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Motivation

Our goal is to study image processing techniques for 360o-degree images, which
are obtained from omni-directional sensors [11, 17]. Having a curved mirror, i.e.
hyperbolic, spherical or parabolic, as a lens for the corresponding catadioptric
system, we obtain non-Euclidean images. One way of processing such an image
is to perform a panoramic projection of this image onto a cylinder. In this way
one unfolds the 360o-image to the usual 2d image and only after this the usual
image processing techniques are performed.

We propose here some basic approaches to direct processing of the 360o-
images as we take into consideration the geometry of each one. Obviously, the
geometry of each of these images is a consequence of the geometry of the sensor’s
mirror used.

This technical report is organized as follows: In Section 1 we develop the
Laplacian operator on non-Euclidean manifolds. First we start by derivation of
Laplacian operator on Riemannian manifolds and than we derive it explicitly
for each of the non-Euclidean manifolds of our interest, i.e. hyperboloid, sphere
and paraboloid. This allows us to implement the gradient and diffusion flow
on hyperbolic and spherical image. For testing this techniques, a synthetic and
a real image was used in the case of hyperboloid and sphere respectively. In
Section 2 we demonstrate the active contour on non-Euclidean images. First
it was derived by directly minimizing the energy functional where the specific
geometry of the non-Euclidean image was taken into account. Then the same
was proofed through Polyakov action. We give some examples in each of the
cases and so derive conclusions about the influence of the geometry for each
particular case.
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1 Laplacian operator on non-Euclidean images

1.1 The Laplacian on a Riemannian manifold

By a Riemannian manifold, we roughly mean a manifold equipped with a
method for measuring lengths of tangent vectors, and hence of curves. While
the simplest differential operator d

dt on the real line generalizes to the exterior
derivative d on a smooth manifold, it is not possible to generalize the second
derivative to manifolds without the additional structure of a Riemannian met-
ric. Thus it can be argued that the Laplacian is the simplest, and hence the
most basic, differential operator on functions on a Riemannian manifold.

1.1.1 Riemannian Metrics

Given a smooth manifold, there is no natural way to define a generalization
of the Laplacian on a manifold, without as additional data a geometry in the
form of a Riemannian metric. Certainly we should be able to measure lengths
of curves on the manifold in order to do geometry. For a manifold M2 ⊂ R3,
we can measure the length of a curve γ : [0, 1] → M by the usual formula

l(γ) =
∫ 1

0

|γ′(t)|dt. (1)

Notice that the basic ingredients is the measure of the lenght of the tangent
vector γ′(t) ∈ Tγ(t)M . We can also use this formula for any manifold embedded
in Rn, which covers the classical cases in algebraic geometry and analysis. Such
are the 2-sphere, 2-hyperboloid, 2-paraboloid etc.

Definition 1 [14] A Riemannian manifold (M, g) is a smooth manifold M with
a familly of smoothly varying positive definite inner products g = gx on TxM
for each x ∈ M . The family g is called a Riemannian metric. Two Riemannian
manifolds (M, g) and (N, h) are called isometric if there exists a smooth diffeo-
morphism f : M → N such that

gx(X, Y ) = hf(x)(dfX, dfY )

for all X, Y ∈ TxM , for all x ∈ M .

Given a Riemannian metric we can set the length of a curve γ : [0, 1] → M
to be

l(γ) =
∫ 1

0

gx

√
(γ′(t), γ′(t))dt (2)

On Rn, the standard Riemannian metric is given by the standard inner
product gx(v, w) = v · w for all u,w ∈ TxRn, for all x ∈ Rn. Of course, we
call Rn with this Riemannian metric Euclidean space. If M is a submanifold of
Euclidean space, then M has a natural Riemannian metric given by gx(v, w) =
v · w. This so called induced metric is the metric used in the classical theory
of curves and surfaces in Euclidean three-space. By this same construction, a
submanifold of a Riemannian manifold always inherits an induced metric.

To compute with Riemannian metric, we must be able to analyze it in a
local coordinate chart. If v, w ∈ TxM and (x1, x2, · · · , xn) are coordinates near
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x, then there exist αi, βi such that

v =
∑

αi ∂

∂xi
, w =

∑
βi ∂

∂xi
. (3)

We have

gx(v, w) = gx

( ∑

i

αi∂xi ,
∑

j

βj∂xj

)
(4)

=
∑

i,j

αiβjgx(∂xi , ∂xj ), (5)

where ∂xi = ∂
∂xi . Thus, gx is determined by the symmetric, positive definite

matrix (gij(x)) = (gx(∂xi , ∂xj )). Note that while the metric g is defined on all
of M , the gij(x) are defined only in a coordinate chart, where we can write

g =
∑

i,j

gijdxi ⊗ dxj . (6)

If hij = g(∂yi , ∂yj ) is the matrix of the metric g in another coordinate system
with coordinates (y1, y2, · · · yn), then we have

gij =
∑

k,l

∂xk

∂yi

∂xl

∂yj
hkl. (7)

1.1.2 The Laplacian on functions

First, we need to define a Hilbert space of real valued functions on M , i.e L2(M),
by setting 〈f, g〉 =

∫
M

f(x)g(x).
Next, let us define the Laplacian ∆ : L2(M, g) → L2(M, g). We want the

Laplacian to agree with the standard Laplacian −
(

∂2

∂(x1)2 , + · · · + ∂2

∂(xn)2

)
on

Rn. However, this expression depends on the standard coordinates for Rn, and
we need a coordinate-free expression for our realization. This is provided by the
classical equation

−
( ∂2

∂(x1)2
, + · · ·+ ∂2

∂(xn)2
)

= −div ◦ ∇. (8)

In local coordinates we have

∇f = gij∂if∂j , (9)

where ∂j = ∂xj = ∂
∂xj

, and gij is the inverse matrix of gij .
As for div, integration by parts applied to f ∈ C∞(Rn) gives

−
∫

Rn

∂iX
i · f =

∫

Rn

∂if ·Xi, (10)

for functions Xi, which shows that the divergence ∂iX
i of a vector field X =

Xi∂i on Rn is characterized by the equation

〈−divX, f〉 = 〈X,∇f〉, (11)
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where the inner products are the global inner products on functions and vector
fields induced by the standard dot product.

