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Abstract

In our previous work [1], tracking the iso-level sets through total variation scale-space proved to
be a very efficient tool for unsupervised segmentation. Stepping on these results, we propose a new
segmentation approach in a unified total variation framework. The main idea is to use the total variation
energy at each scale to drive the region merging process. We show that this total variation formulation,
which was originally proposed for restoration and enhancement, is also well suited for segmentation. In
addition, this energy functional can be derived from a Bayesian principle using a Markov random field

prior. We demonstrate the effectiveness of our method on gray scale, noisy, color and texture images.

Index Terms

Unsupervised Segmentation, Total Variation Diffusion, Total Variation Regularization, Spatially

Adaptive Segmentation, Region Merging, Energy Minimization, Bayesian model, Multi-resolution.

I. INTRODUCTION

During the last decades a lot of work has been done in integrating partial differential equations in image
processing for various tasks such as restoration, enhancement, segmentation, reconstruction ([2], [3], [4],
[5], [6], etc.). One of the earliest formulations of anisotropic diffusion is due to Perona and Malik [7]. In
this work, the edge detection step is introduced in a diffusion equation in order to simplify the original
image, while preserving the borders of original regions. One of the conceptually limit cases of the Perona-
Malik diffusion is total variation (TV) flow [8]. This diffusion method requires no additional parameters,
it is well-posed and tends to piecewise constant approximations of the original image that are naturally
suited to the segmentation problem. The effectiveness of TV scale-space for the segmentation is shown in
[1], where segmentation results are induced by tracking the iso level sets through the scale-space stack.
The difficulty of the method comes from simultaneous coupling of two processes: image simplification
and region linking. To overcome this limitation, here we propose to unify those processes by applying
a region-merging procedure that minimizes the corresponding energy of TV evolution. Thereby, driven
by total variation minimization, pairs of regions are recursively merged progressively resulting in coarser
segmentation.

Since we can associate with this diffusion a multiscale energy proposed and developed by Rudin, Osher
and Fatemi (ROF) [9], there exist a direct connection with total variation restoration. The ROF restoration
model is one of the most successful tools for image restoration and enhancement and, as we show, it can be
equally used for explicit segmentation. Total variation based techniques take advantages of no particular

bias toward a discontinuous or smooth solution. The interpretation of TV restoration as an approximation
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of the original image that has minimal total variation, leads to the design of a segmentation scheme that
looks for a piecewise constant approximation of the observed data. Therefore, this technique is achieving
both noise removal and exact edge location through the use of the total variation equation. Another
property of total variation methods is linear contrast reduction. A natural approach to overcome this
drawback is to control the amount of regularization according to intensity changes. The main idea is to
smooth more in the regions of low intensity change and less in regions of high intensity change. Following
this spatial adaptivity, which has proven useful in the image restoration setting [10], [11], [12], [13], we

propose a spatial adaptive segmentation scheme.

The image segmentation problem can be also approached using statistical Bayesian methods [14],[15],
[16] . In this case one seeks the solution which most closely matches the probabilistic behavior of the
original data. So, segmentation can be reformulated as a maximum a posteriori (MAP) estimation problem
which allows the introduction of a prior distribution. In order to account for the interaction among
neighboring pixels, one usually adopts a Markov random field (MRF) image model. In MRF model, we
use the simple potential function which penalizes the absolute differences among neighboring pixels in the
estimate. This particular case of potential function does not penalize discontinuities nor smooth functions,
thus behaving as total variation. Therefore, our approach can alternatively be derived as MAP estimate
using MRF prior.

The outline of the report is the following. In Section II we set the framework by describing or recalling
the concepts of Segmentation Energy, Region Merging and Multiscale Representation. Section III surveys
TV diffusion and TV regularization, their most important features and application in image segmentation.
In Section IV we derive our approach from a Bayesian statistical framework. Section V details the
segmentation process and its important properties. The next Section is devoted to experimental evaluation
of our algorithm. We apply the method to gray scale, noisy, color and texture images. Finally, in Section

VII, we expose our conclusions.

II. SEGMENTATION ENERGY, REGION MERGING, MULTISCALE REPRESENTATION

This section briefly reviews the segmentation problem as an energy minimization problem considering a
general class of energies that contain two terms: an approximation term and a regularization term. Then,
region merging is described as an optimization strategy in order to find the minimum of this energy.

