Image Replica Detection based on Binary Support Vector Classifier

In this paper, we present a system for image replica detection. More specifically, the technique is based on the extraction of 162 features corresponding to texture, color and gray-level characteristics. These features are then weighted and statistically normalized. To improve training and performances, the features space dimensionality is reduced. Lastly, a decision function is generated to classify the test image as replica or non-replica of a given reference image. Experimental results show the effectiveness of the proposed system. Target applications include search for copyright infringement (e.g. variations of copyrighted images) and illicit content (e.g. pedophile images).

Related material