We are interested in what does the operator divX look like in local coordi-
nates. First, we assume that a given manifold M is oriented and connected. But
since we cannot integrate functions on a manifold, only n-forms transform cor-
rectly to give an integral over an n-manifold which is independent of coordinates,
we are looking for an n-norm α(x) such that 〈f, g〉 = 〈f, g〉M =

∫
M

f(x)g(x)α(x)
defines a positive definite inner product; such an α is called a volume form. In
a positively oriented coordinate neighborhood U around x = (x1, · · ·xn), pick a
large number N of points pj and in each tangent space Tpj

M form a box Bj with
sides (∆x1) ∂

∂x1 , (∆x2) ∂
∂x2 , · · · , (∆xn) ∂

∂xn , for some small numbers ∆xi. Let
v1, · · · vn be positively oriented orthonormal basis of Tpj M . Then ∂xi = αk

i vk

for some matrix αk
i = αk

i (pj). Here it is used the Einstein summation con-
vention, which means that an index which appears as both a superscript and
subscript in an expression is summed over, e.g. αk

i vk =
∑

k αk
i vk. Thus the

volume is

volU = lim
∆xi→0

lim
N→∞

N∑

j=1

(volume of Bj) (12)

= lim
∆xi→0

lim
N→∞

N∑

j=1

(
volume of box with ithside(∆xi)

N∑

k=1

αk
i vk

)
(13)

= lim
∆xi→0

lim
N→∞

N∑

j=1

(
(∆x1)(∆x2) · · · (∆xn) det(αk

i )
)

(14)

=
∫

U

det(αk
i )dx1 · · · dxn. (15)

Definition 2 [14] The volume form of a Riemannian metric is the top dimen-
sional form dvol which in local coordinates is given by

dvol =
√

det g dx1 ∧ · · · ∧ dxn,

whenever (∂x1 , · · · , ∂xn) is a positively oriented basis of TxM . The volume of
(M, g)is set to be

vol(M) =
∫

M

dvol(x).

Finally, for any function f ∈ C∞(U) and vector field X = Xi∂i ∈ TM , we

4



have

〈X,∇f〉 =
∫

M

〈X,∇f〉dvol (16)

=
∫

U

〈Xi∂i, g
kj∂kf∂j〉dvol (17)

=
∫

U

Xi(∂kf)gkjgij

√
det g dx1 · · · dxn (18)

=
∫

U

Xi(∂if)
√

det g dx1 · · · dxn (19)

= −
∫

U

1√
det g

f · ∂i(Xi
√

det g)
√

det g dx1 · · · dxn (20)

= 〈f,− 1√
det g

∂i(Xi
√

det g)〉. (21)

From here we can see that it must be satisfied

divX =
1√

det g
∂i(Xi

√
det g). (22)

Assuming this expression is independent of choice of coordinates, we can then
define the Laplacian on functions to be ∆ = −div◦∇, a second order differential
operator. In local coordinates, we get

∆f = − 1√
det g

∂j(gij
√

det g ∂if) (23)

= −gij∂i∂jf + (lower order terms). (24)

We must note that this reduces to the usual expression for the Laplacian
on Rn. The last expression shows that not only is the Laplacian determined
by the Riemannian metric, but the Laplacian also determines the metric. In
other words, by evaluating ∆ on a function which is locally xixj , we recover gij

and hence gij . We expect the spectral theory of the Laplacian to be intimately
connected with the geometry of (M, g).

In conclusion, on a smooth manifold, the differential df encodes all the first
derivative information of a function f in a coordinated-free manner; equiva-
lently, on a Riemannian manifold, the gradient ∇f encodes this information.
To keep track of second derivative information, d2f certainly won’t do, and ∆f
is a complicated combination of second derivative information(and lower order
terms).

In the following, we will consider three types of images: hyperbolic, spherical
and parabolic. Each kind is obtained from a cata-dioptric systems with the
corresponding mirror. Each of them is obtained from a system where the mirror
is respectively hyperbolic, spherical and parabolic [8, 1, 6].

1.2 Laplacian on a hyperbolic image

Consider the 2-hyperboloid in R3, with coordinates (x0, x1, x3), in terms of
which the Lobachevskian metric has the form

dl2 = dx2
0 − dx2

1 − dx2
2. (25)
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By 2-hyperboloid of radius R, is meant the set of points satisfying the equation

x2
0 − x2

1 − x2
2 = R2. (26)

In spherical coordinates (ρ, χ, ϕ), the metric (25) takes the form

dl2 = −ρ2(dχ2 + sinh2 χdϕ2) + dρ2. (27)

For ρ = R we distinguish the upper sheet of the hyperboloid, and for ρ = −R,
the lower one. Since ρ is constant on the hyperboloid, the metric can be written
as

−dl2 = R2(dχ2 + sinh2 χdϕ2). (28)

We can define a stereographic projection of the hyperboloid onto the plane.
It maps the upper sheet of the hyperboloid onto the open disc x2

1 + x2
2 < R2.

If a point P ∈ H2
+ has coordinates (x0, x1, x2), and its projection on the plane

has coordinates (u, v), then

x1

u
=

x0 + R

R
,

x2

v
=

x0 + R

R
, (29)

whence
x1 = u

(
1 +

x0

R

)
, x2 = v

(
1 +

x0

R

)
. (30)

Substituting these in (26) and solving the resulting equation for x0 > 0, we get

x0 = −R
(
1 +

2R2

u2 + v2 −R2

)
, (31)

from where we obtain

x1 =
2R2u

R2 − u2 − v2
, x2 =

2R2v

R2 − u2 − v2
. (32)

Thus,we can express the induced metric in terms of the coordinates (u, v). But
first, let us recall

x0 = R coshχ (33)
x1 = R sinhχ cosϕ (34)
x2 = R sinhχ sin ϕ (35)

From the equivalence of (33) and (31), and putting u2 + v2 = r2, we get

coshχ = −
(
1 +

2R2

(r2 −R2)

)
, (36)

which, after differentiation, leads to

sinhχdχ =
4R2r

(r2 −R2)2
dr. (37)

On the other hand, from (32), (34) and (35) we get

sinh2 χ =
x2

1 + x2
2

R2
=

4R2r2

(R2 − r2)2
. (38)
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From (28) and using (37) and (38) we get to

−dl2 =
4R4

(R2 − r2)2
(dr2 + r2dϕ2), (39)

that is

−dl2 =
4R4

(R2 − u2 − v2)2
(du2 + dv2). (40)

We can see that the metric on the hyperboloid is obtained from the metric
on the Euclidean plane by multiplying the latter of a function, i.e. these two
metric are ”proportional”.

