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ABSTRACT

Approximating a signal or an image with a sparse linear
expansion from an over-complete dictionary of atoms is an
extremely useful tool to solve many signal processing prob-
lems. Finding the sparsest approximation of a signal from
an arbitrary dictionary is an NP-hard problem. Despite of
this, several algorithms have been proposed that provide
sub-optimal solutions. However, it is generally difficult to
know how close the computed solution is to being “opti-
mal”, and whether another algorithm could provide a bet-
ter result. In this paper we provide a simple test to check
whether the output of a sparse approximation algorithm is
nearly optimal, in the sense that no significantly different
linear expansion from the dictionary can provide both a smaller
approximation error and a better sparsity. As a by-product
of our theorems, we obtain results on the identifiability of
sparse over-complete models in the presence of noise, for a
fairly large class of sparse priors.

1. INTRODUCTION

Recovering a sparse approximation of a signal is of great in-
terest in many applications, such as coding [1], source sepa-
ration [2] or denoising [3]. Several algorithms exist (Match-
ing Pursuits [4, 5], Basis Pursuit [6], FOCUSS [7] . . . ) that
try to decompose a signal in a dictionary in a sparse way,
but once the decomposition has been found, it is generally
difficult to prove that the computed solution is the sparsest
approximation we could obtain given a certain sparsity mea-
sure (which can be the number of terms or `0 “norm”, the `1

norm, or any other metric that may lie “in between”, which
may be related to the bit-rate needed to represent the coeffi-
cients). In this paper, we provide a general tool for checking
that the solution computed by some algorithm is nearly opti-
mal, in the sense that no significantly different sparse linear
expansion from the dictionary can provide both a smaller
approximation error and a better sparsity.
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In several aspects, our results extend previous contribu-
tions on the topic of recoverability of sparse overcomplete
representations :

• previous results on recovery of sparse expansions in
the noisy setting [8, 9, 10, 11] make assumptions on
the ideal sparse approximation which do not seem
easy to check in practice. We provide a test that can
be implemented in practice since it only depends on
the observed sparse approximation to determine its
optimality. When the test is satisfied we provide a
way to recover the ideal sparse approximation (best
M -term approximation).

• the test is independent of the particular algorithm used
to get the sparse approximation: there is no need to
make a new proof or find new optimality conditions
when one introduces a new algorithm.

• in the case where the error is measured with the mean
square error (MSE), our test is close to being sharp.
Moreover, the test is satisfied in some cases where the
residual seems “too large” for the previous contribu-
tions [8, 9, 10, 11] to provide conclusive results.

• besides the MSE, we can deal with non-quadratic dis-
tortion measures, so one could imagine to insert vi-
sual criteria if one is dealing with images, or auditive
criteria if one is dealing with sounds, or any other cri-
teria more appropriate to the data than the MSE.

• not only do we deal with the `0 and `1 sparsity mea-
sures but also with all the `τ sparseness measures1

‖ · ‖τ
τ , 0 ≤ τ ≤ 1, as well as a much larger class of

“admissible” measures, as discussed in Section 2.

This paper is structured as follows: In Section 2 we state
the sparse approximation problem and introduce the main
concepts and results of the paper. In Section 3 we give the
flavour of the proofs briefly discuss the connections between
our results and other related work. Section 4 concludes the
paper.

1Throughout this paper we use the notation ‖x‖0

0
to denote the `0

“norm” which counts the number of nonzero coefficients in x.



2. MAIN CONCEPTS AND RESULTS

In a finite or infinite dimensional vector space H (which
may be a Hilbert space or more generally a Banach space)
we consider D a dictionary of atoms {gk}. Using various
sparse approximation algorithms (Matching Pursuits [4, 5],
Basis Pursuit [6], FOCUSS [7] . . . ) one can decompose a
signal y ∈ H as

y =
∑

k

xkgk + e (1)

where the sequence x = (xk) is “sparse” and the residual
e is “small”. Throughout this paper, Eq. (1) will be written
y = Dx + e where we use the same notation for the dic-
tionary D and the corresponding synthesis operator which
maps representation coefficients to signals. In other words,
we will consider the representation coefficients x and the
signal y as column vectors and the dictionary D as a ma-
trix. We will use bold characters to denote signals (vectors
in the space H) and plain characters to denote coefficient
sequences.

