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Abstract

Detecting faces in images is a key step in numerous computer vision applications as
face recognition for example. Face detection is a difficult task in image analysis because
of the large face intra-class variability which is due to the important influence of the
environmental conditions on the face aspect. The existing methods for face detection
can be divided into holistic methods and feature based methods. We propose a new
method for detecting frontal faces in complex images featuring two main contributions:
the use of a collection of highly discriminative anisotropic Gaussian features combined by
boosting and the computation using a mixture of classifiers to improve the classification
capabilities without affecting the detection speed. The performances of the face detector
have been evaluated on the CMU/MIT test set [1] database. This methods outperforms
the previous works in frontal face detection.

keywords: face detection, AdaBoost, Gaussian features, mixtures of classifiers

1 Introduction

Automatic face detection is a key step in any face processing system. Its goal is to detect
the presence of human faces in a still image and return their position (which may be given in
terms of a bounding box for example). The performance of latter stages of processing (e.g.
face recognition, face authentication or facial expression recognition) is conditionned by the
quality of the detection. However automatic detection of faces is far from being an immediate
task. Its complexity is due to the large intra-class variability, as faces are highly deformable
objects whose appearance depends on numerous factors (lighting conditions, presence or
absence of occluding objects, and so forth). In most face detection system, it is necessary to
model also the ”non f ace” class, which proves to be very difficult.

In the last years, many methods have been proposed and we give hereafter a brief overview of
some of the most significant ones. There are two main approaches for detecting faces: Holistic
methods which consider the face as a global object and feature based methods which use
classical low level processing for detecting faces (e.g. skin color modeling). Other technique
can also use a mix of both appoaches. The first category usualy produce a very fast detector
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with better classification performances and they turn out to be more robust to light changes.
One of the main advantages of the feature-based methods is that they are more robust to
head pose changes. As we are interested in further face processing such that face recognition,
we only need to detect frontal faces, that is why in the following, only the holistic methods
will be considered. More detailed surveys are given in [2] and [3].

In general, the image is scanned with a sliding window and for each position, the window
is classified as either face or non face. The method can be applied at different scales (and
possibly different orientations) for detecting faces of various sizes. Finally, after the whole
search space has been explored, an arbitration technique may be employed for eliminating
the multiple detections. Of course the efficient exploration of the search space is a key
ingredient for obtaining a fast face detector. There are various methods for speeding up this
search, like using additional information (e.g. skin color) or using a coarse-to-fine approach.
Nevertheless the most important component of the system is the classifier deciding if a given
window contains a face or not. From this perspective, this paper focuses on both aspects,
efficient search space and robust classifier.

A first reference algorithm is proposed by Sung and Poggio [4]. They use clusters of face and
non face models to decide if a constant sized window contains a face or not. The principle is to
use several gaussian clusters to model both the face and non face examples in the vector space.
Then the decision is taken according to the relative distance to both classes. In order to detect
faces at any scale and position they use a sliding window which scans a pyramid of images. A
similar holistic approach proposed by Rowley et. al. in [5] is one of the most representative
for the class of neural network approaches. It comprises two modules: a classification module
which hypothesizes the presence of a face and a module for arbitrating multiple detections.
A fast algorithm is proposed by Viola and Jones in [6]. It is based on three main ideas.
They first train a strong classifier by boosting the performance of simple rectangular Haar-
like features. They use the so-called integral image as image representation which allows to
compute the base classifiers very efficiently. Finally they introduce a classification structure
in cascade in order to improve both the detection speed and the classification results. This
last method (in particular the cascade structure) leads to a very fast detection (about 25
frames per second on a conventional PC). As it will be explained later in the paper, we have
used this method as a pre-processing step in order to reduce the search space.

In this work we present a new approach which uses two main components. First we intro-
duce anisotropic Gaussian discriminative local features (GF) combined by boosting and then
a mixture of parallel classifiers which are combined using probability rules to output the final
decision. The local features that are proposed in this paper present the advantage of being
more discriminative than the Haar-like features introduced in [6]. It turns out that they are
particularly well suited for the representation of face images. On the other hand the mixture
of classifier reduces the complexity of the training process while improving the classification
performances. This idea of splitting a complex problem into several lower complexity prob-
lems has been discused in [7] and [8], where the combination of a number of locally trained
Support Vector Machiness (SVM) is done either by a linear SVM or using some other combi-
nation rules. A review of how classifiers can be combined together can be found in [9]. Figure
1 shows an overview of the complete face detection system.