If we take out the minus sign in (28) we obtain

dl2 = R2(dχ2 + sinh2 χdϕ2), (41)

which is the metric on the upper sheet of the hyperboloid.
In terms of the coordinates in the disk x, y, the metric on the upper sheet

of the unit hyperboloid , i.e R = 1, takes the form

dl2 =
4

(1− x2 − y2)2
(dx2 + dy2), (42)

where x2 + y2 < 1. The open disc with the metric (42) is called the Poincaré
model of Lobachevsky’s geometry. Taking into account that dl2 = gijdxidxj

with x1 = x and x2 = y, we directly obtain the metric tensor :

(g)ij =

(
4

(1−x2−y2)2 0
0 4

(1−x2−y2)2

)
=

(
gxx gxy

gyx gyy

)
, (43)

and accordingly its contra-variant (inverse) metric:

(g)ij =

(
(1−x2−y2)2

4 0
0 (1−x2−y2)2

4

)
. (44)

Let us develop the Laplacian operator (23) for this particular case. We
obtain

∆D+f =
1√
detg

( ∂

∂x

√
det g gxx ∂f

∂x
+

∂

∂y

√
det g gyy ∂f

∂y

)
(45)

=
(1− x2 − y2)2

4

(∂2f

∂x2
+

∂2f

∂y2

)
(46)

=
(1− x2 − y2)2

4
∆R2f. (47)

We try this technique on a synthetic hyperbolic image, which is shown on
Figure 1. This is an Escher tiling of the hyperbolic plane. The equivalence
between the hyperboloid and the disk is by the stereographic projection through
the South Pole.

Accordingly, for the gradient of a hyperbolic image we have:

(∇D+f)x = gxx ∂f

∂x
+ gxy ∂f

∂y
= gxx ∂f

∂x
(48)

(∇D+f)y = gyx ∂f

∂x
+ gyy ∂f

∂y
= gyy ∂f

∂y
(49)
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Figure 1: Laplace operator on a hyperbolic image (a) original (b) N=10, (c)
N=100 , (d) N=300.
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We can easily see that

∇D+f =
(1− x2 − y2)2

4
∇R2f, (50)

i.e. the gradient of the disk is a scaled gradient of the plane.
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Figure 2: Gradient of a hyperbolic image: (a) original image (b) gradient in
direction of x, (c) gradient in direction of y , (d) magnitude of the gradient.

1.3 The Laplacian on a spherical image

The equation of the sphere S2 ⊂ R3 of radius R is

x2
0 + x2

1 + x2
2 = R2. (51)

In spherical coordinates r, θ, ϕ we have

x0 = r cos θ (52)
x1 = r sin θ sin ϕ, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π (53)
x2 = r sin θ cosϕ, (54)

. (55)
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Thus a point X on the sphere is the vector(x0, x1, x2) as shown on Figure 3(a)
In terms of spacial coordinates, the Euclidean metric takes the form

x1

x0

x2

X

(a)

(  ,   )

( r,   )

(b)

Figure 3: Geometry of the 2-sphere: (a) spherical polar coordinates (b) stereo-
graphic projection.

dl2 = dx2
0 + dx2

1 + dx2
2 = dr2 + r2(dθ2 + sin2 θdϕ2). (56)

On the surface r = R, the differential dr = 0, so the metric induced on the
sphere is given by

dl2 = R2(dθ2 + sin2 θdϕ2) (57)

We consider the stereographic projection of the sphere onto the plane shown
on Figure 3(b). It sends a point (θ, ϕ) on the sphere to the point with polar
coordinates (r, ϕ) in the plane, for which is fulfilled ϕ = ϕ, r = R cot θ/2. In
terms of these new coordinates the metric becomes

dl2 =
4R4

(R2 + r2)2
(dr2 + r2dϕ2). (58)

But in terms of the usual Euclidean coordinates (x1, x2) ≡ (x, y) ∈ R2 in the
plane, where r2 = x2 + y2, we obtain

dl2 =
4R4

(R2 + x2 + y2)2
(dx2 + dy2). (59)

We can see that in this case as well, the metric on the sphere is obtained from
the Euclidean metric on the plane by multiplying the latter by the function

4R2

(R2+x2+y2)2 :

dl2S2 =
4R4

(R2 + x2 + y2)2
dl2R2 . (60)

Accordingly, the metric on the unit sphere, i.e. R = 1, is derived as

(g)ij =

(
4

(1+x2+y2)2 0
0 4

(1+x2+y2)2

)
, (61)

and respectively the inverse metric is

(g)ij =

(
(1+x2+y2)2

4 0
0 (1+x2+y2)2

4

)
. (62)
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We develop the Laplacian operator (23) on the sphere and obtain

∆S2f =
1√
detg

( ∂

∂x

√
det g gxx ∂f

∂x
+

∂

∂y

√
det g gyy ∂f

∂y

)
(63)

=
(1 + x2 + y2)2

4

(∂2f

∂x2
+

∂2f

∂y2

)
(64)

=
(1 + x2 + y2)2

4
∆R2f. (65)
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Figure 4: Laplacian Operator on a spherical image: (a) original image (b)
N = 10, (c) N = 100 , (d) N = 300.

The gradient of a spherical image is

∇S2f =
(1 + x2 + y2)2

4
∇R2f, (66)

1.4 Laplacian operator on parabolic images

The paraboloid is a quadratic surface which can be expressed by the Cartesian
equation

z = b(x2 + y2). (67)

In polar coordinates (r, ϕ) we express it as

x0 = r2, (68)
x1 = r cos ϕ, 0 ≤ ϕ < 2π, r ≥ 0 (69)
x2 = r sin ϕ. (70)
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Figure 5: Gradient of a real spherical image: (a) original image (b) spherical
gradient.

