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Abstract—This paper presents a progressive coding scheme enables the decoder to construct a model at different resolu-
for 3D objects, based on an overcomplete decomposition of tions simply by proper stream truncation to meet a well-chosen
the 3D model on a sphere. Due to increased freedom in the 40 _gistortion trade-off. In the same time, a flexible represen-
bases construction, redundant expansions have shown interesting, _,. . - . .
approximation properties in the decomposition of signals with tation provides the_ possibility to manipulate th? model !n the
multidimensional singularities organized along embedded sub- compressed domain, to decode the model at different sizes, or
manifolds. We propose to map simple 3D models on 2D spheresfrom different viewpoints, for example. Towards this objective,
and then to decompose the signal over a redundant dictionary of we first propose to move away from restrictive representation
oriented and anisotropic atoms that live on the sphere. The signal techniques on non-uniform grids, by resampling 3D data on

expansion is computed iteratively with a Matching Pursuit algo- . . f . .
rithm, which greedily selects the most prominent components of a regular spherical grid, thus reducing the dimension of the

the 3D model. The decomposition therefore inherently represents input data into a 2D data set. A 3D surface which can be
a progressive stream of atoms, which is advantageously used inrepresented as a function on a 2-D sphere is a genus-zero
the design of scalable representations. An encoder is proposedsuyrface which has only one intersection point with each radial
that compresses the stream of atoms by adaptive coefficient ine from the center of the point cloud. We will reference to
quantization, and entropy coding of atom indexes. Experimental th dels asimol i tar-sh dels. Next
results show that the novel coding strategy outperforms state- €Se models aample genus Zer@rs ar-shapenodels. INexi, .
of-the-art progressive coders in terms of distortion, mostly at We show that the representation of more complex models is
low bit rate. Furthermore, since the dictionary is built on feasible by decomposition into several spherical mappings. A
structured atoms, the representation simultaneously offers an representation defined on a regular grid excludes the need for
increased flexibility. This enables easy stream manipulations, .,qing samples positions, and enables the usage of 2D signal
and we finally illustrate this advantage in the design of a view- t f ding techni for 3D del

dependent transmission scheme. ranstorm coding techniques for MOoagels.

Inspired by the good efficiency of discrete wavelet transform
for image compression, the first choice would be the use of
the spherical wavelet transform for the representation of 3D

The widespread use of 3D data in many areas like gamingbdels. However, similarly to contours in natural images, 3D
or entertainment, architecture, robotics, medical imaging, gsbjects often present numerous multi-dimensional singularities
ographic information systems, has created an essential néest are organized along embedded submanifolds. It has been
for efficient compression of 3D models. On the other sidghown that wavelets are not optimal at representing such
the increasingly large variety of decoding engines, with hefeatures like contours because they cannot deal with the
erogeneous capabilities and connectivity, imposes a need debmetrical regularity of these characteristics. We therefore
multi-resolution representation, as well as low-complexity dgropose to represent the 3D model as a series of oriented, and
coders, based on generic purpose hardware. The most commeisotropically refined functions taken from a redundant dic-
approaches for 3D data representation are based on polygaiwlary of atoms. These atoms are edge-like functions living on
meshes, which are described by both geometry (i.e., the pakie 2D sphere, which can take arbitrary positions, shapes and
tion of vertices in space) and connectivity information, as weflrientations. In order to capture the low-frequency components
as optional information about normals, colors and textures.df the 3D model, low frequency atoms built on 2-dimensional
generally results in models built on arbitrarily defined and nograussian functions finally complement the dictionary. We pro-
uniform grids, which lead to efficient decoding performancgose to use the iterative Matching Pursuit algorithm to greedily
on dedicated hardware. Such representations stay howewsitd the signal approximation. Matching Pursuit (MP) inher-
quite voluminous, and do not provide a lot of flexibility forently produces a progressive stream of atoms, which can be
adaptation to the requirements of specific applications, or decoded with a reduced complexity. A coefficient quantization
the constraints imposed by the decoding engine. step, as well as an entropy coding stage for atom parameters

The aim of this paper is to propose a novel coding scherage proposed to generate a progressive and flexible compressed
for 3D objects, which can provide a progressive representation
with flexibility in the stream manipulation, whilst achieving 15 mesh has a genus g, iff one can cut the mesh along 2g closed loops
good compression performance. A progressive representatidhout disconnecting the mesh

