectiveDl

min value, is of 61 frames each.
The iterations field in Table II gives the number of feasible
combinations that have to be checked for optimality forDf ,
which grows exponentially with the number of layers. The
checking itself is performed in polynomial time. Similarly,
iterations for Dh indicates the number of bisection search
iterations before the result was found. This number grows
logarithmically with the length of the trace only. Each iteration
only contains steps of polynomial complexity.

V. CONCLUSIONS

In this paper, we have outlined and formalized the problem
of playback delay distribution in a scalable streaming scenario,
where a streaming server broadcasts to a heterogeneous set of
clients. We have proposed a server-based scheduling strategy,
and validated a computationally fast algorithm, that targets
a fair distribution of the playback delays and minimizes the
buffering at the receivers. It is shown to bring significant
improvements on the playback delays experienced by the
clients, since it takes into account the heterogeneities in the
client population, the structure of the encoded stream, and the
available channel knowledge.
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