It is shown on Figure 6(a). The metric in this coordinates is:

( r,   )

rx

x

x

2

1

0

(a)

( r,   )r

( x, y) x, y

(b)

Figure 6: Gradient of a real spherical image: (a) original image (b) spherical
gradient.

dl2 = dx2
0 + dx2

1 + dx2
2 = (1 + 4r2)dr2 + r2dϕ2. (71)

After projecting it on the plane (x, y) ∈ R2, as depicted on Figure 6(b), we
have r2 = x2 + y2 and ϕ = arctan y

x . Performing this change of variable, we get

dl2 = (1 + 4x2)dx2 + 8xydxdy + (1 + 4y2)dy2, (72)

which corresponds to the following metric:

(g)ij =
(

1 + 4x2 4xy
4xy 1 + 4y2

)
. (73)

The inverse metric is:

(g)ij =
1

1 + 4x2 + 4y2

(
1 + 4y2 −4xy
−4xy 1 + 4x2

)
. (74)
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Let us explicetly write the calculation for Laplacian on the 2-paraboloid. We
start we Eq.(23), which reads:

∆fP 2 = − 1√
g

(
∂1(g11√g∂1f + g21√g∂2f) + ∂2(g12√g∂1f + g22√g∂2f)

)
. (75)

Here we distinguish g = det g, and we put the indexes 1 ≡ x, 2 ≡ y and then
obtain:

∆fP 2 = − 1√
g

[ ∂

∂x

( 1 + 4y2

√
1 + 4x2 + 4y2

∂f

∂x
− 4xy√

1 + 4x2 + 4y2

∂f

∂y

)
+

+
∂

∂y

( 1 + 4x2

√
1 + 4x2 + 4y2

∂f

∂y
− 4xy√

1 + 4x2 + 4y2

∂f

∂x

)]
.

Extracting the derivatives, we finally obtain:

∆fP 2 = − 1
1 + 4x2 + 4y2

[
(1 + 4y2)

∂2f

∂x2
− 4xy

∂2f

∂x∂y
+ (1 + 4x2)

∂2f

∂y2
−

− 8x(1 + 2x2 + 2y2)
(1 + 4x2 + 4y2)

∂f

∂x
− 8y(1 + 2x2 + 2y2)

(1 + 4x2 + 4y2)
∂f

∂y

]
.

2 Active contours on non-Euclidean images

2.1 Geodesic Active Contour

The geodesic/geometric active contour (GAC) model is a variational model
which is widely used in image processing applications to extract objects of in-
terest by deforming a contour curve toward the edges of these objects.

To develop the formalism of active contours in non-Euclidean spaces we use
its counterpart in Euclidean space which was first worked out in [4]. It is clear
that what distinguishes both cases is their geometry.

The evolution equation of the parametric disk-curve C(h) = (x(h), y(h)) ∈
Ω, h ∈ [0, 1] is given by minimizing an energy functional.

E(C) = α

∫ 1

0

∣∣∣∂C(h)
∂h

∣∣∣
2

dh + λ

∫ 1

0

f(|∇I(C(h))|)2dh (76)

=
∫ 1

0

(Eint(C(h)) + Eext(C(h)))dh. (77)

The goal is to minimize E for C in a certain allowed space of curves. This
functional is not intrinsic since it depends on the parametrization h, which for
the moment is arbitrary.

The classical theory explains when the solution to the energy problem is
given by a curve of minimal ”weighted distance” between given points. Distance
is measured in the given Riemannian space with the first fundamental form
gij . This form defines the metric or distance measurement in the space. Thus
minimizing E(C) as in (77) is equivalent to minimizing

∫ 1

0

√
gijC′iC′jdh, (i, j = 1, 2), (78)
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or ∫ 1

0

√
g11C′21 + 2g12C′1C′2 + g22C′22 dh, (79)

with C = (C1, C2).
It is shown in [4] that this minimization is equivalent minimizing the intrinsic

problem ∫ 1

0

f(|∇I(C(h))|)|C′(h)|dh, (80)

where f is the edge-detecting function. The geodesic is computed by the calculus
of variations.But first, taking into account that we are looking for a minimization
in a specific geometry, the non-Euclidean one, we cannot just simplify the second
term in this integral. In our case the functional to be minimized is

E(C) =
∫ 1

0

f(|∇I(C(h))|)
√

(g)ijC′iC′jdh

=
∫ 1

0

f(|∇I(C(h))|)
√

g1/2δijC′iC′jdh

=
∫ 1

0

g1/4f(|∇I(C(h))|)
∣∣∣∂C
∂h

∣∣∣,

where g denotes the derivative of (g)ij .
Let us introduce an artificial time t and consider the family of curves C(t) in

the disk D. The first variation of the energy E(C) is then dE(C)
dt , and it reads :

dE(C)
dt

=
∫ 1

0

dfD(|∇I(C)|)
dt

∣∣∣∂C
∂h

∣∣∣dh +
∫ 1

0

fD(|∇I(C)|) d
dt

∣∣∣∂C
∂h

∣∣∣dh, (81)

with fD = g1/4f(|∇I(C)|).
Let us first develop the derivatives separately. We start by the term

dfD(|∇I(C)|)
dt

=
d
dt

fD(C1, C2) =
∂fD

∂u1

∂C1

∂t
+

∂fD

∂u2

∂C2

∂t
= 〈∇fD,

∂C
∂t
〉, (82)

where the contour was considered as a vector C ≡ (C1, C2) and for obtaining its
derivative the chain rule was applied.

Next, we look at the term:

d
dt

∣∣∣∂C
∂h

∣∣∣ =
d
dt

√(∂C1

∂h

)2

+
(∂C2

∂h

)2

(83)

=
1

2

√(
∂C1
∂h

)2

+
(

∂C2
∂h

)2
2
(∂C1

∂h

∂2C1

∂t∂h
+

∂C2

∂h

∂2C2

∂t∂h

)
(84)

= 〈
∂C
∂h∣∣∣∂C
∂h

∣∣∣
,

∂2C
∂t∂h

〉 (85)

Then the energy variation in (81) becomes

dE(C)
dt

=
∫ 1

0

〈∇fD,
∂C
∂t
〉
∣∣∣∂C
∂h

∣∣∣dh +
∫ 1

0

fD〈
∂C
∂h∣∣∣∂C
∂h

∣∣∣
,

∂2C
∂t∂h

〉dh (86)
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We integrate by parts with respect to h the second integral and thus obtain

dE(C)
dt

=
∫ 1

0

〈∇fD,
∂C
∂t
〉
∣∣∣∂C
∂h

∣∣∣dh−
∫ 1

0

〈∂C
∂t

, fD
∂

∂h

( ∂C
∂h∣∣∣∂C
∂h

∣∣∣

)
+

∂C
∂h∣∣∣∂C
∂h

∣∣∣
〈∇fD,

∂C
∂h
〉〉dh.