I. INTRODUCTION



representation of the 3D model. The proposed encoder offéeen introduced by Hoppe in [5]. A triangular manifold mesh
better compression performance at low rate, compared isorepresented by a base mesh followed by a sequence of
classical shape compression methods, while still providirsgiccessive vertex split refinements. Taubin has introduced
interesting scalability properties. Experimental results shaWe Progressive Forest Split (PFS) scheme [6], which highly
that the PSNR gain of the proposed coding scheme over tieeluces the number of levels of detail, and thus unnecessary
state-of-the-art schemes even reaches 3dB at low bit rateformation. A forest split operation is in essence described
In the same time, the MP encoder produces a completély a group of consecutive edge split operations. Together with
progressive stream, which can be efficiently truncated at aihgpological Surgery (TS), PFS represent the core of 3D mesh
arbitrary rate. We finally demonstrate the increased flexibiliyoding in the MPEG-4 standard.
of the proposed representation by presenting a view-dependerA common characteristic of multi-resolution mesh-based
coding algorithm, typically useful in interactive application&ompression schemes mentioned above is that most of the
with scarce bandwidth resources. geometry information of a coarse mesh is embedded within a
This paper is organized as follows. In section Il we give afiner mesh, except for a set of vertices or edges that result from
overview of related work on 3D model compression schemesrtex or edge split operations. This kind of surface sampling
and redundant expansions. Section Ill focuses on the calves not necessarily lead to the best approximation at a given
struction of the over-complete dictionary adapted to 3D objersolution. On the other side, by representing a 3D model as
properties, while in section IV each step of the proposed 3Dcontinuous function on a 2-d surface, positions of vertices
object coding scheme is described in more detail. Sectionave determined by uniform sampling of this function so they
presents experimental results, and comparisons with statease different from one resolution to another. This results in
the-art algorithms. In section VI we explain how the proposeghjual approximation enhancement over the 3D object surface,
scheme is used for view-dependent applications and presehich is an important advantage of 2-d surface methods versus
the obtained results. Finally, Section VII concludes the papenesh-based methods. Moreover, the translation of a 3D object
into a continuous space offers a possibility of employing
Il. RELATED WORK various signal transformation techniques towards building fully

, rogressive representations.
Numerous works have addressed the coding of 3D rnOd‘Q‘Q’Amongst the alternatives to mesh-based approaches, and

and we just mention here the most relevant ones in the Contgﬁhaps closer to the approach proposed in this papei@ahr
ofr:he prgsten'([j papder.b Tr|1De f|r§t miSh georgletryd tc:pmplress Sweldens [7] proposed one of the earliest works that repre-
stc_eme,dw; ro ulcef y e(;an_ng I[ ] W?Sd _assz;ge d sent 3D models as functions defined on the surface of a sphere.
(s)rlpsgC 3“Tm%i ta}ns ?n Imp 3mer(;(: f'n t'[ ] aﬂ They introduced a lifting scheme to construct bi-orthogonal
pen " ['t]. N d f ne:jng etf] are or hgre b'c; ormt§ npsi, \_N.tossepherical wavelets with customized properties. Shape compres-
conneclivity IS detined with -anarching bit per trangie, 1 Eion using spherical wavelets has become recently an active
. _ ffea of research. The progressive coding scheme introduced
the next triangle has t.o be attached to. I_n OpenGL, trlanglgg Khodakovsky et al. [8] uses wavelet transform, zerotree
are attached alternatively on left and right edges, and g ding and subdivision-based reconstruction to improve the

;:onhngctlwty |r::]ot[mat|0{1 IS trﬁnsr?]'tted't\;he drawback ?f thi ompression ratio. Hoppe and Praun [9] describe a shape com-
ect_nqu.Je 'Sh a tmosh m?s best ave 'ttlcdetas many face sion technique using spherical geometry images, which
vertices. each vertex has fo be transmitied twice, in avera present the surface remeshed into a regular 2D grid. In

Taubin and Rossignac later introduced the Topologlcg mparison to ordinary image wavelets, spherical wavelets are

_Surger_y (TS) scheme [4], Wh'c_h is a single-resolution ma hown to provide better compression performance for surfaces
ifold triangular mesh compression scheme that preserves{ g

L ; . . t can be nicely parametrized on the sphere. However, the
connectivity. After extensions to arbitrary manifold meShe?‘eIated compression techniques suffer from rippling artifacts
TS has become part of MPEG-4 standard. In TS, Faces £ surfaces with long extremities.
interconnected by dace forest spanning the dual graph of
the mesh?. The edges that do not belong to the face forest]l. REDUNDANT REPRESENTATIONS ON THE2-D SPHERE
then define avertex graphand interconnect all the verticesa  preliminaries
of the mesh. A simple polygon connectivity mesh is obtained
by cutting a mesh through a vertex graph, and is eventua“x
encoded along with the vertex graph.

Redundant expansions have shown interesting approxima-
n properties in the decomposition of signals with multidi-
. . . . ..mensional singularities organized along embedded submani-
In order to obtain a multi-resolution representation wit S . .

. olcg]s, like images [10, 11]. Redundant expansions provide a
mesh-based coding schemes, several works proposed me : . - .
of of freedom in the design of the bases or dictionaries.

decimation techniques, which reduce the number of tnangl(? 'particular, it is possible to include rotation or anisotropy

vertices and edges. They provides initially a coarse MeH the basis functions. These two properties are keys to the

model that progressively refines by insertion of more d%'evelopment of efficient algorithms for the approximation

tailed information. One of the first progressive transmissioqt multi-dimensional signals. In such a context, separable

. . . . 0
schemes for multi-resolution triangular manifold meshes h%ﬁhogonal bases like wavelets, have shown their limitations

2The dual graph of a polygonal mesh is the graph composed of the mé@htermslmc apprQXimatior_] rate{ Wh"St t.hey St?}’ optimal for
faces as dual graph nodes, and the internal mesh edges as dual graph edgBs continuous signals with point-like singularities.



