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Abstract— This paper presents a progressive coding scheme
for 3D objects, based on an overcomplete decomposition of
the 3D model on a sphere. Due to increased freedom in the
bases construction, redundant expansions have shown interesting
approximation properties in the decomposition of signals with
multidimensional singularities organized along embedded sub-
manifolds. We propose to map simple 3D models on 2D spheres
and then to decompose the signal over a redundant dictionary of
oriented and anisotropic atoms that live on the sphere. The signal
expansion is computed iteratively with a Matching Pursuit algo-
rithm, which greedily selects the most prominent components of
the 3D model. The decomposition therefore inherently represents
a progressive stream of atoms, which is advantageously used in
the design of scalable representations. An encoder is proposed
that compresses the stream of atoms by adaptive coefficient
quantization, and entropy coding of atom indexes. Experimental
results show that the novel coding strategy outperforms state-
of-the-art progressive coders in terms of distortion, mostly at
low bit rate. Furthermore, since the dictionary is built on
structured atoms, the representation simultaneously offers an
increased flexibility. This enables easy stream manipulations,
and we finally illustrate this advantage in the design of a view-
dependent transmission scheme.

I. I NTRODUCTION

The widespread use of 3D data in many areas like gaming
or entertainment, architecture, robotics, medical imaging, ge-
ographic information systems, has created an essential need
for efficient compression of 3D models. On the other side,
the increasingly large variety of decoding engines, with het-
erogeneous capabilities and connectivity, imposes a need for
multi-resolution representation, as well as low-complexity de-
coders, based on generic purpose hardware. The most common
approaches for 3D data representation are based on polygonal
meshes, which are described by both geometry (i.e., the posi-
tion of vertices in space) and connectivity information, as well
as optional information about normals, colors and textures. It
generally results in models built on arbitrarily defined and non-
uniform grids, which lead to efficient decoding performance
on dedicated hardware. Such representations stay however
quite voluminous, and do not provide a lot of flexibility for
adaptation to the requirements of specific applications, or to
the constraints imposed by the decoding engine.

The aim of this paper is to propose a novel coding scheme
for 3D objects, which can provide a progressive representation
with flexibility in the stream manipulation, whilst achieving
good compression performance. A progressive representation

enables the decoder to construct a model at different resolu-
tions simply by proper stream truncation to meet a well-chosen
rate-distortion trade-off. In the same time, a flexible represen-
tation provides the possibility to manipulate the model in the
compressed domain, to decode the model at different sizes, or
from different viewpoints, for example. Towards this objective,
we first propose to move away from restrictive representation
techniques on non-uniform grids, by resampling 3D data on
a regular spherical grid, thus reducing the dimension of the
input data into a 2D data set. A 3D surface which can be
represented as a function on a 2-D sphere is a genus-zero1

surface which has only one intersection point with each radial
line from the center of the point cloud. We will reference to
these models assimple genus-zero, or star-shapemodels. Next,
we show that the representation of more complex models is
feasible by decomposition into several spherical mappings. A
representation defined on a regular grid excludes the need for
coding samples positions, and enables the usage of 2D signal
transform coding techniques for 3D models.

Inspired by the good efficiency of discrete wavelet transform
for image compression, the first choice would be the use of
the spherical wavelet transform for the representation of 3D
models. However, similarly to contours in natural images, 3D
objects often present numerous multi-dimensional singularities
that are organized along embedded submanifolds. It has been
shown that wavelets are not optimal at representing such
features like contours because they cannot deal with the
geometrical regularity of these characteristics. We therefore
propose to represent the 3D model as a series of oriented, and
anisotropically refined functions taken from a redundant dic-
tionary of atoms. These atoms are edge-like functions living on
the 2D sphere, which can take arbitrary positions, shapes and
orientations. In order to capture the low-frequency components
of the 3D model, low frequency atoms built on 2-dimensional
gaussian functions finally complement the dictionary. We pro-
pose to use the iterative Matching Pursuit algorithm to greedily
build the signal approximation. Matching Pursuit (MP) inher-
ently produces a progressive stream of atoms, which can be
decoded with a reduced complexity. A coefficient quantization
step, as well as an entropy coding stage for atom parameters
are proposed to generate a progressive and flexible compressed

1A mesh has a genus g, iff one can cut the mesh along 2g closed loops
without disconnecting the mesh
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representation of the 3D model. The proposed encoder offers
better compression performance at low rate, compared to
classical shape compression methods, while still providing
interesting scalability properties. Experimental results show
that the PSNR gain of the proposed coding scheme over the
state-of-the-art schemes even reaches 3dB at low bit rates.
In the same time, the MP encoder produces a completely
progressive stream, which can be efficiently truncated at any
arbitrary rate. We finally demonstrate the increased flexibility
of the proposed representation by presenting a view-dependent
coding algorithm, typically useful in interactive applications
with scarce bandwidth resources.

This paper is organized as follows. In section II we give an
overview of related work on 3D model compression schemes
and redundant expansions. Section III focuses on the con-
struction of the over-complete dictionary adapted to 3D object
properties, while in section IV each step of the proposed 3D
object coding scheme is described in more detail. Section V
presents experimental results, and comparisons with state-of-
the-art algorithms. In section VI we explain how the proposed
scheme is used for view-dependent applications and present
the obtained results. Finally, Section VII concludes the paper.