Finally, the whole framework is extended in a multiscale fashion.

October 27, 2005 DRAFT
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A. Segmentation Energy

Segmentation can be described as the process of partitioning an image into a finite set of non overlapping
regions, each of which should be uniform with respect to some characteristic such as intensity level, texture,
etc.

The natural properties that a genuine segmentation algorithm should satisfy are:

« region boundaries should correspond to object edges,

« boundaries should also be simple, not ragged and smooth enough.

Achieving these properties leads to a general variational formulation proposed by Terzopoulos [17] .
According to this paper, most vision problems can be seen as energy minimization problems that can be

globally written as:

E(u) = Ez(u) + AER(u), (1)

where u is a segmented image, E4 is an approximation term, Eg is a regularization term and A\ is
a regularization parameter. The first penalizes distance between the original image and the recovered
model and the second measures unsmoothness of the model. Depending on the theoretical framework,
many segmentation energies are proposed: variational [18], Bayesian [14], minimum encoding [19]. In this
report, the idea is to express the modified Rudin, Osher, and Fatemi Total Variation denoising model [9]
in terms of segmentation energy. Then, using a statistical approach, this segmentation energy is presented
as maximum a posteriori (MAP) estimation of the image given the observed data. In the case of one
dimensional problems, we can use dynamical programming [20] to find the global minimum fast and
efficiently. For higher dimensions, it is possible to apply a Monte Carlo [14] algorithm known as simulated
annealing or the graduate non-convexity method [21]. If we want to avoid overly complex optimization
algorithms, one simplified solution is to apply region merging, which is the approach we propose in the

following.

B. Optimization strategy: region merging

Finding the minimum of functional (1) over the set of all partitions of an image is notoriously in-
tractable. Therefore, to minimize this function we use a greedy region merging heuristics, which results
in a stepwise optimization approach to the global optimization problem. We start with the initial set of
regions and update these regions iteratively to converge to a stable solution. The segmented image can

be represented as an undirected weighted graph G(V,E), where vertices V represent regions and edges E
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represent boundaries between regions (i.e. only neighboring regions are connected by an edge). The edge

weight W; ; between adjacent nodes Vi and Vj measures a distance between those two nodes.

Then, two adjacent nodes should be merged if this operation causes the energy to decrease, i.e. the
weight between nodes is the smallest value among all weights. In this settings, the region merging algorithm

decreases the global energy and can be defined by the following steps:

1) Construction of graph G with initial segmentation: each pixel is a separate region (vertex), with the
four direct neighbors connected by edges of corresponding weights.

2) Remove the edge e;; = {V'i,Vj} from G that has the smallest weight W; ; and merge the nodes Vi
and V3 into one Vij.

3) Update all edges and weights spanning from the node Vij.

4) If the number of nodes is greater than one, repeat steps 2 to 4. Otherwise stop.

This graph based formulation of the algorithm, allows efficient implementation using an adjacency list.

C. Multi-scale extension

One of the most important parameter in computer vision is scale since coherent structure in an image
are only observable on a certain range of scales. Therefore, to each scale should correspond a different
segmentation energy and our goal is to define this multiscale energy. Moreover, multi-scale implementation

usually results in improvements in computational speed and robustness.

One possible way to define energy at different scales, proposed by Koepfler et al. [22], is to consider
the regularization parameter X in (1) as a scale parameter. Thus, increasing A\ we obtain a hierarchy of
segmentation from fine to coarse. The principle of increasing this regularization term results in imposing a
smooth solution that correspond to coarse segmentation. In [22], the authors used the piecewise-constant
Mumford-Shah model as the merging criterion. Here, we introduce a different multiscale segmentation

energy within a variational context.