The goodness of the approximation (1) can be measured
by some distortion measure d(e) (such as a norm on H)
which only depends on the residual e. The sparseness of a
representation x can be measured by an `τ norm (0 ≤ τ ≤
1) or more generally by an f -norm

‖x‖f :=
∑

k

f(|xk|), (2)

where f : [0,∞) → [0,∞) is non-decreasing, not iden-
tically zero, and f(0) = 0. The smaller ‖x‖f , the sparser
the representation x. The most popular sparseness measures
are the `τ “norms” ‖ · ‖τ

τ = ‖ · ‖fτ
where fτ (t) := tτ for

0 ≤ τ ≤ 1 (with the convention 00 := 0 and t0 = 1,
t > 0) but one can imagine many other more exotic sparse-
ness measures, see [12]. Of particular interest will be the
class S of sub-additive sparseness measures which, in addi-
tion to the above properties, satisfy

f(t + u) ≤ f(t) + f(u) for all t, u ≥ 0,

and the class M of admissible sparseness measures where

t 7→ f(t)/t is non-increasing.

It is easy to check that M ⊂ S, (see [12]). One can de-
fine a partial order on S by letting f � g iff there is some
h ∈ M such that f = h ◦ g (S is stable by composition).
With respect to this partial order, the `0 and `1 “norms” are
respectively the smallest and the largest admissible sparse-
ness measures, in that f0 � f � f1 for each f ∈ M.

Since different sparse approximation algorithms may op-
timize different sparseness criteria (`1 norm for Basis Pur-
suits, various `τ norms for FOCUSS, . . . ), rely on various

distortion measures, make a different compromise between
sparseness and distortion, or even simply use a heuristic ap-
proach such as the greedy approach of Matching Pursuits, it
is a priori hard to predict how solutions computed through
different algorithms are related to one another. Our main
theorems provide a simple test to check a posteriori if a
computed decomposition y = Dx + e is nearly optimal, in
the sense that x is close to any representation x′ which is
both sparser and leads to a smaller distortion.

To state the theorems we need to introduce a few nota-
tions first. Let H be a Hilbert space equipped with the norm
‖y‖2

H = 〈y,y〉 where 〈·, ·〉 denotes the inner product. For
each integer K we denote

σ2
min,K(D) := inf

‖δ‖0

0
≤K

‖Dδ‖2
H

‖δ‖2
2

≤ 1 (3)

and we consider the norm

|e|K :=

√

∑

k∈IK(e)

|〈e,gk〉|2 (4)

where IK(e) indexes the K largest inner products |〈e,gk〉|.
Notice that even though the notation does not make it ex-
plicit, |e|K also depends on the dictionary D. In infinite di-
mension, | · |K is generally not equivalent to the native norm
‖·‖H. However, for any integer K we have supk |〈e,gk〉| =
|e|1 ≤ |e|K ≤

√
K · |e|1 ≤

√
K · ‖e‖H, so the norms | · |K

for different K are equivalent. Based on these definitions
we can state our first result.

Theorem 1 Assume the atoms from the dictionary are nor-
malized, i.e. ‖gk‖H = 1. Let y = Dx + e be a sparse
approximation of a signal y, which may have been com-
puted with any algorithm, let M := ‖x‖0

0 and let x′ be any
other representation. If ‖y − Dx′‖H ≤ ‖y − Dx‖H and
‖x′‖0

0 ≤ ‖x‖0
0, then

‖x′ − x‖∞ ≤ |e|1 + |e|2M

σ2
min,2M (D)

. (5)

A few additional definitions will be needed to state our sec-
ond result, which is much stronger since it is valid for any
admissible sparseness measure. We let DI : `2(I) → H
denote the synthesis matrix associated to the subdictionary
{gk, k ∈ I} and D+

I = (DH
I DI)

−1DH
I be its Moore-

Penrose pseudo-inverse. Then, much inspired by the Exact
Recovery Coefficient introduced in [10] we consider

λM (D) := 1 −
√

M · sup
card(I)≤M

sup
k/∈I

‖D+
I gk‖2. (6)