II. RELATED WORK

Numerous works have addressed the coding of 3D models,
and we just mention here the most relevant ones in the context
of the present paper. The first mesh geometry compression
scheme, introduced by Deering [1], was based ontriangle
strips and triangle fans, and implemented in GL [2] and
OpenGL [3]. In GL, triangles are ordered to form strips, whose
connectivity is defined with amarching bit per triangle; it
specifies which of the two free edges of the current triangle
the next triangle has to be attached to. In OpenGL, triangles
are attached alternatively on left and right edges, and no
connectivity information is transmitted. The drawback of this
technique is that most meshes have twice as many faces as
vertices: each vertex has to be transmitted twice, in average.

Taubin and Rossignac later introduced the Topological
Surgery (TS) scheme [4], which is a single-resolution man-
ifold triangular mesh compression scheme that preserves the
connectivity. After extensions to arbitrary manifold meshes,
TS has become part of MPEG-4 standard. In TS, Faces are
interconnected by aface forest, spanning the dual graph of
the mesh2. The edges that do not belong to the face forest,
then define avertex graphand interconnect all the vertices
of the mesh. A simple polygon connectivity mesh is obtained
by cutting a mesh through a vertex graph, and is eventually
encoded along with the vertex graph.

In order to obtain a multi-resolution representation with
mesh-based coding schemes, several works proposed mesh
decimation techniques, which reduce the number of triangles,
vertices and edges. They provides initially a coarse mesh
model that progressively refines by insertion of more de-
tailed information. One of the first progressive transmission
schemes for multi-resolution triangular manifold meshes has

2The dual graph of a polygonal mesh is the graph composed of the mesh
faces as dual graph nodes, and the internal mesh edges as dual graph edges

been introduced by Hoppe in [5]. A triangular manifold mesh
is represented by a base mesh followed by a sequence of
successive vertex split refinements. Taubin has introduced
the Progressive Forest Split (PFS) scheme [6], which highly
reduces the number of levels of detail, and thus unnecessary
information. A forest split operation is in essence described
by a group of consecutive edge split operations. Together with
Topological Surgery (TS), PFS represent the core of 3D mesh
coding in the MPEG-4 standard.

A common characteristic of multi-resolution mesh-based
compression schemes mentioned above is that most of the
geometry information of a coarse mesh is embedded within a
finer mesh, except for a set of vertices or edges that result from
vertex or edge split operations. This kind of surface sampling
does not necessarily lead to the best approximation at a given
resolution. On the other side, by representing a 3D model as
a continuous function on a 2-d surface, positions of vertices
are determined by uniform sampling of this function so they
are different from one resolution to another. This results in
equal approximation enhancement over the 3D object surface,
which is an important advantage of 2-d surface methods versus
mesh-based methods. Moreover, the translation of a 3D object
into a continuous space offers a possibility of employing
various signal transformation techniques towards building fully
progressive representations.

Amongst the alternatives to mesh-based approaches, and
perhaps closer to the approach proposed in this paper, Schröder
and Sweldens [7] proposed one of the earliest works that repre-
sent 3D models as functions defined on the surface of a sphere.
They introduced a lifting scheme to construct bi-orthogonal
spherical wavelets with customized properties. Shape compres-
sion using spherical wavelets has become recently an active
area of research. The progressive coding scheme introduced
by Khodakovsky et al. [8] uses wavelet transform, zerotree
coding and subdivision-based reconstruction to improve the
compression ratio. Hoppe and Praun [9] describe a shape com-
pression technique using spherical geometry images, which
represent the surface remeshed into a regular 2D grid. In
comparison to ordinary image wavelets, spherical wavelets are
shown to provide better compression performance for surfaces
that can be nicely parametrized on the sphere. However, the
related compression techniques suffer from rippling artifacts
for surfaces with long extremities.

III. R EDUNDANT REPRESENTATIONS ON THE2-D SPHERE

A. Preliminaries

Redundant expansions have shown interesting approxima-
tion properties in the decomposition of signals with multidi-
mensional singularities organized along embedded submani-
folds, like images [10, 11]. Redundant expansions provide a
lot of freedom in the design of the bases or dictionaries.
In particular, it is possible to include rotation or anisotropy
in the basis functions. These two properties are keys to the
development of efficient algorithms for the approximation
of multi-dimensional signals. In such a context, separable
orthogonal bases like wavelets, have shown their limitations
in terms of approximation rate, whilst they stay optimal for
1-D continuous signals with point-like singularities.
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Since 3D models are signals composed of multi-dimensional
features, we propose to represent them as a series of atoms,
taken from a redundant dictionary of functions. Dictionaries
are in general constructed as a set of different waveforms,
where each waveform is defined by a generating function.
Each generating function can serve as a base for building
the overcomplete dictionary, simply by changing the function
parameters or indexes (e.g., position or scale indexes). While
there is a priori no restriction on the construction of the dictio-
nary, its construction from one or several generating functions
advantageously leads to structured dictionaries, whose indexes
directly correspond to atom characteristics. Furthermore, the
storage or transmission of the dictionary becomes unnecessary,
since atoms can be reconstructed only from their indexes.

The construction of the dictionary is certainly the most im-
portant step for efficient approximation algorithms. Increasing
the number of functions generally increases the redundancy
of the dictionary, and thus the approximation performance;
there is an increasingly high probability that prominent signal
features can be efficiently captured by a single atom. In the
same time, it also increases the size of the dictionary, and most
probably augments the coding rate, and the search complexity.
We now discuss more in detail the dictionary construction for
the overcomplete expansion of simple 3D models on the 2-D
sphere. It involves the three following steps:

• definition of the generating function(s) on the sphere,
• definition of atoms motion on the sphere, and their

rotation around their axis,
• implementation of the anisotropic scaling of atoms.