Our methodology is motivated by a nonlinear diffusion technique called TV flow [8] which preserves only
the most important components through scale, producing segmentation like results. This multiscale-data
representation allows us to define the segmentation energy that correspond to each scale. In the next
section we give the most important properties of this diffusion process that explain the overall behavior

of our segmentation algorithm.
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6 TECHNICAL REPORT

III. SEGMENTATION FRAMEWORK : TOTAL VARIATION MINIMIZATION

Total Variation (TV) minimization was introduced by Rudin, Osher and Fatemi [9] for use in image
restoration problems. The main idea is to minimize the total variation in the image, subject to constrains
involving goodness of fit to the original data. The constrains are imposed using Lagrange multipliers, so

the problem can be formulated as an unconstrained or Tikhonov problem [23]:

min 1/ (u — ug)* da:+)\/ |Vu|dz. (2)
2 Ja Q

u
The main advantage of TV regularization over the other regularization techniques, is that there is no
particular bias toward a discontinuous or smooth solution, in other words it does not penalize edges. The

solution of (2) satisfies the following Euler-Lagrange equations:

Vu
AV (m) — (u—wug) =0, (3)
that can be rewritten as
Vu

One could also consider regularization without the fitting constrains:

min / V| da. (5)
u Q

Then, the corresponding Euler-Lagrange equation can be solved by gradient descent method, i.e. by

marching the following PDE to the steady state:

%:v(é_m, u(t = 0) = up. (6)

The parabolic counterpart to TV regularization appears as a special case of anisotropic diffusion called
TV flow [8]. The basic idea here is that the image is diffused more where edges are not present (i.e.
denominator |Vu| is small) and less where edges are present (i.e. denominator |Vu| is big). The main
property of this evolution is that it tends to preserve edges producing piecewise constant, segmentation-
like results, as can be seen in Fig. 1. On that figure one can observe that the TV scale-space is a
family of segmentations of the initial image, with larger values of the scale parameter ¢ corresponding
to segmentations at coarser scale. The amount of energy at every scale naturally defines a segmentation
energy associated with TV evolution. Therefore, to induce segmentation, it is necessary to define this
energy along the evolution.

Notice, however, that there exists a direct connection between TV regularization and TV diffusion.

If one time-marches equation (6) for n time steps ¢, = nAt, then the obtained image is approximately
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(a) (b) (c) (d)

Fig. 1. Total Variation Diffusion at different scale levels ¢, dt=0.025. (a) t = 2, (b) t = 4096, (c) t = 16384, (d) ¢t = 65536.

equivalent to the solution of problem (2) with ¢, = A small. So roughly speaking, the diffused image at
time ¢ corresponds to a regularized solution with regularization parameter ¢. This formulation has two

main interest:

o If we interpret time as a scale, than the corresponding regularization parameter could be also consid-
ered as a scale.
o It makes the TV regularization functional appear explicitly as the right one to be associated with TV

diffusion.

This bring us to the conclusion that total variation minimization can be an effective algorithm for mul-
tiscale segmentation. The implementation of such an algorithm naturally results in a recursive region
merging strategy explained in II-B. Since the behavior of this algorithm corresponds to TV flow, the next

section briefly reviews the main properties of this diffusion.

A. Effects of TV diffusion

For a better understanding of how TV flow influences an image there is a need for an exact analytical
solution. This is possible to derive in 1D discrete space [24], [25] but starting from 2D topology it is no
longer possible to obtain an exact solution to the problem. Nevertheless, one can find explicit solutions for
some important particular cases that yield good approximations for the general 2D case. In the following,
we give the results developed in [26] for two constant regions in R2. If we consider the simplest case in
2D with only two constant regions (Fig. 2), defined as

u, TEN

u= (7

Uua, T e Qz,
it is possible to calculate the evolution speed of pixels. Pixels within the regions with the same value
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Fig. 2. Piecewise constant image of two regions.

evolve linearly with the same speed. Indeed define:

9% 4
+‘ |Qilj" ’U/Z<’U/J
& (®)
_‘BQI'J‘ Ui > Ui
1l i 'L

where |Q;] is the area of Q;, |0Q;| is its boundary length and |0Q; ;| = |0Q; N0Q;|. Then w;(t) is given by
ui(t) = uz(O) + 6it. (9)

Considering this equation, there exists a finite time 7' > 0 such that for all ¢ > T the image becomes

constant
u(t) = u || + uz Qs
[Q1] + Q2]

, V> T, (10)
i.e. evolving to the mean value of the whole image. These results show the following;:

1) TV diffusion tends to preserve the exact edge locations. That brings us to conclude that the analogue
segmentation procedure would respect object boundaries.

2) If we define the local scale of the object as the ratio of the area of an object to its boundary length,
than the intensity change is inversely proportional to this local scale and is independent of the
original intensity. So we can conclude that in the segmentation algorithm, properties of the objects
define the merging speed.