Theorem 2 Assume the atoms from the dictionary are nor-
malized, i.e. ‖gk‖H = 1. Let y = Dx + e be a sparse
approximation of a signal y, which may have been com-
puted with any algorithm, let M := ‖x‖0

0 and let x′ be any



other representation. If ‖y − Dx′‖H ≤ ‖y − Dx‖H and
‖x′‖f ≤ ‖x‖f for some admissible sparseness measure f ,
and if λM (D) > 0, then

‖x′ − x‖∞ ≤ 2

λ2
M (D)

· |e|1 + |e|M
σ2

min,M (D)
. (7)

Note that, in Eq. (7), 2M has been replaced with M in the
subscripts for |e|· and σ2

min,·(D) compared to Eq. (5).

Corollary 1 (Test of `0 optimality) Under the hypotheses
of Theorem 1, assume that

|e|1 + |e|2M <
σ2

min,2M (D)

2
· min
{k,|xk|6=0}

|xk|. (8)

If x′ satisfies ‖y − Dx′‖H ≤ ‖y − Dx‖H and ‖x′‖0
0 ≤

‖x‖0
0, then x′ and x have the same “support”:

support(x′) := {k, |x′
k| 6= 0} = {k, |xk| 6= 0} = support(x).

In particular, if x and e satisfy the test (8) then the atoms in-
volved in the best M -term approximation x? to y = Dx+e

are exactly the atoms {gk, k ∈ support(x)}, and we recover
the best M -term approximation Dx? by projecting orthog-
onally y onto their span.

Corollary 2 (Test of strong optimality) Under the hypothe-
ses and notations of Theorem 2, assume that

|e|1 + |e|M <
σ2

min,M (D) · λ2
M (D)

4
· min
{k,|xk|6=0}

|xk|. (9)

If x′ satisfies ‖y − Dx′‖H ≤ ‖y − Dx′‖H and ‖x′‖f ≤
‖x‖f for some admissible sparseness measure, then x′ and
x have essentially the same support:

{k, |x′
k| > θ} = support(x), with θ :=

1

2
min

{k,|xk|6=0}
|xk|.

For sufficiently small M , we have lower estimates of λM (D)
and σ2

min,K(D) in quasi-incoherent dictionaries. The esti-
mates are based on the Babel function [8, 10] µ1(M,D) and
its variant µ2(M,D) which we define as

µ1(M) := sup
card(I)≤M

sup
k/∈I

∑

i∈I

|〈gk,gi〉| (10)

µ2(M) := sup
card(I)≤M

sup
k/∈I

√

∑

i∈I

|〈gk,gi〉|2. (11)

Proposition 1 Let D be a normalized dictionary in a Hilbert
space H. If µ1(2M − 1) < 1 then

σ2
min,2M ≥ 1 − µ1(2M − 1) > 0 (12)

If
√

Mµ2(M) + µ1(M − 1) < 1 then λM > 0 and

σ2
min,M · λ2

M ≥

(

1 −
√

Mµ2(M) − µ1(M − 1)
)2

1 − µ1(M − 1)
(13)

When D is an orthonormal basis, µ1(M) = µ2(M) = 0
for all M , and the test of `0 optimality takes the simple
form |e|1 + |e|2M < min{k,|xk|6=0} |xk|/2 (which turns
out to be sharp [13]). The test of strong optimality be-
comes |e|1 + |e|M < min{k,|xk|6=0} |xk|/4. When D is
a union of one or more incoherent orthonormal bases in
C

N , such as the Dirac, Fourier and Chirp bases, µ1(M) =
M/

√
N and µ2(M) =

√
M/

√
N , and as an example when

M ≤ (1 +
√

N/3)/2 we have σ2
min,2M ≥ 2/3 ≈ 0.66 and

σ2
min,M · λ2

M ≥ 4/9 ≈ 0.44.