Since the signal to be approximated is defined in the
space of square-integrable functions on a unit 2-sphereS2,
denoted asL2(S2) (i.e., f(θ, ϕ) ∈ L2(S2)), the atoms have
obviously to live in the same space. Letg denote a generating
function on the 2D sphere. By combining motion, rotation and
scaling, we form an overcomplete set of atomsgγ , whereγ =
(θ, ϕ, ψ, a1, a2) ∈ Γ is the atom index. This index is described
by 5 parameters that respectively represent the position of
the atom on the sphere(θ, ϕ), its orientation(ψ), and the
scaling parameters(a1, a2). In order to finally map the atoms
on the sphere, we use an inverse stereographic projection
from the complex plane, to the 2D sphere. The stereographic
projection [12] at the North pole, can be expressed asΦ :
S2 → C, whereC represents the complex plane (see Figure 1).
It can be written as :

Φ(ω) = ~v = ρejϕ = 2tan
(

θ
2

)
ejϕ , (1)

with ω ≡ (θ, ϕ) and 0 ≤ θ ≤ π,−π ≤ ϕ ≤ π.
Since the stereographic projection is bijective, any point
with polar coordinates(ρ, ϕ) and represented by a vector
~v = (ρ cosϕ, ρ sinϕ) on the tangent plane, can be uniquely
mapped back to the 2D sphere. We use that property in the
design of the dictionary, as presented below.

B. Generating functions

Under the assumption that simple 3D models are mostly
composed of smooth surfaces, and singularities aligned on
pieces of great circles, we propose to build the dictionary over

Fig. 1. Stereographic Projection

two generating functions. First, in order to efficiently capture
the singularities, we use a generating function that resembles
to a piece of contour on the sphere. In the spaceL2(R2), it
can be written as:

grect(~v) = − 1
K

(
4x2 − 2

)
exp

(
−

(
x2 + y2

)

4

)
, (2)

where~v = (x, y) is a vector inR2, andK is a normalization
factor. Note that this function is very similar to the one that
has been efficiently used for images coding in [10, 11], which
is Gaussian in one direction and its second derivative in the
other direction:

gimage(~v) =
1
K̃

(
4x2 − 2

)
exp

(− (
x2 + y2

))
. (3)

The function defined in Eq. (2) differs however from Eq. (3),
in the sense that it generates longer atoms (slower decay) in
the direction of Gaussian, but with the same sharp decay in the
direction of its derivative. This leads to improved approxima-
tion of singularities on the 2D sphere. The generating function
from Eq. (2) can further be expressed in polar coordinates, as:

grect(ρ, ϕ) = − 1
K

(
4ρ2cos2ϕ− 2

)
exp

(
−ρ2

4

)
. (4)

By inverse stereographic projectionΦ−1 : R2 → S2, the
generating function is mapped on the sphere, and can be
written as:

gHF (θ, ϕ)=− 1
K1

(
16 tan2

(
θ

2
cos2ϕ− 2

))

· exp
(
− tan2

(
θ

2

))
, (5)

whereK1 is a normalization constant. The generating function
gHF defines an edge-like atom that is centered exactly on the
North pole.

Then, in order to also efficiently represent the smooth areas
in the 3D models, we propose to use a second generating
function for the construction of the dictionary. The second
function is built on a two-dimensional Gaussian function in
L2(S2):

gLF (θ, ϕ) = exp
(
− tan2

(
θ

2

))
. (6)

Eq. (6) represents an isotropic function, centered at the North
Pole. The extension of the dictionary to contain atoms built on
two generating functions actually improves the approximation
rate, but does not increase the search complexity. In our
implementation, the dictionary is indeed divided into two
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distinct parts, one with LF atoms (LF part) and the other
of oscillating or high-frequency atoms (main part). We then
successively use one sub-dictionary, and then the other, but
not both at the same time, so that the search complexity is not
augmented.

C. Motion on the sphere

Now that the generating functions have been defined, we
form the redundant dictionary by applying geometrical trans-
formations to these functions, on the 2d sphere. In other
words, the dictionary is constructed by moving the generating
functions on the sphere, by rotation of the functions around
their axis, and by anisotropic scaling.

Motion and rotation belong to the group of affine transfor-
mations of the unit 2-sphereS2. They are both realized by a
single rotation% ∈ SO(3), whereSO(3) is the rotation group
in R3. It is equivalent to apply the unitary operatorΠ% on
the matrix of cartesian coordinates(x, y, z) of the unit sphere,
denoted asP :

Pr = Π%P = R(ψ)U(θ)R(ϕ)P, % ∈ SO(3), (7)

where {P}3×N is the matrix of(x, y, z) coordinates of the
non-transformed unit sphere, and{Pr}3×N is the matrix of
(x, y, z) coordinates of the transformed unit sphere. The gen-
erating function, as defined in Eq. (5) on the non-transformed
unit sphere, is therefore transformed into a rotated atom,
displaced on the particular point (θ,ϕ) on the sphere. The
rotation matrixR(ψ) is given by:

R(ψ) =




cosψ sinψ 0
−sinψ cosψ 0

0 0 1




and is responsible for the rotation of the atom around its axis
by a desired angleψ. The matricesU(θ) andR(ϕ) introduce
motion of the atom over the sphere, by anglesθ andϕ. The
matrix R is already defined above, and the matrixU(θ) is
given by :

U(θ) =




cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ




It is important to note that the order of these matrices is
strictly defined. The atom first rotates on its axis, on the North
pole, and then moves by (θ,ϕ) on the sphere.