3) The steady state is the mean value of the original image that results in recognizing the whole image
as one object at the final segmentation step.

These conclusions, although developed for the precise and simple cases, give very important insights for

better understanding the effects of TV diffusion (i.e. TV segmentation).

B. Piecewise Constant Image Model

The next important example is shown in Fig. 3, in which we demonstrate the behavior of TV model

for two different statistical cases: where the regions’ distributions have the same mean but different
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variances and different means with different variances. Fig. 3(a) consists of 4 regions whose intensities are
generated from four Gaussian distributions with identical means: N(160,702), N(160,202), N(160,130%)
and N(160,70%). We measure the mean value and standard deviation of regions through TV evolution
that are shown in Fig. 3(b,c) respectively. As expected, the mean value remains constant through scale
while the standard deviation of each region tends with different speed but very fast to zero. In this case,
we need to measure the second order statistic (variance) of each region in order to induce the correct
segmentation. In the Fig.3(d), regions are generated randomly from four Gaussian distributions with
different means and variances: N (90,702%), N(30,20%), N(240,130%) and N(120,702). Here, the regions
change their mean values with constant speed toward the steady state solution (i.e. mean value of the
entire image). More specifically, along evolution we observe a sequence of ”break points” that corresponds
to times at which regions merge and continue evolving with changed speed according to equation (8).
As in the previous case, the variances very quickly go to zero since the diffusion process first changes
the pixels values that decrease the total variation the most, i.e. the pixels that lie in the tails of the
distributions. This makes the effects of noise removing more obvious and explains why the corresponding
segmentation algorithm is not sensitive to noise. In this case to obtain a precise segmentation we need
to measure the first order statistic (mean), while the variance does not provide useful information. In
summary, we can conclude that first order statistic is a valid measure for region description if they have
different mean values. Therefore, we adopt the piecewise constant model for the approximating function

u, except in the special cases where first order statistic is not discriminant, which we treat separately.

IV. FROM MAXIMUM A POSTERIORI PROBABILITY ESTIMATION TO SEGMENTATION ENERGY

In this section, we give an alternative derivation of segmentation energy using a stochastic image model.
We follow a Bayesian approach, in which image segmentation can be regarded as a maximum a posteri
probability (MAP) estimation problem.

It is assumed that the entire image domain is composed of a regions {R;}, generated by a probability
distribution p;(U,u;), where u; are the parameters of the distribution. Here, for the sake of simplicity, we

consider Gaussian distribution

pi(U () i) =~ exp {—M} (1)

270 207

where u; represents the mean y; and variance o7 of the region R;, u; = (u;,07). The observed picture
values are supposedly drawn from this distribution, that is, we assume that image data inside region R;

are independent and identically distributed (i.i.d) with distribution p;(U(z,y)|pi,0?). Thus our problem
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(a) Original image: £ = 0 (d) Original image: t = 0.

250)
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(b) Change of mean value (e) Change of mean value

through scales. through scales.

-
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c¢) Change of standard
(©) & (f) Change of standard
deviation through scales. L
deviation through scales.
Fig. 3. Two possible region’s distributions: (a) four Gaussian distributions with same mean but different variances, (d)

four Gaussian distributions with different mean and different variances.

is to find the MAP estimate of the best model for a given image:

33
I

arg max,, p(uluo)

= argmax, {p(uo|u)p(u)/p(uo)}

= arg max, {In p(uo|u) + In p(u) — In p(ue)} (12)
= argmax, {In p(uo|v) + Inp(u)}

= argmax,{F(u) + Er(u)}.
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Therefore, the first term is the log likelihood function of the parameters given the data:

In L(ulue) = 1In {pluclu)} = n{[T,,) pluo(=, y)lu) }

=10 {1, oy, Piltio(@,9) u2) |

=10 {TTx Mwen, vaar oo { 255 1}

=Y g, E(z,y)ERi (—%anW — %lna;-z - %) .
In the previous section we adopted the piecewise constant image model that imposes zero variance over
the entire image. Than, in our stochastic model the variance of each region o; can be approximated by a
small unique constant o and u; becomes p;. Then the first term of the segmentation energy, i.e. the data
fidelity term, is:

Baw)= 553 Y (uolay) — i) (149

R: (z,y)€R;
In order to define the second term in the MAP model, the prior distribution of u, a common choice is a