3. FLAVOUR OF THE PROOF.

Even though the detailed proof of the results given in the
previous section is too long to fit in this short paper, it would
perhaps be frustrating for the reader to have the statements
without at least some idea of the flavour of their proof. Note
that some of the ideas are similar to the techniques devel-
oped in [11] even though these results were developed to-
tally independently. Moreover, it seems that the test pro-
posed in Corollaries 1-2 is reminiscent of some results of
Tropp [10, Correlation Condition Lemma, Theorem 5.2],
but with supk |〈e,gk〉| = |e|1 replaced with |e|1 + |e|K for
K ∈ {M, 2M}.

Let y = Dx + e be a sparse approximation of a signal
y, let M := ‖x‖0

0 and assume that x′ satisfies d(y−Dx′) ≤
d(y−Dx) and ‖x′‖f ≤ ‖x‖f . Letting δ := x′ − x, we see
that δ ∈ Dd(e) ∩ Cf (XM ) with

Dd(e) :=
{

δ : d(e − Dδ) ≤ d(e)
}

(14)

Cf (X) :=
⋃

z∈X

{δ : ‖z + δ‖f ≤ ‖z‖f} (15)

and XM := {x, ‖x‖0
0 ≤ M}. Thus, we have

‖x′ − x‖∞ ≤ |e|f,M := sup
δ∈Dd(e)∩Cf (XM )

‖δ‖∞. (16)

Note that |e|f,M also depends on the dictionary D and the
distortion measure d(·) but we omit them in the notation.

When f is sub-additive and non-decreasing, we prove in
[13] that

Cf (XM ) =







δ :
∑

k∈IM (δ)

f(|δk|) ≥
‖δ‖f

2







(17)

where IM (δ) is the set of the M largest components of |δk|.
By [12, Lemma 7], for any admissible sparseness measure
h, any sequence z = (zk) and any integer M , we have

∑

k∈IM (z) h(|zk|)
‖z‖h

≤
∑

k∈IM (z) |zk|
‖z‖1

. (18)



Thus, for any sub-additive sparseness measures f � g we
have Cf (XM ) ⊂ Cg(XM ) and | · |f,M ≤ | · |g,M . In par-
ticular, for every admissible sparseness measure f , since
f0 � f � f1 we have | · |f0,M ≤ | · |f,M ≤ | · |f1,M .
Theorem 1 and Theorem 2 will follow respectively from the
upper estimates

| · |f0,M ≤ | · |1 + | · |2M

σ2
min,2M (D)

(19)

| · |f1,M ≤ 2

λM (D)
· | · |1 + | · |M

σ2
min,M (D)

(20)

(21)

when the distortion d(·) is the MSE (assuming that λM (D) >
0 to get the second inequality). It is also possible to get
bounds on ‖x′ − x‖2 and d(Dx′ − Dx), as well as similar
estimates for other distortion measures than the MSE, using
the fact that for 0 < q < ∞

‖x′ − x‖q ≤ sup
δ∈Dd(e)∩Cf (XM )

‖δ‖q,

and
d(Dx′ − Dx) ≤ sup

δ∈Dd(e)∩Cf (XM )

d(Dδ).

This is where we stop the sketch of the proof, because get-
ting into the details of the above estimates would take twice
the space available in this paper, so we refer the reader to
our preprint [13] for more details and extensions.

4. DISCUSSION AND CONCLUSION

We provided tools to check if a given sparse approximation
of an input signal –which may have been computed using
any algorithm– is nearly optimal, in the sense that no other
significantly different representation can at the same time be
as sparse and provide as good an approximation. In particu-
lar we proposed a test to check if the atoms used in a sparse
approximation are “the good ones” corresponding to the
ideal sparse approximation for a fairly large class of admis-
sible sparseness measures. The test is easy to implement,
it does not depend on which algorithm was used to obtain
the decomposition and does not rely on any prior knowl-
edge on the ideal sparse approximation. In our preprint [13]
we give extended results of the same flavour including the
case of some non quadratic distortion measures, and we dis-
cuss some implications of our results in terms of Bayesian
estimation and signal denoising with a fairly large class of
sparse priors and random noise. We are currently trying to
investigate how this work could also be extended to obtain
results on the optimality of simultaneous sparse approxi-
mation of several signals, in order to apply the results to
blind source separation. In addition, we are investigating
the use of the optimality tests to build a stopping criterion

for Matching Pursuit or to design provably good sparse ap-
proximation algorithms.
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