D. Anisotropic refinement of atoms on the sphere

In order to well approximate the elongated characteristics of
3D models, we further deform atoms by anisotropic refinement
that scales the generating function differently in each direction.
We perform the scaling operation on the plane tangent to the
North pole and then map the resulting atom on the sphereS2,
by inverse stereographic projection as described before. Let
~v = (x, y) denote a vector in the tangent plane; the anisotropic
scaling operator is then expressed as:

D(a1, a2)g(~v) = Cg(a1x, a2y), (8)

where the constantC is a normalization factor. The coordi-
nates of the vector after scaling,~vs, become :

xs = a1x = a1ρ cos ϕ

ys = a2y = a2ρ sin ϕ . (9)

In polar coordinates, it translates to :

ρs =
√

x2
s + y2

s = ρ

√
a2
1 cos2 ϕ + a2

2 sin2 ϕ

ϕs =arctan
ys

xs
= arctan

a2sinϕ

a1cosϕ
. (10)

Anisotropic refinement of high frequency atoms, as given
in Eq. (2), is obtained by substitution of the polar coordinates
with the ones obtained after scaling. They can be written as :

grect(ρ, ϕ)=− 1
K

(
4a2

1ρ
2 cos2 ϕ− 2

)

· exp

(
−ρ2

(
a2
1 cos2 ϕ + a2

2 sin2 ϕ
)

4

)
. (11)

By inverse stereographic projectionΦ−1 : R2 → S2, the
reshaped atom is mapped on the sphere, and can be written
as :

gHF (θ, ϕ)=− 1
K2

(
16a2

1 tan2 θ

2
cos2 ϕ− 2

)

· exp
(
− tan2 θ

2
(
a2
1 cos2 ϕ + a2

2 sin2 ϕ
))

, (12)

whereK2 is a normalization factor. On the other hand, the low-
frequency atoms after anisotropic refinement, can be written
as :

gLF (θ, ϕ) = exp
(
− tan2 θ

2
(
a2
1 cos2 ϕ + a2

2 sin2 ϕ
))

. (13)

In summary, the dictionary is obtained by anisotropic scal-
ing, rotation and displacement of atoms, which is implemented
by first building the generating function on a unit sphere pre-
viously transformed due to rotations. Then anisotropic scaling
is applied on the displaced atom, as explained above. Such a
process is performed for both oscillating atoms as expressed
in Eq. (12)), and for low-frequency ones (see Eq. (13)). By
a proper choice of the transformation parameters, one finally
obtains a overcomplete dictionary of functions, that is used to
represent simple 3D models. Sample atoms are illustrated in
Figure 2.

IV. M ATCHING PURSUIT ENCODER FOR3D OBJECTS

A. Matching Pursuit overview

Finding the sparsest representation of a simple 3D model,
with functions taken from a redundant dictionary, as the one
described before, is in general an NP-hard problem. Matching
Pursuit [13] provides a solution to this approximation problem,
with a tractable computational complexity. Under its generic
form, Matching Pursuit (MP) is an algorithm that iteratively
decomposes a signal into a linear combination of waveforms,
or atoms. Interestingly, very few restrictions are imposed on
the dictionary construction, besides the fact that it should at
least span the space of the signal to represent. In other words,
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(a) (b) (c) (d)

Fig. 2. Anisotropic atoms: a) on the North pole (θ = 0, ϕ = 0), ψ = 0, a1 = 8, a2 = 8; b) θ = π
4
, ϕ = π

2
, ψ = 0, a1 = 8, a2 = 8; c)

θ = π
4
, ϕ = π

2
, ψ = π

4
, a1 = 16, a2 = 4; d) Low frequency atom:θ = π

4
, ϕ = π

4
, ψ = π

4
, a1 = 8, a2 = 8

the dictionary is defined as a set of vectorsD = (gγ)γ∈Γ

in a Hilbert spaceH. In order to be able to represent each
vector in H as a linear combination of unit norm vectors in
D, the dictionary must satisfy the completeness property (i.e.,
Span(D) = H).

Let f ∈ H denote a function which we want to approximate
with a linear expansion overD. With MP, anN -terms linear
expansion is obtained by successive approximations ofRnf
through orthogonal projections on dictionary vectors:

f =
N∑

n=0

〈Rnf, gγn〉 gγn + RN+1f, (14)

whereRnf is the residue aftern−1 iterations of the algorithm
(R0f = f ). One must choose, at each iteration, the atom
that best approximatesRnf , with the maximal projection
| 〈Rnf, gγn〉 | over the dictionary:

| 〈Rnf, gγn〉 | = supγ∈Γ| 〈Rnf, gγ〉 |. (15)

When N → ∞, under assumption that the dictionary is
complete, it can be shown that:

f =
∞∑

n=0

〈Rnf, gγn〉 gγn . (16)

Interestingly, it has been shown that the residue decays
exponentially in a finite dimensional space, assuming complete
dictionary [13]. Under the same assumption, the signal can
be exactly recovered after a possibly very large number of
iterations, i.e.,RN+1f → 0 when N → ∞. The decay
rate depends on the correlation between the residue and the
dictionary elements, so that the construction of an efficient
dictionary, adapted to the very structure of the signalf , is a
crucial step.