Markov random Field (MRF) model. Techniques based on MRF models have proven to be very useful
in pixel labeling problems such as segmentation because they take into account spatial dependencies of
neighboring pixels. Let S = {s = (z,y)} be a two-dimensional lattice. A clique ¢ is a subset of S in
which each site is neighbor of all remaining sites (we will restrict to cliques of 4-point neighborhood) and
let C' be the set of all cliques. Now, if we define u as a MRF on S, its probability function is a Gibbs

distribution:

> Ve(u)

ceC

; (15)

1
plu) = eap

where Z is a normalizing constant and V. (u) is the potential function defined on the cliques. In particular

we will take each absolute difference of neighboring pixels as a potential function:

lu(s) —u(s')|, s,8' €c
Ve(u) =
0, s,s' ¢ c.
Compared to the quadratic potential function, the major difference is the transition from the L? norm
to L' norm which allows the sharp reconstruction of edges. So, this is a natural choice since it penalizes

the complexity of the model but does not discourage abrupt discontinuities. Then, the log of the prior

distribution of the MRF is:

1
Egr(u) =Inp(u) = - D Juls) —u(s)]. (16)
{s,s"}€c
If we denote the total variation in the image as
TV (u) = / |Vu| dz, (17)
Q
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we can rewrite the regularization part using a discrete approximation of TV as:

Egr(u) = %TV(u). (18)

Thus our problem, ignoring the constant o and Z, is to minimize the functional:

B(u) = Bau) + Br(u) = 3 3 (u —uo(a))? + ATV (u), (19)

zeQ

that turns out to be the same as the Tikhonov regularization functional. In other words, the segmentation
problem can be formulated as total variation regularization one. The first part is recognized by many
authors as the optimal way to calculate the distance between regions. First, it was proposed by Ward
[27] as a total approximation error that is introduced by merging the two regions. Then, this dissimilarity
measure is used by Beaulieu and Golberg in their hierarchical picture segmentation [28], it is also the first
term of the Mumford and Shah functional [18], etc. The second term is mostly used in image reconstruction

[29] and restoration techniques [9].

V. SPATIALLY ADAPTIVE SEGMENTATION ALGORITHM

In this section we give a complete description of the algorithm. We saw that the main idea is to interpret
total variation regularization as a segmentation problem. The main advantage of the TV functional is
that it penalizes neither discontinuities (i.e. edges) nor smooth parts of the image. This results in
preserving the exact location of edges which is a highly desirable property in image segmentation. The
preservation of small scale details is determined by the scale parameter that defines a trade-off between
smoothing/regularizing and data fidelity term. In the case when this ratio is constant through the image,
the smaller-scaled features can be lost as the effects of stronger TV regularization adapted to bigger-
scaled objects. To be able to capture different scaled objects, it is necessary to adapt the amount of
regularization at an image location in a spatially adaptive way. Spatial adaptivity has been extensively
studied in image restoration and enhancement literature [10], [11], [12], [13]. Within a piecewise constant
model, it is desirable to put relatively more weight on the regularization part while preserving small scale
details imply less regularization, smaller scale parameter. To achieve this spatial adaptivity, the weighting

factor is chosen to be an edge detecting function:

1

w=-—— 20
e+ |Val® (20)

where 4 is an estimated segmented image u in a previous segmentation step and € is an arbitrary positive

constant. The parameter £ allows a more direct local control of the adaptivity. Larger values of &
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correspond to less variation in the weighting factor and more conservative scheme. In our experiments,
for images with range between 0 and 1, we used a value of € = 0.1. The corresponding weighted TV norm
can be written

TV, (u) = /Q (@) |Vl da. (21)

The complete segmentation functional becomes:
1 2
E(u) = §||u — ug||* + ATV, (u). (22)

We applied the adaptive segmentation scheme for natural images where gradients correspond to object
boundaries and the standard scheme when gradients are not necessary proportional to the likelihood of
there being an edge, i.e. noisy, texture images. The functional is minimized using the standard recursive
region merging algorithm explained in II-B. If we follow the variational formulation for the region growing
methods [22], [30], [15], [31], [32], the merging criteria looks for an adjacent region that reduces an energy
the most. Since the total variation energy functional contains a regularization parameter, the regions
that reduce the energy with the smallest scale parameter will be merged first. Therefore, the weight W; ;
between neighboring nodes V; and Vj is defined as the scale parameter A* such that the change of energy

introduced by merging these two nodes is equal to zero:

Wii =X = = R BnGirg) @9

The algorithm consequently merges regions from finer to coarser scale, simplifying the image structure.
This method of continually merging regions through scale, produces a hierarchy of segmentation results,
detecting objects at different scales. The finest scale keeps the small and detailed features while the coarse

scale corresponds to a simple topology.