This equation can be rewritten as

dE(C)
dt

=
∫ 1

0

∣∣∣∂C
∂h

∣∣∣〈∂C
∂t

,∇fD − fD∣∣∣∂C
∂h

∣∣∣
∂

∂h

( ∂C
∂h∣∣∣∂C
∂h

∣∣∣

)
−

∂C
∂h∣∣∣∂C
∂h

∣∣∣
〈∇fD,

∂C
∂h∣∣∣∂C
∂h

∣∣∣
〉〉dh (87)

By definition, for the tangent vector we have:

T =
∂C
∂h∣∣∣∂C
∂h

∣∣∣
. (88)

The normal vector N is perpendicular to the tangent and by its definition
it reads

1∣∣∣∂C
∂h

∣∣∣
∂

∂h
T = κN , (89)

with κ being the curvature.
Using these two definitions, we write for the energy variation:

dE(C)
dt

=
∫ 1

0

∣∣∣∂C
∂h

∣∣∣〈∂C
∂t

,∇fD − κfDN − 〈T ,∇fD〉T 〉dh. (90)

Decomposing the vector ∇fD = 〈∇fD,N〉N + 〈∇fD, T 〉T , we obtain:

dE(C)
dt

=
∫ 1

0

∣∣∣∂C
∂h

∣∣∣〈∂C
∂t

, 〈∇fD,N〉N − κfDN〉dh. (91)

From here it is obvious that the direction of the strongest energy variations
correspond to

∂C
∂t

= (κfD − 〈∇fD,N〉)N , (92)

which is the equation of the active geodesic contour, representing an evolving
curve in the direction of its normal vector and under the action of a force F :

∂C
∂t

= FN . (93)

In the specific case fD = 1, we get an evolving curve which minimizes the mean
curvature:

∂C
∂t

= κN . (94)

The fD, which lives on the disk image and it depends on the its metric.
But since the geometry of the disk image depends on the mirror used, then
according the metric of the mirror manifold we will update this function. Thus,
we distinguish the following stoping functions:

fH2
+

=
2

1− x2 − y2
fR2 , (95)

fS2 =
2

1 + x2 + y2
fR2 , (96)
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where x, y are the coordinates of the disk-image on the Euclidean plane. Once
again, the stoping function on the hyperbolic and spherical images is ”propor-
tional” to the one on the Euclidean (flat) images. But this is not the case of
the parabolic image. And this is obvious from its metric tensor-it is symmetric
but not diagonal.

2.1.1 GAC on the 2-hyperboloid

The specific evalution of the active contour on the hyperboloid is shown on
Figure 7. This evolution is analogical to the Euclidean plane: the given initial
contour shrinks to the center of the hyperbolic image.

(a)
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(d)

Figure 7: evolution of GAC on the 2-hyperboloid: (a) , (b) , (c) , (d) .

2.1.2 GAC on the 2-sphere

On Figure 8 is shown the evolution of an contour on the sphere. It is interesting
to notice that opposite to the hyperbolic case, here the contour evolves towards
the border of the disk. Such an evolution is natural and it comes directly from
the action of the spherical geometry on the contour.
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Figure 8: Evolution of GAC on the 2-sphere: (a)AC in the initial state, (b) ,
(c) evolution of the , (d).
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2.1.3 GAC on the paraboloid

2.2 GAC on non-Euclidean manifolds through Polyakov
action

Following the first model of active contours developed by Kass et al. in [7],
Caselles et al. in [4] and Kichenassamy et al. in [9] proposed the following
minimization problem invariant w.r.t. the curve parametrization. The intrinsic
energy functional is as follows:

FGAC(C) =
∫ 1

0

f(|∇I0(C(p))|)|Cp|dp =
∫ L(C)

0

f(|∇I0(C(s))|)ds, (97)

where GAC stands for Geodesic/Geometric Active Contour, p is the curve para-
metrization parameter, ds is the Euclidean element of length and L(C) is the
Euclidean length of the curve C defined by L(C) =

∫ 1

0
|Cp|dp =

∫ L(C)

0
ds.

Hence, the functional (97) is actually a new length obtained by weighting the
Euclidean element of length ds by the function f which contains information
concerning the boundaries of objects [4]. The function f is an edge detecting
function defined e.g. by

f(I0) =
1

1 + |∇I0|2 , (98)

where I0 is the original image.

Caselles et al. proved in [4] that the curve minimizing FGAC is actually a
geodesic in a Riemannian space which metric tensor is:

aij = f2(|∇I0|)δij (99)

where f is the edge detecting function. This geodesic is computed by the calculus
of variations. Let us introduce an artificial time t and let us consider a family
of curves C(t) such that:

FGAC(t) =
∫ 1

0

f(|∇I0(C(p, t))|)|Cp(p, t)|dp. (100)

The first variation of the energy FGAC is then:

dFGAC

dt
=

∫ 1

0

〈
∂C

∂t
, 〈∇f,N〉N − κfN

〉
|Cp|dp, (101)

see [4] for details. Hence, the direction for which FGAC decreases most rapidly
provides us the following minimization flow:

∂C

∂t
= (κf − 〈∇f,N〉) N , (102)
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where N is the unit normal to the curve C and κ is its curvature. The right
hand side of the equation (102) corresponds to the Euler-Lagrange of Energy
(97). The first term is the mean curvature motion, also called curve shortening
flow, weighted by the edge detecting function f . It smoothes the curve shape
by decreasing its total length as fast as possible. The second term of (102)
attracts the curve toward the boundaries of objects by creating an attraction
valley centered on the edges. Hence, the function f does not need to be equal
to zero to stop the evolution of the snake on the contours of objects.

Osher and Sethian have introduced in [12] the implicit and intrinsic level
set representation of contours to deal with topological changes and to efficiently
solve the contour propagation from a numerical point of view. Equation (102)
can be written in the level set form as follows:

∂φ

∂t
=

(
κf + 〈∇f,

∇φ

|∇φ| 〉
)
|∇φ|, (103)

where φ is the level set function embedding the active contour C.