Since 3D models are signals composed of multi-dimensional
features, we propose to represent them as a series of atoms,
taken from a redundant dictionary of functions. Dictionaries
are in general constructed as a set of different waveforms,
where each waveform is defined by a generating function.
Each generating function can serve as a base for building
the overcomplete dictionary, simply by changing the function
parameters or indexes (e.g., position or scale indexes). While
there is a priori no restriction on the construction of the dictio-
nary, its construction from one or several generating functions
advantageously leads to structured dictionaries, whose indexes
directly correspond to atom characteristics. Furthermore, tiveo generating functions. First, in order to efficiently capture
storage or transmission of the dictionary becomes unnecesstg, singularities, we use a generating function that resembles
since atoms can be reconstructed only from their indexes. to a piece of contour on the sphere. In the spaé&r?), it

The construction of the dictionary is certainly the most imean be written as:
portant step for efficient approximation algorithms. Increasing 1 (22 + 1?)
the number of functions generally increases the redundancy  grect(v) = e (43:2 — 2) exp (—4) , (2
of the dictionary, and thus the approximation performance;
there is an increasingly high probability that prominent sign@here i = (z, y) is a vector inR2, and K is a normalization
features can be efficiently captured by a single atom. In the:tor. Note that this function is very similar to the one that
same time, it also increases the size of the dictionary, and Mgk peen efficiently used for images coding in [10, 11], which

probably augments the coding rate, and the search complexiyGaussian in one direction and its second derivative in the
We now discuss more in detail the dictionary construction f@fher direction:

the overcomplete expansion of simple 3D models on the 2-D 1
sphere. It involves the three following steps: Gimage (V) = 7 (42 —2)exp (— (22 +¥%)). (3

« definition of the generating function(s) on the sphere, . , . .
. definition of atoms motion on the sphere, and their The function defined in Eq. (2) differs however from Eq. (3),

rotation around their axis in the sense that it generates longer atoms (slower decay) in
. implementation of the ani’sotropic scaling of atoms the direction of Gaussian, but with the same sharp decay in the
. he signal . . . . _direction of its derivative. This leads to improved approxima-
Since the signal to be apprquated S Qe Inedwln Hfn of singularities on the 2D sphere. The generating function
space of sqgarg-mfcegrable funCt'OQS ona unit 2-spBete o Eq. (2) can further be expressed in polar coordinates, as:
denoted as“(S*) (i.e., f(0,¢) € L*(S?)), the atoms have

obvpusly to live in the same space._l.gedenotg a generatlng Great(py ) = —— (4p2c032@ _ 2) exp (_) _ (4)
function on the 2D sphere. By combining motion, rotation and K 4
scaling, we form an overcomplete set of atogpswherey = cgy inverse stereographic projectioh! : R2 — §2, the

(0, ,%,a1,a2) € I'is the atom index. This index is describeqyonarating function is mapped on the sphere, and can be
by 5 parameters that respectively represent the position vWitten as:

the atom on the spher®, ), its orientation(v), and the

Fig. 1. Stereographic Projection

scaling parameter§i;, a2). In order to finally map the atoms grr(0,0) __ b (16 tan2 <90052¢ _ 2)>

on the sphere, we use an inverse stereographic projection Ky 2

from the complex plane, to the 2D sphere. The stereographic . exp < tan? (9>> (5)
projection [12] at the North pole, can be expressedbas 2 ’

A \
5% — C, whereC represents the complex plane (see Figure ihere | is a normalization constant. The generating function
It can be written as : gur defines an edge-like atom that is centered exactly on the

®(w) = T = pel® = 2tan (g) el (1) North po]e. N
) Then, in order to also efficiently represent the smooth areas
with w = (0,¢) and0 < 6 < 7,—m < ¢ < 7. in the 3D models, we propose to use a second generating

Since the stereographic projection is bijective, any poifinction for the construction of the dictionary. The second
with polar coordinates(p,») and represented by a vectokynction is built on a two-dimensional Gaussian function in
U = (p cosp, p sing) on the tangent plane, can be uniquely 2 g2y

mapped back to the 2D sphere. We use that property in the 5 (0
grr(0,p) =exp | —tan” ( 5] |- (6)

design of the dictionary, as presented below.

) ] Eq. (6) represents an isotropic function, centered at the North

B. Generating functions Pole. The extension of the dictionary to contain atoms built on
Under the assumption that simple 3D models are mostiyo generating functions actually improves the approximation

composed of smooth surfaces, and singularities aligned @te, but does not increase the search complexity. In our
pieces of great circles, we propose to build the dictionary ovienplementation, the dictionary is indeed divided into two



distinct parts, one with LF atoms (LF part) and the othevhere the constanf’ is a normalization factor. The coordi-
of oscillating or high-frequency atoms (main part). We thenates of the vector after scaling,, become :

successively use one sub-dictionary, and then the other, but
not both at the same time, so that the search complexity is not
augmented. Ys = agy = azpsing . 9)

In polar coordinates, it translates to :

ps=1+/12 + y2 :p\/a%cos%o—}—a%sinch

a281NP

Ts = @1 = a1PCOS P

C. Motion on the sphere

Now that the generating functions have been defined, we
form the redundant dictionary by applying geometrical trans- s =arctan Ys _ arctan .
formations to these functions, on the 2d sphere. In other Ts aijcosy
words, the dictionary is constructed by moving the generating Anisotropic refinement of high frequency atoms, as given
functions on the sphere, by rotation of the functions around Eq. (2), is obtained by substitution of the polar coordinates
their axis, and by anisotropic scaling. with the ones obtained after scaling. They can be written as :