VI. SIMULATIONS

In this section we illustrate our segmentation algorithm on multiple images: gray-scale, noisy, colour. It
will be shown that the algorithm is applicable to images with multiple non overlapping regions character-
ized by different means and is not restricted to images with only two different means (objects). Moreover,
up to some extension, it is possible to handle images that contain objects with the same mean but differ-
ent variances and we demonstrate how to deal with this type of problems. The attractive properties of

our model is that it is parameter free and not sensitive to initial condition as most of the segmentation
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algorithms are, where it is necessary to chose good seeds or initial curves. Another advantage of the model

is that we do not need to know in advance the number of regions in order to capture them all.

A. Multiresolution approach: gray level images

Fig. 4 shows a hierarchy of segmentation results from fine to coarse scales. Multiple disjoint regions are
captured up to different stage, so the multiscale nature of the objects is evident: some objects are visible
only at bigger scale while other are represented only at smaller scale. The segmentation clearly delineated
the main objects as: the hand, the table, the ball. Notice also that because of the high value of gradient

along the fingers, they are not merged with the hand.

(a) (b) (c) (d) (e)

Fig. 4. Segmentation results obtained applying recursive region growing strategy. Number of regions: a)9999, b)999, c)7,
d)6, e)5.

Next, we demonstrate on Fig. 5 how the TV scale-space evolution simplifies image structure. Comparing
the Figs.4 and 5 it is clear that segmentation and diffusion processes approximate each other. This confirms
our main idea to formulate segmentation technique to be dual to nonlinear diffusion filtering in terms of

the energy functional.

(a) (b) (¢) (d) (e)

Fig. 5. TV Scale-Space. Scale level: a) t = 0, b)t = 454, c¢)¢t = 2212, d)t = 6813, e)t = 14452.
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B. Noisy images

We now illustrate the performance of our approach applied on a noisy image. The previous image (Fig.
4(a)), normalized between 0 and 1, is corrupted with white Gaussian noise whose standard deviation is
0.14. In this case, when an image is corrupted by noise, the adaptive edge detecting function does not
correspond to objects boundaries any more. Therefore, we evolve a non-adaptive segmentation algorithm
on noisy image and obtained results are shown in Fig. 6. Just as in the noise-free case, the algorithm
very accurately locates the objects. Here, we point out that this denoising property of the segmentation
is in accordance with the best known ROF [9] model that was originally introduced for image denoising
and reconstruction. In particular, the regularization term in the functional disfavors oscillations and
encourage the elimination of noise. So, we can conclude that total variation segmentation demonstrates

the advantages of using L' norm for regularization term in denoising applications.

(2) (b) (c) (d) (e)

Fig. 6. Segmentation applied on noisy image. Number of regions: a)9999, b)999, ¢)7, d)5, €)3.

C. Images with adjacent regions with identical means but different variances

Recall that in the derivation of the model we made the assumption that the variance is constant over
the entire image, i.e. regions are characterized only by their mean value. Although this model is sufficient
for segmenting the whole range of natural images, it can not discriminate neighboring regions that are
characterized only by different variances. To overcome this limitation we now consider different variances

for each region o?. Then, the natural logarithm of the likelihood function becomes:

uo(T,y)— )2
In(L(ulug)) = In (Hm (e, 7y oxp { — g })

wo(z,y)—p;)>
= ZR,- E(z,y)eRi (_% In27 — %IHU? - %)

=—2In2r— 3> 5 |Ri|lno? — 2.

This defines the first term of the segmentation energy, the approximation part, while the regularization

term remains the total variation. Then, we proceed with the same region merging algorithm to minimize
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this modified energy. To examine the correctness of this model, we chose an image taken from the literature
[15], composed of two regions generated randomly from two Gaussian distributions with identical means:
N(128,10%) and N(128,352), separated by a S-shaped curve. The segmentation results are presented in
Fig. 7.