Overall, MP offers a sub-optimal solution to the optimal
(sparsest) signal representation problem, since it iteratively
approximates the signal, in a totally greedy manner. However,
it allows for an efficient approximation of the signal by
rapidly capturing its most important components, which is an
interesting property in the design of a scalable coder. In the
same time, it does not impose any condition on the dictionary
design, and the complexity at decoder is kept small.

B. 3D-SMP encoder

Our objective is to build on the nice approximation prop-
erties offered by redundant expansions to obtain compressed
versions of 3D models. The block diagram of the proposed en-
coder, called 3D-SMP (3D model encoder based on Spherical
Matching Pursuit), is represented in Figure 3. Matching Pursuit
selects a series of atoms from the dictionary described above,
with their relative coefficients. Atoms are then sorted along
the decreasing magnitude of their coefficients. The coefficients
are then uniformly quantized, with a decaying quantization
range. This takes advantage of the property that the energy of
Matching Pursuit coefficients is limited by an exponentially
decaying upper-bound. A piecewise linear approximation of
that upper-bound is used for quantization, inspired from the
scheme proposed in [14]. Quantized coefficients, and discrete
atom indexes are finally encoded with an arithmetic coder [15],
in order to obtain a compact representation. Interested readers
are referred to [11] for more details about quantization, and
entropy coding of MP atoms.

Note that an initial resampling step may be required in order
to map the input model on a 2D sphere, with a regular(θ, ϕ)
grid. Since the proposed scheme requires the input 3D data to
be a 2D set of radius values representing a functionf : S2 →
R defined on 2-sphereS2 as Rint = f(θ, ϕ), a resampling
step may need to be introduced, depending on the format of
the input model. Starting from any common format 3D model,
the initial block of the codec extracts a set of verticespi =
(xi, yi, zi) ∈ I, I ⊂ R3 which represent a point cloud of a
3D model. It then calculates the samples values on the sphere
by performing an interpolation within neighboring radiuses
from the point cloud. This method is valid only for simple
genus-zero 3D models, but it can be extended to more complex
models by splitting the model into a combination of spherical
surfaces, as we will show in the Section V.

C. 3D-SMP decoder

On the other end, the decoder, as represented in Figure 4,
first performs the entropy decoding and inverse quantization.
It then reconstructs the approximated 3D model as a spher-
ical function, by linear combination of atoms whose relative
weights are given by the MP coefficients. The reconstruction
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Fig. 4. 3D-SMP decoding scheme

step at the decoder side has a quite low computational com-
plexity, roughly proportional to the number of atoms, and thus
the coding rate.

The decoder can finally generate the decoded 3D object in
the form of a standard polygonal mesh, as accepted by all
modern computer graphics application and hardware. Since
the encoder has completely discarded the mesh connectivity
information of the original 3D model, the decoder has to
generate new connectivity. This problem can be formulated as
a surface reconstruction problem from an unorganized point
cloud, which is still an active area of research, and many
surface reconstruction algorithms already exist (for example
[16]). Since we are primarily dealing with simple models
parameterized as one spherical function, we can use the a-
priori knowledge of the(θ, ϕ) coordinates for each vertex on
the spherical grid and construct asemi-regularconnectivity
structure. A mesh with semi-regular connectivity has almost
all vertices of valence 6 (i.e., six incident edges), except for
a few isolated extra-ordinary vertices with valence6=6. The
connectivity matrix is defined with indexes of three incident
vertices for each face. We target here the construction of a
triangular mesh, since every polygonal mesh can be reduced
to triangular. In order to obtain a semi-regular mesh, we can
divide the spherical grid into rings limited with two successive
values of θ, and then triangulate each ring to produce a
triangular strip. Such a mesh construction is illustrated in
Figure 5 (a), which shows the triangular subdivision of the
sphere. The Figure 5 (b) represents the same grid, but applied
to the Venus model. All vertices are of valence 6, except the
two poles, so that the resulting mesh is indeed semi-regular.

For more complex models whose representation requires
multiple spheres, the method explained above is not di-
rectly applicable, since the boundary between two neighboring

spheres does not necessarily coincide with a great circle on
the sphere. In these cases, a simpler solution would be to use a
more generic surface reconstruction algorithm. The proposed
3D-SMP scheme uses the algorithm explained in [17]3.

V. EXPERIMENTAL CODING RESULTS

A. Preliminaries

As most of the models available are represented as meshes,
or point clouds, we have implemented a simple method to
map the input model on a regular spherical grid. The value
of the signal at each point (θ, ϕ) on the spherical grid
is obtained by performing a nearest neighbor interpolation
between four points from the original point cloud, whose
projections are maximal on the desired direction of the radius.
Furthermore, we use a grid that is uniform inθ andϕ, in order
to be compliant with fast algorithms for spherical harmonic
transforms that are used in the signal decomposition.

Two models are used in our experiments: Venus and Rab-
bit4. Venus satisfies the assumption of a simple genus-zero
model, thus it is represented via one spherical function. Since
Rabbit is not a simple model, we have chosen to decompose
it into three spheres separated by two parallel planes, one
below the head and the other below the arms of the Rabbit.
Each spherical function is obtained by interpolation within
the point cloud on the corresponding part of the model, while
the other parts are appropriately smoothed in order to avoid
wasting atoms. Afterwards, SMP is independently run on
each of these three spheres and finally gathered into a single

3Reconstruction server is available athttp://cgal.inria.fr/
Reconstruction/submit.html .