Motion and rotation belong to the group of affine transfor- 1
mations of the unit 2-spher§?. They are both realized by a Grect(p, 0) = —— (4aip? cos® p — 2)

(10)

single rotationo € SO(3), whereSO(3) is the rotation group K 9/ o o _

in R3. It is equivalent to apply the unitary operatbl, on . exp P (af cos® ¢ + a3 sin® p) )
the matrix of cartesian coordinatés, y, z) of the unit sphere, 4

denoted as:

By inverse stereographic projectioh—! : R? — S2, the
P.=T,P = R(W)UO)R(p)P, o0€SO(3), (7) reshaped atom is mapped on the sphere, and can be written

as :
where {P}3. n is the matrix of (z,y, z) coordinates of the 9
non-transformed unit sphere, ag®, }s. n is the matrix of gy r(0,)=—— (16a§ tan? ~ cos® ¢ — 2)
(z,y, z) coordinates of the transformed unit sphere. The gen- 2
erating function, as defined in Eqg. (5) on the non-transformed . exp (_ tan2 0 (a% cos? g + a2 sin? (p>> . (12)
unit sphere, is therefore transformed into a rotated atom, 2

displaced on the particular point,p) on the sphere. The yhereF, is a normalization factor. On the other hand, the low-

rotation matrixR(+) is given by: frequency atoms after anisotropic refinement, can be written
cosyp  siny 0 as -
R(v) Sénw cogw (1) grr(0,p) = exp (— tan? 3 (a% cos? ¢ + a3 sin® <p)> . (13)

and is responsible for the rotation of the atom around its axisIn summary, the dictionary is obtained by anisotropic scal-
by a desired angle). The matriced/ () and R(y) introduce ing, rotation and displacement of atoms, which is implemented
motion of the atom over the sphere, by angleand . The Dby first building the generating function on a unit sphere pre-
matrix R is already defined above, and the mattiXd) is Viously transformed due to rotations. Then anisotropic scaling

given by : is applied on the displaced atom, as explained above. Such a
) process is performed for both oscillating atoms as expressed

cosf 0 sind in Eq. (12)), and for low-frequency ones (see Eq. (13)). By

U(o) = 0 10 a proper choice of the transformation parameters, one finally

—sing 0 cosd obtains a overcomplete dictionary of functions, that is used to

It is important to note that the order of these matrices [§Present simple 3D models. Sample atoms are illustrated in
strictly defined. The atom first rotates on its axis, on the Norfr{gure 2.

pole, and then moves by,(p) on the sphere.
IV. MATCHING PURSUIT ENCODER FOR3D OBJECTS

D. Anisotropic refinement of atoms on the sphere A. Matching Pursuit overview

In order to well approximate the elongated characteristics of INding the sparsest representation of a simple 3D model,
3D models, we further deform atoms by anisotropic refinemefffth functions taken from a redundant dictionary, as the one

that scales the generating function differently in each directigh®Scribed before, is in general an NP-hard problem. Matching

We perform the scaling operation on the plane tangent to tﬁgrsuit [13] provides a solution to this approximation problem,
North pole and then map the resulting atom on the spl&re with a tractgble compptaﬂona} complexn_y. Under |_ts generic
by inverse stereographic projection as described before. @M, Matching Pursuit (MP) is an algorithm that iteratively

# = (z,y) denote a vector in the tangent plane; the anisotropﬁ'@composes a signal into a linear combination of waveforms,
scaling operator is then expressed as: or atoms. Interestingly, very few restrictions are imposed on

the dictionary construction, besides the fact that it should at
D(ay,a2)g(v) = Cg(arz, azy), (8) least span the space of the signal to represent. In other words,



@ (b) () (d)

P = %7,¢) = 0,(11 = 870’2 = 8 C)

a3

Fig. 2. Anisotropic atoms: a) on the North polé & 0,0 = 0), ¥
us
4

0=7,0=7%,¢%=7,a1 =16,a2 = 4; d) Low frequency atomd =

the dictionary is defined as a set of vectdbls= (g,),er B. 3D-SMP encoder
in a Hilbert spaceH. In order to be able to represent each
vector in H as a linear combination of unit norm vectors iner

D, the dictionary must satisfy the completeness property (i'eersions of 3D models. The block diagram of the proposed en-
Span(D) = H). , i i coder, called 3D-SMP (3D model encoder based on Spherical
.Let f,e H denote gfuncuon Wh'Ch we want to apprpx'mat%/latching Pursuit), is represented in Figure 3. Matching Pursuit
with a linear expansion oveb. With MP, anN-terms linear gqja.ts 4 series of atoms from the dictionary described above,
expansion is obtained by successive approximation&of it their relative coefficients. Atoms are then sorted along
through orthogonal projections on dictionary vectors: the decreasing magnitude of their coefficients. The coefficients