(2) (b) (c) (d)

Fig. 7. Segmentation results obtained applying region growing strategy up to different number of regions: a)31622, b)5011,
c)251, d)2.

D. Vector-Valued Images

Our segmentation algorithm can be very easily generalized for vector-valued images, where each pixel
is a vector belonging to RM, M > 1. The components of the vector could correspond to red, green, and
blue intensity values in color images, or to the feature channels gathered from analyzing a texture image,

etc. We view the segmentation problem in terms of solving the nonlinear optimization problem :

1
B) = /Q ||u—u0||2dm'+/\/gw(m)||Vu||d$.

For scalar valued functions, the norm ||.|| is simply the absolute value and for vector-valued images the

norm can be interpreted as the I2 norm:

M

Nl = ugll = | D Wik — ujp)>.

k=1
Just as for scalar images, we use the same principle to merge two neighboring regions described in section

V. Two color image experiments are shown in Fig. 8.

E. Texture Segmentation

A natural approach to texture segmentation is to first represent texture by feature descriptors and then
to apply a vector-valued segmentation scheme. It is clear that the quality of the segmentation will depend

on the extraction of good features for texture discrimination. However, the problem of optimal feature
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(2) (b) (¢) (d)

Fig. 8. Segmentation of a color images. a)Original image of a hand. b)Segmented image of a hand (6 regions). c¢)Original

image of a woman. d)Segmented image of a woman (9 regions).

extraction is beyond the main interest of the presented work. Our goal here is to show the feasibility
of texture segmentation using the total variation segmentation scheme. In order to do this, we use a
simple set of features consisting of the original image and the magnitude of its gradient (Fig. 9 (a)(b)).
The first channel contains a complete textural information and the second channel captures the local
orientation of the texture elements. Then, our algorithm proceeds as in the previous case by coupling

these two feature channels and simultaneously merging regions (Fig. 9(c)). Although, this example uses

(a) (b) (c)

Fig. 9. Feature channels: a) original image, b) magnitude of the image gradient. c¢) Segmented image.

only two texture features, it yields very good results for most cases of two texture discrimination. For
more complicated texture images we consider the texture features generated by Gabor filters [33], [34],
[35]. A particular Gabor elementary function can be used as the mother wavelet to generate a whole
family of Gabor wavelets. We use a particular class of 2D Gabor wavelets proposed in [34]. Using this 2D

Gabor-wavelet transform, images are decomposed into several channel outputs. For the image presented
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on Fig. 11(a) which is composed of five textures, we can see the magnitude response of the Gabor filter

bank on Fig. VI-E.

Fig. 10. Gabor Space.

Since the five texture images consist of dominant patterns (i.e. textures are localized frequency com-
ponents in the form of Gabor elementary functions), it is evident that multi-channel Gabor filtering
represents an effective way to capture textural information. However, all filtered channels do not result in
good texture discrimination. It is assumed that the strength of the responses in regions of local coherent
texture is large and spatially homogeneous which results in high variance. So, the variance of the filtered
images is used to perform a systematic filter selection. We use only a subset of filtered images that have
variances greater than the average variance calculated over entire Gabor Space. Then, the original texture
image is replaced by a multi-valued image containing the selected subset of filtered images. Now, we can
directly apply the previously defined vector-valued segmentation scheme to preform texture segmentation.

Our results are presented on Fig. 11.

VII. CONCLUSIONS

In this report, the total variation approach to unsupervised image segmentation is introduced. We have
shown that the TV regularization can be regarded as both a geometry-driven diffusion scheme, as well

as a segmentation one. We have used the standard Total Variational functional to determine a merging
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(a) (b) () (d)

Fig. 11. Segmentation of texture images. Original images: a), c¢). Segmented images: b) 5 regions, d) 5 regions.

predicate to group regions. One of the main benefits of this segmentation process is that it combines the
most attractive properties of the Total Variation and region merging such as edge preservation, robustness
to noise, parameter reduction and low algorithm complexity. Furthermore, we achieved a greater scale
flexibility by using a spatially varying regularization term. Ultimately, we interpreted our approach in
the probabilistic settings, as the log-likelihood of the observed image data given a Markov random Field
model. Finally, we validated the effectiveness of our algorithm by segmenting gray level, color and texture

images.
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