The remaining of the paper is structured as follows. Section 2 introduces the new geometrical
features and discusses their ability to model the face patterns. It also gives a brief overview
of AdaBoost, a learning algorithm that selects iteratively the best of these features. Section
3 presents the mixtures of boosted classifiers and how they are combined together to perform
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Figure 1: Overview of the face detection system.

the final decision. Section 4 reports some results as well as comparisons with relevant existing
face detectors. Finally, we draw some conclusions and explain the future work in section 5.

2 Boosted anisotropic Gaussian features

2.1 AdaBoost

Training a statistical face detector consists in learning a model from a set of face and non face
patterns. This section explains how we build this model using a learning algorithm called
AdaBoost. From the input images we extract a collection of local features which, associated
with thresholds, form a collection of very simple linear classifiers called weak classifiers. Then
a strong classifier is obtained by linear combination of some of these weak classifiers. The
coefficients of the linear combination as well as the features themselves are trained using a
boosting algorithm called AdaBoost [10] (for Adaptive Boosting). It combines iteratively the
weak classifiers by taking into account a weight distribution on the training samples. The
algorithm is described in Algorithm (2.1). The basic idea is to focus on the examples that
are misclassified at the current iteration.

AdaBoost was proposed in 1995 by Freund and Shapire [10] as an efficient algorithm of the
ensemble learning field. It is a greedy algorithm which constructs an additive combination of
weak classifiers such that it minimizes the exponential loss defined in Eq (1).

L(y, f(x)) = exp(−yf(x)), (1)
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Algorithm 2.1: Discrete AdaBoost algorithm[10]

Input: S = (x1, y1), . . . , (xN, yN ), Number of iterations T1

Initialize: d(1)
n = 1/N for all n = 1, . . . , N2

for t = 1, . . . , T, do3

1. Train classifier with respect to the weighted sample set {S, d(t)} and obtain hypothesis
ht : x 7→ {−1,+1}, i.e. ht = L(S, d(t))

2. Calculate the weighted training error εt of ht :

εt =
N∑

n=1

d(t)
n I(ym 6= ht(xn)),

3. Set:
αt =

1
2

log
1− εt
εt

,

4. Update the weights:

d(t+1)
n =

d
(t)
n exp(−αtynht(xn))

Zt
,

where Zt is a normalization constant such that
∑N

n=1 d
(t+1)
n = 1 .

end
Break if: εt = 0 or εt ≤ 1

2 and set T = t− 14

Output: fT (x) =
∑T

t=1
αtPT

r=1 αt
ht(x)5

where x if the pattern to be classified, y its target label and f(x) the decision function.

One of the interests of this iterative algorithm is that the training error converges expo-
nentially towards zero and in practice the generalization error continues decreasing with the
number of iteration when the null training error is reached. Freund and al. in [10] showed
that the generalization error is bounded by:

R[fT ] ≤ P [yfT (x) ≤ θ] +O
(√

d

Nθ2

)
, ∀θ > 0, (2)

where fT is the decision function output by AdaBoost, d is the VC-dimension defined by
Vapnik in [11] and N is the number of examples. This bound in Eq. (2) is quite loose but
it shows that larger margins lead to smaller upper bound on the testing error. Like many
other learning algorithms, AdaBoost has an important drawback. It tends to overfit training
samples when they are noisy. The influence of the noisy samples will be discussed in section
3.

Note that we usually prefer detecting all the faces and accept more false alarms than taking
an equal error rate. We can thus build an asymmetric version of AdaBoost by encouraging
the correct classification of the positive examples. This can be done for example by penalizing
the negative examples in the initial sample weight distribution. The final threshold is also
tuned on an independent validation set in order to obtain the desired operating point on the
ROC curve.
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2.2 Anisotropic Gaussian features

In this section we describe the visual local features that are used to construct the weak
classifiers. They are constructed from base functions of an overcomplete basis. It means that
the expansion of any image in this base is not unique. These features have been recently used
in image compression and signal approximation fields. They were first introduced by Peotta
and al. in [12]. The generative function φ(x, y) : R2 → R is described in Eq. (3)

φ(x, y) = xe−(|x|+y2). (3)

It is made of a combination of a Gaussian and its first derivative. This presents the ability of
approximating efficiently contour singularities with a smooth low resolution function in the
direction of the contour and it approximates the edge transition in the orthogonal direction.