N are then uniformly quantized, with a decaying quantization
f = Z (R"f,0,) Gy, + RN*Lf (14) range. This take_s adva_nt_age o_f th_e property that the energy of

n=0 Matching Pursuit coefficients is limited by an exponentially

oo ) ) ) ) decaying upper-bound. A piecewise linear approximation of

whOereR f is the residue a;]ftenz—l |terat|oas_of th_e algohnthm that upper-bound is used for quantization, inspired from the
(ﬁ fb: 7)- One_must EL oosg,hatheac |t_eraflon, _t e aloRheme proposed in [14]. Quantized coefficients, and discrete

t atn est approxm;]at((ef% _f’ W't_ the maximal projection 4i,m indexes are finally encoded with an arithmetic coder [15],
| (B"f.g,,) | over the dictionary: in order to obtain a compact representation. Interested readers

n n are referred to [11] for more details about quantization, and

R f.an) | = sumer (R g (@8) e o o e e a

When N — oo, under assumption that the dictionary is Note that an initial resampling step may be required in order

complete, it can be shown that; to map the input model on a 2D sphere, with a regfary)
grid. Since the proposed scheme requires the input 3D data to

= be a 2D set of radius values representing a funcfior? —
f= Z (B" £, 930) 9 (16) R defined on 2-spheré? as Rii = f(@,g<p), a reﬁsampling
n=0 step may need to be introduced, depending on the format of

Interestingly, it has been shown that the residue decax® input model. Starting from any common format 3D model,
exponentially in a finite dimensional space, assuming compléke initial block of the codec extracts a set of vertiggs=
dictionary [13]. Under the same assumption, the signal cémi,y:,z;) € I, I C R® which represent a point cloud of a
be exactly recovered after a possibly very large number 3P model. It then calculates the samples values on the sphere
iterations, i.e.,,RN*'f — 0 when N — oo. The decay by performing an interpolation within neighboring radiuses
rate depends on the correlation between the residue and filgen the point cloud. This method is valid only for simple
dictionary elements, so that the construction of an efficiegenus-zero 3D models, but it can be extended to more complex
dictionary, adapted to the very structure of the sigfials a models by splitting the model into a combination of spherical
crucial step. surfaces, as we will show in the Section V.

Overall, MP offers a sub-optimal solution to the optimal
(sparsest) signal representation problem, since it iterative
approximates the signal, in a totally greedy manner. Howevet, 3D-SMP decoder
it allows for an efficient approximation of the signal by On the other end, the decoder, as represented in Figure 4,
rapidly capturing its most important components, which is dirst performs the entropy decoding and inverse quantization.
interesting property in the design of a scalable coder. In thtethen reconstructs the approximated 3D model as a spher-
same time, it does not impose any condition on the dictionaigal function, by linear combination of atoms whose relative
design, and the complexity at decoder is kept small. weights are given by the MP coefficients. The reconstruction

Our objective is to build on the nice approximation prop-
ties offered by redundant expansions to obtain compressed
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Fig. 4. 3D-SMP decoding scheme

step at the decoder side has a quite low computational cospheres does not necessarily coincide with a great circle on
plexity, roughly proportional to the number of atoms, and thubke sphere. In these cases, a simpler solution would be to use a
the coding rate. more generic surface reconstruction algorithm. The proposed

The decoder can finally generate the decoded 3D object3R-SMP scheme uses the algorithm explained in f17]
the form of a standard polygonal mesh, as accepted by all
modern computer graphics application and hardware. Since V. EXPERIMENTAL CODING RESULTS
the encoder has completely discarded the mesh connectivity .
information of the original 3D model, the decoder has té‘ Preliminaries
generate new connectivity. This problem can be formulated asAs most of the models available are represented as meshes,
a surface reconstruction problem from an unorganized point point clouds, we have implemented a simple method to
cloud, which is still an active area of research, and mamgap the input model on a regular spherical grid. The value
surface reconstruction algorithms already exist (for exampdé the signal at each pointd( ¢) on the spherical grid
[16]). Since we are primarily dealing with simple modelss obtained by performing a nearest neighbor interpolation
parameterized as one spherical function, we can use thebatween four points from the original point cloud, whose
priori knowledge of the(0, ¢) coordinates for each vertex onprojections are maximal on the desired direction of the radius.
the spherical grid and constructsemi-regularconnectivity Furthermore, we use a grid that is uniforméimnde, in order
structure. A mesh with semi-regular connectivity has almott be compliant with fast algorithms for spherical harmonic
all vertices of valence 6 (i.e., six incident edges), except ftnansforms that are used in the signal decomposition.
a few isolated extra-ordinary vertices with valegg€&e The Two models are used in our experiments: Venus and Rab-
connectivity matrix is defined with indexes of three incidertit®. Venus satisfies the assumption of a simple genus-zero
vertices for each face. We target here the construction ofeodel, thus it is represented via one spherical function. Since
triangular mesh, since every polygonal mesh can be redudgabbit is not a simple model, we have chosen to decompose
to triangular. In order to obtain a semi-regular mesh, we céninto three spheres separated by two parallel planes, one
divide the spherical grid into rings limited with two successivbelow the head and the other below the arms of the Rabbit.
values of #, and then triangulate each ring to produce Bach spherical function is obtained by interpolation within
triangular strip. Such a mesh construction is illustrated the point cloud on the corresponding part of the model, while
Figure 5 (a), which shows the triangular subdivision of thiéhe other parts are appropriately smoothed in order to avoid
sphere. The Figure 5 (b) represents the same grid, but applieasting atoms. Afterwards, SMP is independently run on
to the Venus model. All vertices are of valence 6, except tleach of these three spheres and finally gathered into a single
two poles, so that the resulting mesh is indeed semi-regular.