It is important to notice that the geodesic/geometric active contour model
defined in Equations (97) and (102) is designed to extract objects on flat im-
ages. Indeed, this image segmentation method can not be directly used to
extract significant objects on non-Euclidean images such as omni-directional
images acquired with hyperbolic, spherical or parabolic mirrors. The desired
segmentation model should consider the curved geometry of hyperbolic, spher-
ical and parabolic manifolds.

Recently, Bresson-Vandergheynst-Thiran consider in [2, 3] the general case
of an active hypersurface evolving on any Riemannian manifold. We propose
to apply this formalism to define the evolution equation of active contours in
hyperbolic, spherical and parabolic manifolds.

2.3 Active Contours on Hyperbolic, Spherical and Par-
abolic Manifolds

Based on the work of Sochen-Kimmel-Malladi ([15, 16]), it was proposed in [2]
and [3] the following functional:

{
Pf (X, Σ,M) =

∫
dnΣς f(X, gµν , hij) g1/2gµν∂µXi∂νXjhij ,

X : (Σ, gµν) → (M,hij),
(104)

which corresponds to the Polyakov action [13] weighted by the function f . The
Polyakov action is basically a functional that measures the weight of a mapping
X between an embedded manifold Σ and the embedding manifold M (see Figure
9).

More precisely, gµν is the metric tensor/first fundamental form [10] of the
manifold Σ, gµν is the inverse metric of gµν , g is the determinant of gµν , nΣ

is the dimension of Σ, µ, ν = 1, ..., nΣ, dnΣς g1/2 is the volume element with
respect to (w.r.t.) the local coordinates on Σ, hij is the metric tensor of the
embedding space M , nM the dimension of M , i, j = 1, ..., nM , ∂µXi = ∂Xi/∂ςµ
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Figure 9: The manifold Σ embedded in M , reproduced from [16].

and gµν∂µXi∂νXjhij is the generalization of the magnitude of the gradient to
maps between Riemannian manifolds. We observe that the volume element as
well as the rest of the expression is re-parametrization invariant. In other words,
they are invariant under a smooth transformation. Thus, this action depends on
the geometrical objects and not on the way we describe them via our parame-
trization of the coordinates. Finally, when identical indices appear one up and
one down in Equation (104), they are summed over according to the Einstein
summation convention.

The calculus of variations gives us the Euler-Lagrange equation of the func-
tional (104) w.r.t. the l-th embedding coordinate X l, gµν and hij being fixed:

0 = f ·
(
g−1/2∂µ(g1/2gµν∂νX l) + Γl

jk∂µXj∂νXkgµν
)

+ ∂kfgµν∂µXk∂νX l − nM

2
hlk∂kfgµν∂µXi∂νXjhij , (105)

And the flow minimizing Pf w.r.t. X l is thus as follows:

∂X l

∂t
= f ·

(
g−1/2∂µ(g1/2gµν∂νX l) + Γl

jk∂µXj∂νXkgµν
)

+ ∂kfgµν∂µXk∂νX l − nM

2
hlk∂kfgµν∂µXi∂νXjhij , (106)

for 1 ≤ l ≤ nM , g−1/2∂µ(g1/2gµν∂νX l) is the Beltrami operator which general-
izes the Laplace operator to non-Euclidean manifolds and Γl

jk = 1
2hli(∂jhik +

∂khji − ∂ihjk) is the Levi-Civita connection coefficients [10].

If the metric tensor gµν of the embedded manifold Σ is chosen to be the
induced metric tensor: gµν = ∂µXi∂νXjhij , then the map X are harmonic
maps such as geodesics and minimal surfaces and the weighted Polyakov action
is reduced to the weighted Euler functional/Nambu action that describes the
(hyper-)area of a (hyper-)surface Σ:

Sf =
∫

dnΣς f g1/2. (107)
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The induced metric tensor is also introduced in the flow (106), which yields
to:





∂Xl

∂t = f · Hl + ∂kfgµν∂µXk∂νX l − nM .nΣ
2 ∂kfhkl,

Hl =
(
g−1/2∂µ(g1/2gµν∂νX l) + Γl

jk∂µXj∂νXkgµν
)

gµν=∂µXi∂νXjhij

(108)

for 1 ≤ l ≤ nM and H is the mean curvature vector generalized to any embed-
ding manifold M .

The functional (107) and the minimization flow (108) define the energy and
the evolution equation for the active contour model defined in a general Rie-
mannian manifold such as hyperbolic, spherical or parabolic manifolds.

In a first approach, we propose to recover the classical geodesic/geometric
active contour model, i.e. when the embedding manifold is the Euclidean space.

Geodesic/Geometric Active Contours: The geodesic/geometric active contour
model evolving in a 2-D Euclidean space proposed in [4, 9] can be recov-
ered/revisited if we choose X := C : p → (C1(p), C2(p)) and hij = δij (Euclid-
ean metric tensor), which means that the metric tensor of Σ is as follows:

gµν = ∂µXi∂νXjhij = ∂µCi∂νCjδij (109)
= (∂pC

1)2 + (∂pC
2)2 = |Cp|2 = gpp (110)

with µ = ν = p and Cp := dC
dp . Thus, the determinant of gµν is g = |Cp|2 and

the energy functional (107) is equal to

Sf =
∫

dnΣς f g1/2 =
∫

dp f |Cp| =
∫

fds = FGAC(C), (111)

which corresponds to the energy of the geodesic/geometric active contour model
defined in Equation (97). Moreover, the minimization flow (102) can also be
recovered. The mean curvature vector is equal to

Hl =
(
g−1/2∂µ(g1/2gµν∂νX l) + Γl

jk∂µXj∂νXkgµν
)

gµν=∂µXi∂νXjhij

(112)

=
1
|Cp|∂p

(
|Cp| 1

|Cp|2 ∂pC
l

)
+ 0 (113)

=
1
|Cp|∂p

(
∂pC

l

|Cp|
)

, (114)

We remember that the unit tangeant vector to the curve parametrized by p is
T = Cp/|Cp| and the derivative of T is equal to ∂pT = |Cp|∂sT = |Cp|κN
where s, κ and N are respectively the arc-length, the curvature and the normal
to the curve. Thus,

H =
1
|Cp|∂p

(
∂pC

|Cp|
)

=
1
|Cp|∂pT = κN . (115)
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The second part of the flow is equal to:

∂kfgµν∂µXk∂νX l − nM .nΣ

2
∂kfhkl =

1
|Cp|2 ∂kf · ∂pC

k∂pC
l − ∂kfδkl(116)

= 〈∇f,
Cp

|Cp| 〉
Cl

p

|Cp| − ∂lf (117)

= 〈∇f, T 〉T l − ∂lf, (118)

under the vectorial form, we have:

∂kfgµν∂µXk∂νX l − nM .nΣ

2
∂kfhkl = 〈∇f, T 〉T − ∇f, (119)

= −〈∇f,N〉N . (120)

Finally, the flow (108) is as follows:

∂tC = fκN − 〈∇f,N〉N , (121)

which is the well-known flow of the geodesic/geometric active contour model
defined in Equation (102).