Different transformations can be applied to this generative function:

1. Translation by (x0, y0):

Tx0,y0φ(x, y) = φ(x− x0, y − y0).

2. Rotation by θ:
Rθφ(x, y) = φ(x cos θ − y sin θ, x sin θ + y sin θ).

3. Bending by r:

Brφ(x, y) =
{
φ(r −

√
(x− r)2 + y2, r arctan( y

r−x)) if x < r

φ(r − |y|, x− r + r π
2 ) if x ≥ r

4. Anisotropic scaling by (sx, sy):

Ssx,syφ(x, y) = φ(
x

sx
,
y

sy
).

By combining these four basic transformations, we obtain a large collection of ψsx,sy,θ,r,x0,y0

functions as defined in Eq. (4) and (5). Denote D this collection.

ψi(x, y) = ψsx,sy ,θ,r,x0,y0(x, y) (4)
= Tx0,y0RθBrSsx,syφ(x, y). (5)

Figure 2 shows some of these atoms with various bending and rotating parameters.

Now we want to construct a classifier based on these geometrical features that best separate
the face and non face classes. The first step is thus to construct a simple linear classifier with
each atom configuration by choosing two classifier parameters, a threshold θj and a parity pj

as shown in Eq. (6). Parameters θj and pj are chosen using Bayes decision rule.

hj(x) =
{

1 if pjfj(x) < pjθj

0 otherwise
, (6)
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Figure 2: Anisotropic Gaussian features with different rotating and bending parameters.

where fj(x) is the inner product between the image and the base function number j, ψj

corresponding to a particular parameter configuration (sx, sy, θ, r, x0, y0) (see Eq. (7)).

∀ψi ∈ D fi(x) =
∫∫

X×Y
ψi(x, y)I(x, y) dxdy. (7)

Of course each of these classifiers is not discriminant enough to be used alone as a robust face
detector. It is what we call a base classifier (or weak classifier in the boosting terminology
in the sense that each of these simple classifier only has to classify better than the random
selection) as introduced in Section 2.1.

2.3 Gaussian vs. Haar-like

This section shows a comparison between the Haar-like features (HF) proposed in [6] and
the anisotropic Gaussian features (GF) described above. A very important advantage of
the HF is that they can be computed extremely efficiently using a so called integral image
representation.

The HF are made of 2, 3 or 4 rectangular masks with 2 scaling parameters and two center
coordinates. The templates are shown in Figure 1. These simple features are in fact simple
combinations of discretised versions of very particular GF with no bending and only orthog-
onal rotations. Moreover, HF are only binary features such that they may be able to well
capture the contrast between image regions but it will be intuitively limited for differentiating
faces and complicated non face images (face-like images) as for example high textured images.
GF are continuous functions more likely to model continuous natural images. The parameter
flexibility allows to model contour singularities as well as intensity changes in large regions
(with large scaling parameters).

We now give numerical comparisons between HF and GF. Two boosted classifiers have been
trained on the same training set containing face and non face images using the simple Discrete
AdaBoost algorithm described in algorithm (2.1). The results are evaluated on a large test
set. Figure 3 gives a comparison of the intrinsic performances of each feature type. The
test error decreases quickly with the number of Adaboost iterations but it stops decreasing
after roughly 100 iterations in the case of HF while it continues decreasing for with GF.
Intuitively, after several iterations, AdaBoost focuses on the hard to classify examples and
the simplistic Haar features are not discriminant enough to separates the two classes. The
better performances of the Gaussian features also clearly appears in the ROC analysis (Figure
4)( The Receiver Operating Characteristic (ROC) curves are drawn by changing the threshold
output by AdaBoost).

An intersting point to notice here is the shape of the GF that are selected by AdaBoost. The
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Figure 3: Gaussian vs. Haar-like evaluation on a test set.

first features selected have generally large scale parameters, they can globally model the face
appearance whereas more local features are extracted later in the selection process.

Let us now evaluate the time needed for computing each feature. We trained two similar
classifiers with 200 HF on the first hand and 200 GF on the second hand. By appling these
two classifiers on several images (without any structure in cascade), we compared the average
computation time for applying a single HF and a single GF. Computing a GF takes roughly
2.86 more time than a HF. (Note that the Gaussian features are precomputed in the model
such that the expensive generative function computation is avoided).