For more complex models whose representation requir&gReCO”S”.“C“O” server is available dmttp://cgal.inria.fr/

. . . econstruction/submit.html .

multiple spheres, the method explained above is not di~the models have been downloaded fromp:/fwww.cyberware.
rectly applicable, since the boundary between two neighboriagn.
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Fig. 5. Generating connectivity matrix: a) Sphere connectivity b) Connectivity on the Venus model.

decomposition by ordering the atoms in a decaying ordsphere. For low pass atoms, the maximal scale is chosen to be
of their coefficient values. One additional atom parameter ig16 of the signal size. Motions and rotations are discretized
introduced to denote the sphere that the atom belongs to. Tinehe same way as for anisotropic atoms.

guantization and entropy coding steps are the same as for thén our implementation, the full dictionary is divided into
one-sphere decompositions. Finally, three spherical functidosv-frequency atomsgrr, and high-frequency ones. Dur-
are reconstructed at the decoder, and point clouds are mergedthe first iterations, the Matching Pursuit algorithm uses
using a surface reconstruction algorithm, as explained in IV-@e low-frequency sub-dictionary, and later switches to the
The original and interpolated models are shown in Figure &nisotropic sub-dictionary when the energy of the coefficients
The interpolation error is expressed with relatié error starts to saturate, or more precisely when :

and in PSNR[dB], as computed with the MESH software leN
The relativeL? error is actually a ratio of RMS (Root Mean i
Square Error), which measures the squared symmetric distance 1212
between two surfaces averaged over the first surface, relativieere C,, denotes a projection aften — 1 iterations. In
to a bounding box diagonaD. The PSNR (Peak Signal Toeach of these sub-dictionaries, the Matching Pursuit algorithm
Noise Ratio) for 3D meshes is thus expressed as: performs a full search to determine the highest energy atom.
D 1 Our implementation uses the Fast Spherical Transform [18] to
PSNR[dB] = 20log (RMS) = 20log (L2> (17) compute the convolution of atoms on the sphere. In particular,
we used in our implementation tr@pharmonicKitlibrary®,
) which is part of theYAW toolbox’. Such a transform allows
B. Implementation to identify the position and rotation of an atom on the sphere,
In the dictionary presented in Section llI, the atom pawhich has the best correlation with the signal. One spherical
rameters obviously take discrete values. In general, a figénvolution allows to determine the parametéisy, ) for
granularity in atom indexes leads to high redundancy, aedch atom with given scale parameters. Therefore, our imple-
likely to high approximation rate. In the same time, it leads tmentation iterates over the scale parameters: for each couple
a large dictionary, and therefore high coding cost. The desig , a,), it computes the spherical convolution between the
of an optimal dictionary is still an open problem, beyond thgorresponding atom on the North Pole, and the residual signal
scope of this paper. Here, we propose to use a dictionagy,code,R" f. The indexes of the convolution coefficient with
mostly built on empirical choices for atom parameter valuege largest magnitude correspond to the position and rotation
First we use the equiangular spherical grid to drive thgarametergd, ,v) of the best matching atom for that pair
values of the position parameters,and ¢; both parameters of scales. The coefficient of that best matching atom is then
are uniformly distributed on the intervdl), 7], and [-7,7), computed with the inner product of two functions defined on
respectively, with a resolution that is identical to the inptthe sphere, given by :
signal. The rotation parameteéris uniformly sampled on the
interval [—m, ), with the same resolution & and . This (R"f,g) = // R"f(0,0)g(8, p)sinddbdey, (29)
choice is mostly due to the use of spherical convolution in 0
the Matching Pursuit algorithm, as explained below. Finallfinally, the algorithm selects, among all pairs of scales, the
scaling parameters are distributed in a logarithmic mannatom with largest coefficient, removes its contribution from
from 1 to half of the size of the input signal, with a granularitythe residual signal, and repeats the whole procedure until a

of one third of octave. The largest atom thus covers half of the
Shitp://www.cs.dartmouth.edu/ ~geelong/sphere/

hitp://fyma.fyma.ucl.ac.be/projects/yawtb/

— const, (18)

SMESH is available ahttp://mesh.epfl.ch



(d)

Fig. 6. (a) Original Venus model; (b) Interpolated Venus model at resolu¥ignx N, = 128 x 128, PSNR=65.7983dBL? = 5.1296 - 10~—%; (c)
Interpolated Venus model at resolutiofy x N, = 256 x 256, PSNR=70.1930dBL? = 3.09278 - 10~4; d) Original Rabbit model; ) Interpolated Rabbit
model on three spheres at resolutidip x N, = 128 x 128, PSNR=64.1790dBL.? = 6.18091 - 10~*.