Active Contours on Hyperbolic and Spherical manifolds:
We now develop the model for active contours evolving on non-Euclidean

manifolds such as the hyperbolic and spherical manifolds. The metric tensors
for both manifolds were defined previously in Equations (43) and (61):

(hij)H2
+

=

(
4

(1−x2−y2)2 0
0 4

(1−x2−y2)2

)
, (122)

(hij)S2 =

(
4

(1+x2+y2)2 0
0 4

(1+x2+y2)2

)
, (123)

Both tensors are diagonal with the same components, which allows us to
write them in this compact expression:

(hij)ξ = h
1/2
ξ δij with ξ = H2

+ or S2, (124)

where hξ is the determinant of (hij)ξ. Thus, the metric tensors of the active
contour, called Σ in the Polyakov framework, embedded on a hyperbolic or a
spherical manifold, called M , are as follows:

gµν = ∂µXi∂νXjhij = ∂pC
i∂pC

jh
1/2
ξ δij (125)

= h
1/2
ξ |Cp|2 = gpp = g (126)

Thus, the energy functional (107) of the active contours embedded on a
hyperbolic or a spherical manifold is equal to
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Sf =
∫

dnΣς f g1/2 =
∫

f h
1/4
ξ |Cp|dp =

∫
fh

1/4
ξ ds = FACHSM (C), (127)

where ACHSM stands for Active Contours on Hyperbolic and Spherical Man-
ifolds. Let us now compute the evolution equation for the active contours on a
hyperbolic and a spherical manifold. The Beltrami part is equal to:

g−1/2∂µ(g1/2gµν∂νX l) = h
−1/4
ξ

1
|Cp|∂p

(
h

1/4
ξ |Cp|g−1/2

ξ

1
|Cp|2 ∂pC

l

)
(128)

= h
−1/4
ξ

1
|Cp|∂p

(
h
−1/4
ξ

∂pC
l

|Cp|
)

(129)

= h
−1/2
ξ κN l + h

−1/4
ξ

1
|Cp|∂p

(
h
−1/4
ξ

) ∂pC
l

|Cp| (130)

= h
−1/2
ξ κN l − 1

4
h
−3/2
ξ 〈∇hξ, T 〉T l. (131)

The Levi-Civita connection coefficients for the hyperbolic and spherical man-
ifolds are equal to:

Γl
jk =

1
2
hli(∂jhik + ∂khji − ∂ihjk), (132)

(Γ1
jk)ξ =

1
4
h−1

ξ

(
∂xhξ ∂yhξ

∂yhξ −∂xhξ

)
(133)

(Γ2
jk)ξ =

1
4
h−1

ξ

( −∂yhξ ∂xhξ

∂xhξ ∂yhξ

)
, (134)

which gives us the second term of the mean curvature vector:

Γl
jk∂µXj∂νXkgµν = Γl

jk∂pC
j∂pC

kgpp, (135)

= h
−1/2
ξ Γl

11

∂pC
1

|Cp|
∂pC

1

|Cp| + h
−1/2
ξ Γl

12

∂pC
1

|Cp|
∂pC

2

|Cp|

+h
−1/2
ξ Γl

21

∂pC
2

|Cp|
∂pC

1

|Cp| + h
−1/2
ξ Γl

22

∂pC
2

|Cp|
∂pC

2

|Cp| (136)

Γ1
jk∂pX

j∂pX
kgµν =

1
4
h
−3/2
ξ

(
∂xhξT 1T 1 + 2∂yhξT 1T 2 − ∂xhξT 2T 2

)
(137)

Γ2
jk∂pX

j∂pX
kgµν =

1
4
h
−3/2
ξ

(−∂yhξT 1T 1 + 2∂xhξT 1T 2 + ∂yhξT 2T 2
)
, (138)

which is as follows under the vectorial form:

Γjk∂µXj∂νXkgµν =
1
4
h
−3/2
ξ (〈∇hξ, T 〉T − 〈∇hξ,N〉N ), (139)
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if we consider T = (T 1, T 2) and N = (T 2,−T 1). Thus, the mean curvature
vector is equal to:

H =
(
g−1/2∂µ(g1/2gµν∂νX) + Γjk∂µXj∂νXkgµν

)
gµν=∂µXi∂νXjhij

(140)

= h
−1/2
ξ κN − 1

4
h
−3/2
ξ 〈∇hξ, T 〉T

+
1
4
h
−3/2
ξ (〈∇hξ, T 〉T − 〈∇hξ,N〉N ) (141)

= h
−1/2
ξ κN − 1

4
h
−3/2
ξ 〈∇hξ,N〉N (142)

Then, the second part of the flow (108) is equal to:

∂kfgµν∂µXk∂νX l − nM .nΣ

2
∂kfhkl (143)

= h
−1/2
ξ

1
|Cp|2 ∂kf · ∂pC

k∂pC
l − ∂kfh

−1/2
ξ δkl (144)

= h
−1/2
ξ

(〈∇f, T 〉T l − ∂lf
)
, (145)

= −h
−1/2
ξ 〈∇f,N〉N l, (146)

Finally, the flow (108) of the active contours embedded on a hyperbolic or
spherical manifold is as follows:

∂tC = fh
−1/2
ξ κN − 1

4
fh

−3/2
ξ 〈∇hξ,N〉N − h

−1/2
ξ 〈∇f,N〉N . (147)

It is interesting to notice that this result coud also be obtained with the clas-
sical geodesic/geometric active contour model. As we said previously (Section
??), Caselles et al. [?] defined the active contour problem as the determination
of a geodesic, i.e. a curve of minimal weighted distance/length, between two
points in a non-Euclidean space. The minimal length between two points in a
space defined by a metric tensor aij is given by the following formula:

∫ 1

0

√
aijC

′
iC

′
jdp =

∫ 1

0

√
a11C

′2
1 + 2a12C

′
1C

′
2 + a22C

′2
2 dp, (148)

with C = (C1, C2). Caselles et al. considered the following metric tensor for
the embedded space (Equation (99)):

aij = f2δij , (149)

where f is the edge detecting function, to recover the active contour energy:

∫ 1

0

√
f2δijC

′
iC

′
jdp =

∫ 1

0

f
√

δijC
′
iC

′
jdp =

∫ 1

0

f |Cp|dp =
∫

fds = FGAC(C).