As mentionned before, a sliding window is used to scan the whole image. In fact scanning an
image requires testing a huge number of windows. In this set of windows, only few of them
contain a face and a large majority of them are very easy to discard. In this case it is useless
to apply a complex classifier in the complete image.

Moreover, as it appears in the first iterations in Figure 3, Haar-like features are comparatively
efficient for building the first linear classifiers. In order to use their computation efficiency
(especially if they are built in a cascade structure), a simple five staged cascade of Haar-like
features has been added as a pre-processing to our Gaussian-based classifier. This efficiently
reduces the search space.

3 Mixtures of boosted classifiers

3.1 Motivations

The combination of weak geometrical features is itself a good classifier but this section intro-
duces a structure that will improve the classifications skills of the face detection system.

As already mentionned in the introduction, the complexity of face detection resides in the
fact that a very large set of faces and non-face examples must be collected. Moreover a really
huge number of features is needed to obtain a sufficiently low false positive rate. AdaBoost
minimizes an exponential loss function (see Eq. (1)) so that after several iterations, many
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Figure 4: ROC curves for Gaussian and Haar-like features.

features have to be added for slightly reducing the false positive rate.

On the other hand, some variation in the face training examples is needed in order to be able
to detect faces with slight pose variations and with slight scale changes (taking into account
the scaling factor). A large training dataset is necessary to cover all this variability. Because
of this large number of samples needed to train the models, some weak classifiers potentially
very efficient on local subspaces of the data may behave badly with respect to the whole
training set.

These motivations suggest to use a multi-classifier structure built in parallel. Instead of
training a single boosted classifier on the complete training set, we built several classifiers on
subsets of the original dataset. A similar technique was developed and discussed in [7] where
Support Vector Machines were used for the parallel classifiers.

There are many interesting points in such an approach.

On the first hand, each mixture is trained on a local subset of the classes distributions so that
it focuses on its own domain. It will thus decrease the influence of potential outliers in the
complete training set. More specifically, as the power of AdaBoost resides in the fact that it
focuses on the hard to classify examples, the parallelization technique reduces the weight of
the noisy examples or potential outliers. This last point also reduces the risk of overfitting
as mentionned above. From a practical point of view it will decrease the false positive rate
which is a important in the face detection context.

On the second hand it keeps an equivalent training complexity. The complexity of training
AdaBoost varies linearly with the number of samples. Splitting the data and training several
AdaBoosted classifiers on the subsets will thus not affect the training complexity compared
to a single AdaBoosted classifier.

We could imagine two strategies for splitting the dataset into several subsets. Either random
sampling if we want to estimate several times the decision boundary or clustering if we want
to build experts on subsets of the face class. In our case, no information is available about
the distribution of the face class, we just want to simplify the problem while improving
the classification skills, that is why simple random sampling has been chosen for creating
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the subsets. Another reason why the clustering would not be appropriate comes from the
variations introduced in the training set. The clustering would eventually cluster examples
resulting from similar transformations of the initial images and thus the combination would
probably fail.

3.2 Posterior probability estimation

Once the multiple classifiers have been built the final decision is taken using classical proba-
bility rules. In this step we need a probabilistic interpretation for each boosted classifier and
then arbitrating using typical rules such as maximum, minimum, product, sum, median or
majority vote.

First recall that AdaBoost minimizes the exponential criterion:

J(f) = E(e−yf(x)). (8)

Friedman in [13] shows that minimizing J(f) in Eq. (8) is equivalent up to second order
Taylor expansion about f = 0 to maximizing the expected binomial log-likelihood. The pos-
terior probabilities P (y = 1|x) and P (y = −1|x) are given by the following lemma:

Lemma 3.1 [13]
J(f) = E(e−yf(x)) is minimized at

f(x) =
1
2

log
P (y = 1|x)
P (y = −1|x)

. (9)

Hence

P (y = 1|x) =
ef(x)

e−f(x) + ef(x)
, (10)

P (y = −1|x) =
e−f(x)

e−f(x) + ef(x)
(11)

Several different strategies may be used for combining parallel classifiers. An overview of
them can be found in [9] and [14]. In this work we only consider the summation rule defined
in Eq. (12) for combining the decisions of the multiple boosted classifiers.

This means that example x is assigned to the class y = 1 (face) if:

(1−M)P (y = 1) +
∑

j=1,..,M

Pj(y = 1|x) >

(1−M)P (y = −1) + 1
∑

j=1,..,M

Pj(y = −1|x) (12)
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where M is the number of mixtures and p(y = 1), p(y = −1) represents the prior probabil-
ities for both classes. Otherwise, x is assigned to the class y = −1 (non face).