4The models have been downloaded fromhttp://www.cyberware.
com.
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Fig. 5. Generating connectivity matrix: a) Sphere connectivity b) Connectivity on the Venus model.

decomposition by ordering the atoms in a decaying order
of their coefficient values. One additional atom parameter is
introduced to denote the sphere that the atom belongs to. The
quantization and entropy coding steps are the same as for the
one-sphere decompositions. Finally, three spherical functions
are reconstructed at the decoder, and point clouds are merged
using a surface reconstruction algorithm, as explained in IV-C.
The original and interpolated models are shown in Figure 6.
The interpolation error is expressed with relativeL2 error
and in PSNR[dB], as computed with the MESH software5.
The relativeL2 error is actually a ratio of RMS (Root Mean
Square Error), which measures the squared symmetric distance
between two surfaces averaged over the first surface, relative
to a bounding box diagonalD. The PSNR (Peak Signal To
Noise Ratio) for 3D meshes is thus expressed as:

PSNR[dB] = 20log

(
D

RMS

)
= 20log

(
1
L2

)
(17)

B. Implementation

In the dictionary presented in Section III, the atom pa-
rameters obviously take discrete values. In general, a fine
granularity in atom indexes leads to high redundancy, and
likely to high approximation rate. In the same time, it leads to
a large dictionary, and therefore high coding cost. The design
of an optimal dictionary is still an open problem, beyond the
scope of this paper. Here, we propose to use a dictionary,
mostly built on empirical choices for atom parameter values.
First we use the equiangular spherical grid to drive the
values of the position parameters,θ and ϕ; both parameters
are uniformly distributed on the interval[0, π], and [−π, π),
respectively, with a resolution that is identical to the input
signal. The rotation parameterψ is uniformly sampled on the
interval [−π, π), with the same resolution asθ and ϕ. This
choice is mostly due to the use of spherical convolution in
the Matching Pursuit algorithm, as explained below. Finally,
scaling parameters are distributed in a logarithmic manner,
from 1 to half of the size of the input signal, with a granularity
of one third of octave. The largest atom thus covers half of the

5MESH is available athttp://mesh.epfl.ch .

sphere. For low pass atoms, the maximal scale is chosen to be
1/16 of the signal size. Motions and rotations are discretized
in the same way as for anisotropic atoms.

In our implementation, the full dictionary is divided into
low-frequency atomsgLF , and high-frequency ones. Dur-
ing the first iterations, the Matching Pursuit algorithm uses
the low-frequency sub-dictionary, and later switches to the
anisotropic sub-dictionary when the energy of the coefficients
starts to saturate, or more precisely when :

|Cn|
‖Rn‖2 → const, (18)

where Cn denotes a projection aftern − 1 iterations. In
each of these sub-dictionaries, the Matching Pursuit algorithm
performs a full search to determine the highest energy atom.
Our implementation uses the Fast Spherical Transform [18] to
compute the convolution of atoms on the sphere. In particular,
we used in our implementation theSpharmonicKitlibrary6,
which is part of theYAW toolbox7. Such a transform allows
to identify the position and rotation of an atom on the sphere,
which has the best correlation with the signal. One spherical
convolution allows to determine the parameters(θ, ϕ, ψ) for
each atom with given scale parameters. Therefore, our imple-
mentation iterates over the scale parameters: for each couple
(a1, a2), it computes the spherical convolution between the
corresponding atom on the North Pole, and the residual signal
to code,Rnf . The indexes of the convolution coefficient with
the largest magnitude correspond to the position and rotation
parameters(θ, ϕ, ψ) of the best matching atom for that pair
of scales. The coefficient of that best matching atom is then
computed with the inner product of two functions defined on
the sphere, given by :

〈Rnf, g〉 =
∫

θ

∫

ϕ

Rnf(θ, ϕ)g(θ, ϕ)sinθdθdϕ, (19)

Finally, the algorithm selects, among all pairs of scales, the
atom with largest coefficient, removes its contribution from
the residual signal, and repeats the whole procedure until a

6http://www.cs.dartmouth.edu/ ∼geelong/sphere/
7http://fyma.fyma.ucl.ac.be/projects/yawtb/
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(a) (b) (c) (d) (e)

Fig. 6. (a) Original Venus model; (b) Interpolated Venus model at resolutionNθ × Nϕ = 128 × 128, PSNR=65.7983dB,L2 = 5.1296 · 10−4; (c)
Interpolated Venus model at resolutionNθ ×Nϕ = 256× 256, PSNR=70.1930dB,L2 = 3.09278 · 10−4; d) Original Rabbit model; e) Interpolated Rabbit
model on three spheres at resolutionNθ ×Nϕ = 128× 128, PSNR=64.1790dB,L2 = 6.18091 · 10−4.

stopping criteria is met (e.g., a pre-defined number of atoms,
or an energy threshold). The search algorithm is described in
Algorithm 1.

Algorithm 1 Full search of the dictionary

for all scale couples(a1(j), a2(k)) do
C = convsph(Rnf, g(0, 0, 0, a1(j), a2(k)))
Cmax = max

1<m<Nθ,1<n<Nϕ,1<p<Nψ

C(m,n, p)

θ = θ(m); ϕ = ϕ(n); ψ = ψ(p)
P (j, k) = 〈Rnf, g(θ, ϕ, ψ, a1(j), a2(k))〉

end for
Pmax = maxj,k(P (j, k))
a1 = a1(j); a2 = a2(k)

C. Numerical results

Venus and Rabbit models, as reconstructed by the decoder,
are represented on Figure 7 and Figure 8, respectively, for
different numbers of atoms. It can be seen that Matching
Pursuit rapidly captures the most important features of the 3D
model and progressively refines the representation with finer
details. The type of coding artifacts is quite different than
the degradations observed in mesh-based coders, and visually
less annoying at low rate. It can be seen also that the gain in
representation accuracy is less important when the number of
iterations increases; as expected Matching Pursuit is mostly
efficient for low bit rate representation of 3D models.