(b)

stopping criteria is met (e.g., a pre-defined number of atomsterpolated version for 3D-SMP encoflebut decimated to
or an energy threshold). The search algorithm is describedi400 faces (using the Qslim softwdyein order to have a

Algorithm 1. comparison in the same rate region. Different rates for the TG
algorithm are obtained by changing the number of bits per
Algorithm 1 Full search of the dictionary vertex for encoding. As PGC uses its own mesh format, the
for all scale couplesay (), as(k)) do input models are downloaded from the PGC we_lﬁglté'hg
C = convsplR"™ f, g(0,0,0, a1 (), as (k))) basg mesh for the PGC is encoded using TG W|th 8 .blt per
Chow = max C(m.n,p) vertice. Note that the 'rate is actually given by the f|Ie5|zg, or
1<m<Ng,1<n<Ng,1<p<Ny the total number of bits, rather than in bits per vertex, since
0 =0(m); o = p(n);v =v(p) the proposed 3D-SMP coding scheme uses one single mesh
P(j, k) = (R" f,9(0,9,%,a1(j), az(k))) (256x256 or 128x128 vertices in the current implementation)
end for ‘ throughout progressive compression.
Prnas = maxjvk(P(J’ k) It can be seen that 3D-SMP significantly outperforms the
ar = a1(j); az = as(k) state-of-the-art compression methods TG and Alliez-Desbrun,

as well as the PGC wavelet-based coder at low bit rate. MP

then tends to saturate towards high bite rate, as observed

earlier. For the Venus model the performance is slightly better
C. Numerical results than for the Rabbit model. This behavior is actually expected

. ince the resolution of the employed SMP for Rabbit is
Venus and Rabbit models, as reconstructed by the deco&er, nploy
. . . maller. Therefore, we can certainly expect better performance
are represented on Figure 7 and Figure 8, respectively, for . . .
. .for the Rabbit model at higher resolutions. It has to be noted
different numbers of atoms. It can be seen that Matchin

Pursuit rapidly captures the most important features of the o that the input model for the SMP is an interpolated version

. ) : . - 0f the original model, and that this also introduces a distortion,
model and progressively refines the representation with fln[ﬁl’

. . . : . : at is independent of the coding method. Figure 11 shows
details. The type of coding artifacts is quite different thag visual comparison of Venus encoded with 3D-SMP using

the degradations observed in mesh-based coders, and V'S.ufgéf coefficients and resolution 256x256, and encoded with

less annoying at low rate. t can be seen also that the gamtflg)re]f\ PGC algorithm, for the same filesize of 1287B. It can be

representation accuracy is less important when the number en that both coders offer similar performance, but the coding
iterations increases; as expected Matching Pursuit is mos v . . '

L . : artifacts are quite different. The 3D-SMP coder generally
efficient for low bit rate representation of 3D models.

Figures 9 and 10 present the rate-distortion performanceloc(z:f\/ides a smoother approximation of the model, but fails in
. } ) turing the highly textured regions like the hair, for example.
the proposed 3D-SMP algorithm for Venus and Rabbit mode punng ghly textu g ! ! xamp

: e proposed encoder offer an interesting alternatives to
m 2
in terms of both PSNR (a) and® error (b)). They compare classical approaches, with excellent compression performance

the 3D-SMP encoder performance with the following Stat%ft low bit rate, whilst it still brings an inherent progressive

of-the-art encoders: (i) TG: Tauma-Gotsman non-progress . e X PPV
resentation. Additionally, it offers a great flexibility in
coding [19], (ii) Alliez-Desbrun progressive coding [20], an;s/eep S I " Y. | °afg Xaory !

he stream construction, that can be advantageously exploited

(i) PGC: Progressive coding scheme by Khodakovsky . L . — :
al. [8]. Due to the differences in input formats, and coding% adaptive applications, like view-dependent rendering as

approaches, we use the following approach to obtain fair _
performance comparisons between these four very differengP-/www.cyberware.com/samples/index.html
. . http://graphics.cs.uiuc.edu/ ~garland/software/
approaches. The input models for TG and Alliez-Desbryjjim.htm
methods are the models that have been used to obtain thénttp:/www.multires.caltech.edu/software/pgc/
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(a) (b) (d)

Fig. 7. Venus reconstructed after decoding (resolution 256x256): a) 100 coefficients; b) 200 coefficients; c) 300 coefficients; d) 400 coefficients; e) Input
model.

(d)

Fig. 8. Rabbit reconstructed after decoding (three spheres, resolution 128x128): a) 100 coefficients; b) 200 coefficients; c) 300 coefficients; d) 400 coefficients;
e) Input model.

Rate—distortion curves for Venus 15
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Fig. 9. Rate-distortion performance for the Venus model (resoldithx 256) (a) PSNR, (b)L? error.

presented in the next section. interesting to use view-dependent rendering algorithms. In

such cases, the 3D model does not need to be completely

decoded before being displayed, but the rendering can be made

dependent on the viewpoint. The server can transmit in priority
This section proposes a simple application that uses the ihe parts of the model that are visible, while cutting off the

creased flexibility offered by the use of a structured dictionaigvisible parts. View dependent progressive transmission and

of functions, in addition to the progressive nature of the streamndering can therefore significantly improve the performance

generated by the Matching Pursuit decomposition. In scenarigfs3D graphics streaming applications.

where very high compression is necessary, or when the trans-

mission channel represents an important bottleneck, it becomesll the previous work done in this area uses classical 3D

VI. VIEW-DEPENDENT RENDERING
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Rate—distortion curve for Rabbit L2 error for Rabbit
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Fig. 10. Rate-distortion performance for the Rabbit model (resolutizhix 128) (a) PSNR, (b)L?2 error.