The choice of this rule is influenced by the splitting method that is used. The sum rule
averages the decisions of the individual classifiers so that it is good trade off for discarding
false alarms while preserving the correct detection of faces. For example the product rule
is known to be a severe rule which risks to strongly penalize the true positive rate. More
comments about the choice of the decision criterion are given in [9].

A reason why simple probability rules are used for combining the expertise of each individual
classifier is the stability of the parallel classifiers. The boosted classifiers are stable in the
sense that small changes in the training set lead to small changes in the classifier output [14].
Bagging or Boosting for combining base classifiers needs unstable classifiers to improve the
overall performance.

3.3 Discussion

This parallelization technique presents some advantages against the cascade structure. A
cascade of classifiers is a sequential combination of classifiers such that an example is rejected
if it is classified as negative at any stage of the cascade. It is equivalent to a parallel structure
of classifiers but considering a product probability rule for combining the decisions. In fact
if we consider the parallel classifiers to be conditionally independent (which can be supposed
in this study as we use random sampling for generating the subsets), if one of the classifiers
considers an example as negative with probability close to 1, the probability that the final
decision is negative will be high. The only difference would be from the complexity point of
view as we would have to test all the classifiers whereas the cascade would directly stop the
processing chain.

One advantage of our parallel approach over the cascade is that if a positive example is
classified as negative by a given classifier, it can be reassigned to the positive class by the
overall system where in the cascade case it would be rejected. This would especially happen
in the last stages of the cascade as the examples becomes more and more complicated. It is
clear that the mixture approach will not reduce the testing time as we roughly use the same
features number as in a single layer classifier. However we do not need to optimize the testing
time as we only need to test a few remaining critical windows.

4 Experiments and results

4.1 Structure of the system

In order to test the performances of this system and compare it with other relevant methods
the following experiments have been performed. First of all the input image is scanned with
a cascade of 5 boosted Haar-like stages (according to Viola’s methods in [6]). This discards
very quickly the easy to classify non face windows. In the scanning process, we use a scaling
factor of 1.2 for resizing the sliding window. All the remaining windows are resized at 20×15
pixels and given to the mixture of boosted classifiers which takes the final decision. Then
a very simple arbitration method clusters the neighbor windows in order to only have one
detection per face. This is done by keeping the median window for each cluster.
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Figure 5: Results on images of BANCA [18] in the complex adverse scenario.

First of all, face images were collected from some classical face databases: XM2VTS [15],
BioID [16], FERET [17]. After adding some variations in scale and slight rotations and
shifts, the complete face train set contained 9500 images. The non faces examples were
chosen by bootstrapping on randomly selected images without faces and pre-processed by
the Haar cascade.

In our model we used 5 parallel mixtures each of them trained with 1900 faces and 4000 non
face images. Each mixture is made of roughly 200 features, which corresponds to desired true
positive rate / false positive rate ratio on a validation set. Note that the set of HF that we
used to train the preprocessing model contained 37520 (all possible combinations in a 20×15
pixels window. In the case of the GF, we decided to sample randomly the dictionary order
to keep a managable set for the training process. We finally used a dictionary of 202200
features.

4.2 BANCA database

The system has been tested on two distinct databases. On the first hand we consider the
BANCA database [18] which was build for training and testing multi-modal verification
systems. The face images were acquired using various cameras and under several scenarios
(controlled, degraded and adverse). Some examples of detection results of the adverse scenario
are shown in Figure 5. For four different languages, images of 52 persons (26 males and 26
females) were recorded during 12 sessions. We finally only used the French and English
databases as we dispose of precise groundtruth annotations for them.

An ambiguous point in face detections algorithms is the way the performances are measured.

The criterion used to evaluate face detectors on labeled dataset may be confusing. Different
works use different criteria to consider a detection as correct or wrong. It becomes very
difficult to compare objectively different algorithms. This problem is addressed using the
evaluation protocol proposed by Popovici and al. in [19].

The evaluation is performed by taking into account several parameters between the detected
location and the annotated positions. The scoring function measures the ratio of the between-
eyes distances, the angle between the eyes axis and of course the distance between the anno-
tated and detected eye positions. This method gives a more objective scoring of the detection
performances. See [19] for details on how to use the scoring function.