Figures 9 and 10 present the rate-distortion performance of
the proposed 3D-SMP algorithm for Venus and Rabbit models,
in terms of both PSNR (a) andL2 error (b)). They compare
the 3D-SMP encoder performance with the following state-
of-the-art encoders: (i) TG: Tauma-Gotsman non-progressive
coding [19], (ii) Alliez-Desbrun progressive coding [20], and
(iii) PGC: Progressive coding scheme by Khodakovsky et
al. [8]. Due to the differences in input formats, and coding
approaches, we use the following approach to obtain fair
performance comparisons between these four very different
approaches. The input models for TG and Alliez-Desbrun
methods are the models that have been used to obtain the

interpolated version for 3D-SMP encoder8, but decimated to
1400 faces (using the Qslim software9), in order to have a
comparison in the same rate region. Different rates for the TG
algorithm are obtained by changing the number of bits per
vertex for encoding. As PGC uses its own mesh format, the
input models are downloaded from the PGC website10. The
base mesh for the PGC is encoded using TG with 8 bit per
vertice. Note that the rate is actually given by the filesize, or
the total number of bits, rather than in bits per vertex, since
the proposed 3D-SMP coding scheme uses one single mesh
(256x256 or 128x128 vertices in the current implementation)
throughout progressive compression.

It can be seen that 3D-SMP significantly outperforms the
state-of-the-art compression methods TG and Alliez-Desbrun,
as well as the PGC wavelet-based coder at low bit rate. MP
then tends to saturate towards high bite rate, as observed
earlier. For the Venus model the performance is slightly better
than for the Rabbit model. This behavior is actually expected
since the resolution of the employed SMP for Rabbit is
smaller. Therefore, we can certainly expect better performance
for the Rabbit model at higher resolutions. It has to be noted
also that the input model for the SMP is an interpolated version
of the original model, and that this also introduces a distortion,
that is independent of the coding method. Figure 11 shows
a visual comparison of Venus encoded with 3D-SMP using
250 coefficients and resolution 256x256, and encoded with
the PGC algorithm, for the same filesize of 1287B. It can be
seen that both coders offer similar performance, but the coding
artifacts are quite different. The 3D-SMP coder generally
provides a smoother approximation of the model, but fails in
capturing the highly textured regions like the hair, for example.
The proposed encoder offer an interesting alternatives to
classical approaches, with excellent compression performance
at low bit rate, whilst it still brings an inherent progressive
representation. Additionally, it offers a great flexibility in
the stream construction, that can be advantageously exploited
in adaptive applications, like view-dependent rendering as

8http://www.cyberware.com/samples/index.html
9http://graphics.cs.uiuc.edu/ ∼garland/software/

qslim.html
10http://www.multires.caltech.edu/software/pgc/
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(a) (b) (c) (d) (e)

Fig. 7. Venus reconstructed after decoding (resolution 256x256): a) 100 coefficients; b) 200 coefficients; c) 300 coefficients; d) 400 coefficients; e) Input
model.

(a) (b) (c) (d) (e)

Fig. 8. Rabbit reconstructed after decoding (three spheres, resolution 128x128): a) 100 coefficients; b) 200 coefficients; c) 300 coefficients; d) 400 coefficients;
e) Input model.
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Fig. 9. Rate-distortion performance for the Venus model (resolution256× 256) (a) PSNR, (b)L2 error.

presented in the next section.

VI. V IEW-DEPENDENT RENDERING

This section proposes a simple application that uses the in-
creased flexibility offered by the use of a structured dictionary
of functions, in addition to the progressive nature of the stream
generated by the Matching Pursuit decomposition. In scenarios
where very high compression is necessary, or when the trans-
mission channel represents an important bottleneck, it becomes

interesting to use view-dependent rendering algorithms. In
such cases, the 3D model does not need to be completely
decoded before being displayed, but the rendering can be made
dependent on the viewpoint. The server can transmit in priority
the parts of the model that are visible, while cutting off the
invisible parts. View dependent progressive transmission and
rendering can therefore significantly improve the performance
of 3D graphics streaming applications.

All the previous work done in this area uses classical 3D
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Fig. 10. Rate-distortion performance for the Rabbit model (resolution128× 128) (a) PSNR, (b)L2 error.
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Fig. 11. Venus with a filesize of 1287B: a) MP; b) PGC.

multi-resolution coding techniques based on mesh simplifica-
tion algorithms by vertex split operations. For example, Yang
et al. [21] split the 3D model into progressively encoded
partitions which are reorganized so that the visible ones are
transmitted with higher priority. Zach et al. [22] propose a
view-dependent mesh connectivity encoding scheme which
reorganizes the vertex tree, while Wang and Li [23] employ
an absolute path coding of vertices. Recently, Bischoff and
Rossignac introduced theTetStreamer[24] which performs a
view-dependent front-to-back (in the visibility order) encoding
of 3D models. However, we note that none of the mesh
geometry compression schemes based on wavelets ([7], [9],
[8]) does address this issue, even if some solutions inspired
from Region-of-Interest coding in images could be envisaged.