the atoms visible only from any given viewpoint. Assume
that the viewpoint can be associated with a window function
defined on the unit sphere (i.ey(d,¢) € L?*(S?)). Such

a window function on the sphere is obtained by an inverse
stereographic projection of a circle on the tangent plane, with
the center at the North Pole and the radpsThe window
function can be expressed as :

! if2tan(g)§p,—7r§<p§7r;
w(,¢) = { 0 otherwise

@) (b)

Fig. 11. Venus with a filesize of 1287B: a) MP; b) PGC.

multi-resolution coding techniques based on mesh simplific ‘
tion algorithms by vertex split operations. For example, Yar
et al. [21] split the 3D model into progressively encode
partitions which are reorganized so that the visible ones ¢
transmitted with higher priority. Zach et al. [22] propose
view-dependent mesh connectivity encoding scheme whi
reorganizes the vertex tree, while Wang and Li [23] emplc

an absolute path coding of vertices. Recently, Bischoff ai
Rossignac introduced theetStreamef24] which performs a
view-dependent front-to-back (in the visibility order) encodini

of 3D models. However, we note that none of the mesn
geometry compression schemes based on wavelets ([7], 9§, 12. The intersection of the unit sphere and the conical surface originating
[8]) does address this issue, even if some solutions inspirean the viewpoint P.

from Region-of-Interest coding in images could be envisaged.

The use of a structured dictionary in the proposed MatchingThis is illustrated in Figure(12), where the tangent plane is
Pursuit encoder presents a great advantage in regards to mastigwn as a line passing through the North pole N. The part of
ulation of the compressed stream. In particular, it allows forthe sphere that is visible from the viewpoint is delimited by a
quite simple extension towards a view-dependent transmissimmical surface formed by the union of all the straight lines that
and rendering algorithm. A 3D model is decomposed into@ass through the viewpoint, and are tangent to the unit sphere.
linear combination of atoms specified by their position anthis part is shown on the Figure(12) as the darker shaded part
scale parameters: it can be partially transmitted by selectiafjthe sphere. Let denote the radius of the circle obtained
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by intersecting the cone and the sphere=(AM A). From the with application-specific requirements, yet taking advantage

similarity of trianglesAOPA and AOAM, it follows: of the structured nature of the redundant dictionary used in
\/ﬁ the proposed Matching Pursuit encoder.
r=Y_— (20)
R, VIl. CONCLUSIONS ANDFUTURE WORK
where R, = OP. From the similarity of triangles\OAM  This paper has proposed a novel approach for the coding
and AOBN, we obtain : of 3D objects. The models are mapped on a 2D sphere and
, decomposed over a redundant dictionary of multi-dimensional
p= = = RZ -1 (21) atoms, which is built to efficiently capture the most promi-
vli—r nent features of the signal. An encoding algorithm based
The radiusp is therefore directly determined by the distancen Matching Pursuit has been used to generate progressive
between the viewpoint, and the 3D model. representations of the 3D objects. The proposed encoder has

To generate a view-dependent reconstruction of the 3&en shown to outperform state-of-the-art progressive coders,
model, each atom,,, 7 = 1, ..., N in the signal decomposition especially at low bit rate. In the same time, it offers a truly
is simply multiplied with the window function. It results in aprogressive representation, with increased flexibility in the
windowed atomyw,,,, which represents that part of the atomstream manipulation. The structured nature of the dictionary
visible from the viewpoint? : has been advantageously used in the design of a simple view-
22) dependent rendering application, which may prove to be useful

in service with important transmission bottlenecks. The pro-
Only the atoms that keep a significant contribution aftgrosed algorithm still leaves numerous possibilities for future
windowing are finally considered for view-dependent trangnprovements. The interpolation step, which uses the very
mission and rendering. The selection of atoms is based on ti&sic nearest neighbor method, has an important influence that
comparison of their maximal value, with a predefined relatiyeenalizes the compression performance. We are also currently
thresholdd (%). If ¢, - gw., (0, ) > ¢ for any pair(6, ), working on better parametrization of input models, and on
the atomg,, is transmitted. generalizing the multiple spheres decomposition approach for

It has to be noted that the uniform window proposed abote coding of more complex 3D models. Finally, since it
obviously attributes the same importance to all the atoms ths been shown that redundant decompositions are mostly
are visible from the viewpoinP. Other windows are however beneficial at low rate, the proposed scheme can offer a an
straightforward to implement. For example, if one wants tefficient coding solution for base layer in scalable applications.
emphasize the importance of atoms closer to the view directiBimilarly to hybrid image coding schemes [25], enhancement
(OP), a Gaussian window could be used, as given by :  layers based on spherical wavelets, for example, could nicely

dtan2 8 complement the proposed scheme for high bit rate coding.
exp( 232 2) if 2tan (g) < p,

wg(8, @) = N VIIl. A CKNOWLEDGMENTS
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@) (b) (©) (d)

Fig. 13. View dependent coding of Venus= r; § = 1%; 42.8% of the model is transmitted (214 out of 500 atoms): a) visible part of the decoded model;
b) difference between the original model and the decoded model for the visible part; c) invisible part of the decoded model; d) difference between the original
model and the decoded model for the invisible part.