Table 1 gives a comparison of three variants that have been tested on the BANCA database
which represents 12480 images, each of them containing one face. It shows several interesting
points. First of all we see that a single boosted Gaussian features (BGF) classifier stage (pre-
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Table 1: Comparisons of 3 tested methods on the BANCA [18] database. Results are re-
ported for the French and English parts following the evaluation protocol described in [19].
Detections with a global score larger than 95% are considered as correct.

Classifier English(%) French(%) Total (%)
5 stages BHF 48.08 56.09 52.08
12 st. BHF 73.64 94.26 83.95

5 st. BHF + 1 st. BGF 80.79 93.94 87.36
5 st. BHF + Mix of BGF 95.21 97.53 96.37

Table 2: Performances on the CMU/MIT test set [1]. It shows the Detection rate (D.R.) and
number of false alarms (F.A) for each method.

Set B (483) (507)Methods
D.R. F.A. D.R. F.A. D.R. F.A.

Rowley [5] 87.1 15 92.5 862 90.5 570
Sung Poggio [4] 81.9 13 — — — —

Shneiderman [20] — — 93.0 88 94.4 65
Viola Jones [6] — — — — 91.4 50

Mixture of BGF 89.2 15 92.1 68 93.9 60

processed by 5 HF stages) outperforms a 12 stages boosted Haar-like features (BHF) system.
It confirms the choice of the GF. This is also emphazised by the fact that less selected features
are needed for achieving better classification performances. It means that the sparsest model
(BGF) produces a better generalization than BHF.

Then the mixture improvements clearly appear in these results. The single Gaussian stage
was trained using the same data than the complete mixture and roughly the same number
of atoms were selected for both cases however the mixtures performs better.

The evaluation protocol [19] allows us to measure the main characteristics of our detector.
Each individual criterion in Figure 6 shows that the wrong detections are generally far from
the ground truth position but when a detection is correct, it is really precise both in scale
and shift (and of course also in angle as we only test upright faces). However, there is a slight
imprecision with respect to the shift score. This can be explained by the trivial arbitration
criterion that we use for clustering the multiple detections around each face.

4.3 CMU/MIT Test set

We now consider a more challenging database comonly used to evaluate performances of face
detectors especially on very low resolution images. The CMU/MIT Test set [1] was first
introduced by Rowley in [5] for testing. It contains 130 images with 507 faces. Some of these
annotated faces are manually drawn and they are counted as false detections in some papers.
That is why some papers only consider 123 images with 483 faces. Both versions are tested
in this paper to avoid any confusion. Finally TestSet B contains 23 images with a total of
155 faces.

Figure 8 shows some detection results on images of this database.

Table 2 presents comparisons with the state-of-the-art methods on this databases. In order to
give a complete comparison study, we tested the system on several configurations of the test
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Figure 6: Detection scores using the evaluation protocol [19] including the two individual
scores (shift and scale) and the global score. Note that a log scale is used.
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Figure 7: ROC analysis for comparing the algorithms on the MIT/CMU testset [1].
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set as presented in other studies. The manually drawn faces that are detected in the setup
with 507 faces are counted as false detections in the setup with only 483 faces. It explains
why there are more false detections in the smallest version of the test set.

Finally, in order to give more comprehensive results, we give a complete Receiver Operating
Characteristic curve (ROC). Notice that we give the detection rate as function of the number
of false negative instead of false positive rate as this last one highly depends on the scanning
operator. It can be seen that the proposed approach outperforms the other methods for these
real world low resolution images. The detector of Shneiderman and al. [20] gives a better
operating point. However their technique is based on a complex network which is very slow
(roughly 1 minute to test an image) and is difficult to use in real applications.

Figure 8: Face detection results on some images of the MIT/CMU testset [1].
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5 Conclusions

This paper presents a new face detection system using a multi-stage feature based approach
which leads to high detection performances and can be applied in real-time. Two main
contributions are presented. On the first hand, new local discriminant features are combined
by boosting to model efficiently the face class. On the second hand several parallel boosted
classifiers are combined in order to build a strong classifier. It has been shown how the
new features improve the haar-like features and also that the mixture of boosted classifiers
decreases significantly the false positive rate without affecting the true positive rate. The
complete system has been tested on classical databases and compared with other relevant
methods. In a future work we will pay more attention on the combination of the parallel
classifiers and especially study the influence of mixtures dependences on the combination
behavior.
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