The use of a structured dictionary in the proposed Matching
Pursuit encoder presents a great advantage in regards to manip-
ulation of the compressed stream. In particular, it allows for a
quite simple extension towards a view-dependent transmission
and rendering algorithm. A 3D model is decomposed into a
linear combination of atoms specified by their position and
scale parameters: it can be partially transmitted by selecting

the atoms visible only from any given viewpoint. Assume
that the viewpoint can be associated with a window function
defined on the unit sphere (i.e.,w(θ, ϕ) ∈ L2(S2)). Such
a window function on the sphere is obtained by an inverse
stereographic projection of a circle on the tangent plane, with
the center at the North Pole and the radiusρ. The window
function can be expressed as :

w(θ, ϕ) =
{

1 if 2tan
(

θ
2

) ≤ ρ, −π ≤ ϕ ≤ π;
0 otherwise.

Fig. 12. The intersection of the unit sphere and the conical surface originating
from the viewpoint P.

This is illustrated in Figure(12), where the tangent plane is
shown as a line passing through the North pole N. The part of
the sphere that is visible from the viewpoint is delimited by a
conical surface formed by the union of all the straight lines that
pass through the viewpoint, and are tangent to the unit sphere.
This part is shown on the Figure(12) as the darker shaded part
of the sphere. Letr denote the radius of the circle obtained
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by intersecting the cone and the sphere (r = MA). From the
similarity of triangles4OPA and4OAM , it follows:

r =

√
R2

p − 1

Rp
, (20)

where Rp = OP . From the similarity of triangles4OAM
and4OBN , we obtain :

ρ =
r√

1− r2
=

√
R2

p − 1 (21)

The radiusρ is therefore directly determined by the distance
between the viewpoint, and the 3D model.

To generate a view-dependent reconstruction of the 3D
model, each atomgγi

, i = 1, ..., N in the signal decomposition
is simply multiplied with the window function. It results in a
windowed atomgwγi , which represents that part of the atom,
visible from the viewpointP :

gwγi(θ, ϕ) = gγi(θ, ϕ) · w(θ, ϕ), i = 1, ..., N. (22)

Only the atoms that keep a significant contribution after
windowing are finally considered for view-dependent trans-
mission and rendering. The selection of atoms is based on the
comparison of their maximal value, with a predefined relative
thresholdδ (%). If cγ · gwγi(θ, ϕ) > δ for any pair (θ, ϕ),
the atomgγi is transmitted.

It has to be noted that the uniform window proposed above
obviously attributes the same importance to all the atoms that
are visible from the viewpointP . Other windows are however
straightforward to implement. For example, if one wants to
emphasize the importance of atoms closer to the view direction
(OP ), a Gaussian window could be used, as given by :

wg(θ, ϕ) =





exp
(−4tan2 θ

2
2σ2

)
if 2tan

(
θ
2

) ≤ ρ,

−π ≤ ϕ ≤ π;

0 otherwise.

The Figure 13 presents the results of view-dependent coding
and transmission, applied to the Venus model. The threshold
δ is set to1% of the non-windowed atom peak value, and
the variance of the Gaussian window function is set toσ =
r. It can be seen that emphasis is correctly put on the part
of the model that is visible, as expected. Furthermore, the
view-dependent transmission of atoms allows for a significant
decrease in required bit rate, since only 42.8% of the model
has been used.

By increasingσ, more precise view dependent encoded
models are obtained as more atoms are transmitted. This of
course implies that the bit rate is also increased. Change of
σ can be therefore used for the coarse tuning of the rate-
distortion trade-off. For a finer adaptation, the threshold value
δ can be changed. As the viewpoint may change during the
interactive 3D model rendering, the rest of the atoms can
be progressively transmitted in lower priority, until the com-
plete scene is received. Finally, the view-dependent rendering
by atom windowing is a simple algorithm that allows to
prioritize atoms from the Matching Pursuit decomposition.
Obviously, more sophisticated methods could be proposed

with application-specific requirements, yet taking advantage
of the structured nature of the redundant dictionary used in
the proposed Matching Pursuit encoder.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper has proposed a novel approach for the coding
of 3D objects. The models are mapped on a 2D sphere and
decomposed over a redundant dictionary of multi-dimensional
atoms, which is built to efficiently capture the most promi-
nent features of the signal. An encoding algorithm based
on Matching Pursuit has been used to generate progressive
representations of the 3D objects. The proposed encoder has
been shown to outperform state-of-the-art progressive coders,
especially at low bit rate. In the same time, it offers a truly
progressive representation, with increased flexibility in the
stream manipulation. The structured nature of the dictionary
has been advantageously used in the design of a simple view-
dependent rendering application, which may prove to be useful
in service with important transmission bottlenecks. The pro-
posed algorithm still leaves numerous possibilities for future
improvements. The interpolation step, which uses the very
basic nearest neighbor method, has an important influence that
penalizes the compression performance. We are also currently
working on better parametrization of input models, and on
generalizing the multiple spheres decomposition approach for
the coding of more complex 3D models. Finally, since it
has been shown that redundant decompositions are mostly
beneficial at low rate, the proposed scheme can offer a an
efficient coding solution for base layer in scalable applications.
Similarly to hybrid image coding schemes [25], enhancement
layers based on spherical wavelets, for example, could nicely
complement the proposed scheme for high bit rate coding.
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(a) (b) (c) (d)

Fig. 13. View dependent coding of Venus,σ = r; δ = 1%; 42.8% of the model is transmitted (214 out of 500 atoms): a) visible part of the decoded model;
b) difference between the original model and the decoded model for the visible part; c) invisible part of the decoded model; d) difference between the original
model and the decoded model for the invisible part.