(150)
Then, they determined the minimization flow (102) with the calculus of vari-

ations and the Euler-Lagrange equation technique.
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The functional
∫ √

aijC
′
iC

′
jdp gives us the opportunuity to change the metric

tensor of the embedding space. Thus, it is possible to consider the metric
tensors of the hyperbolic and spherical manifolds, (hij)H2

+
and (hij)S2 , defined

in Equations (122) and (123), if we consider the following metric tensor:

aij = f2(hij)ξ, ξ := H2
+ or S2, (151)

then the new weighted distance is equal to:

∫ √
aijC

′
iC

′
jdp =

∫
fh

1/4
ξ |Cp|dp =

∫
fh

1/4
ξ ds = FACHSM (C), (152)

which is exactly the energy of the active contours on hyperbolic and spherical
manifolds as defined in Equation (127). Caselles et al. proves in [?] that a
functional with the form

∫
fh

1/4
ξ ds =

∫
f
′
ξds has the following minimization

flow (see Appendix ??):

∂tC = f
′
ξκN − 〈∇f

′
ξ,N〉N (153)

= (fh
1/4
ξ )κN − 〈∇(fh

1/4
ξ ),N〉N , (154)

Finally, it is easy to show that the Euler-Lagrange equation of the previous
flow (153) is equivalent to the one defined in Equation (147) because we do not
change the minimization solution by multiplying the Euler-Lagrange equation by
a strictly positive function. Thus, let us multiply the Euler-Lagrange equation
of Equation (153) by the strictly positive function h

−3/4
ξ :

0 =
(
f ′ξκN − 〈∇f ′ξ,N〉N

)× h
−3/4
ξ (155)

=
(
fh

1/4
ξ κN − 〈∇(fh

1/4
ξ ),N〉N

)
× h

−3/4
ξ (156)

=
(
fh

1/4
ξ κN − f〈∇h

1/4
ξ ,N〉N − h

1/4
ξ 〈∇f,N〉N

)
× h

−3/4
ξ (157)

=
(

fh
1/4
ξ κN − 1

4
fh

−3/4
ξ 〈∇hξ,N〉N − h

1/4
ξ 〈∇f,N〉N

)
× h

−3/4
ξ (158)

= fh
−1/2
ξ κN − 1

4
fh

−3/2
ξ 〈∇hξ,N〉N − h

−1/2
ξ 〈∇f,N〉N , (159)

which is exactly the Euler-Lagrange equation of Equation (147). Thus, the two
minimization solutions by flows (147) and (153) are strictly equal, which means
that we can choose one of the two flows indistinctly.

Active Contours on a Parabolic manifold:
Let us now develop the model for active contours evolving on a parabolic

manifold. The metric tensor for a parabolic manifold was defined in Equation
(73):

(hij)par =
(

1 + 4x2 4xy
4xy 1 + 4y2

)
, (160)
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and the inverse tensor, given in Equation (74), is as follows:

(hij)par = h−1

(
1 + 4y2 −4xy
−4xy 1 + 4x2

)
, (161)

where h = 1 + 4x2 + 4y2 is the determinant of hij .
Thus, the metric tensor of the active contour, called Σ in the Polyakov

framework, embedded on a parabolic manifold, called M , is as follows:

gµν = ∂µXi∂νXjhij (162)
= ∂pC

i∂pC
jhij (163)

= C1
pC1

phxx + 2C1
pC2

phxy + C2
pC2

phyy (164)

= |Cp|2
(

C1
p

|Cp|
C1

p

|Cp|hxx + 2
C1

p

|Cp|
C2

p

|Cp|hxy +
C2

p

|Cp|
C2

p

|Cp|hyy

)
(165)

= |Cp|2
(T 1T 1hxx + 2T 1T 2hxy + T 2T 2hyy

)
(166)

= |Cp|2T T (hij)parT = |Cp|2|T |(hij)par
(167)

= gpp = g (168)

where T T means the transpose of T and |T |(hij)par
is the norm of the tangent

vector on the parabolic manifold. Thus, the energy functional (107) of the active
contours embedded on a parabolic manifold is equal to

Sf =
∫

dnΣς f g1/2 =
∫

f |T |(hij)par
|Cp|dp =

∫
f |T |(hij)par

ds = FACPM (C),(169)

where ACP stands for Active Contours on Parabolic Manifold. Let us now
compute the evolution equation for the active contours on a parabolic manifold.
The Beltrami part is equal to:

g−1/2∂µ(g1/2gµν∂νX l) = g−1/2∂p

(
g−1/2|Cp|∂pC

l

|Cp|
)

(170)

= g−1|Cp|∂p(T l) + g−1/2∂p(g−1/2)|Cp|T l (171)

= g−1|Cp|2κN l − 1
2
g−2|Cp|2〈∇g, T 〉T l. (172)

The Levi-Civita connection coefficients are equal to:

Γl
jk =

1
2
hli(∂jhik + ∂khji − ∂ihjk), (173)

Γ1
jk = 4h−1x δjk (174)

Γ2
jk = 4h−1y δjk, (175)

which gives us the second term of the mean curvature vector:
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Γl
jk∂µXj∂νXkgµν = Γl

jk∂pC
j∂pC

kgpp, (176)

Γ1
jk∂pC

j∂pC
kgpp = 4h−1x δjk∂pC

j∂pC
kg−1, (177)

= 4h−1g−1|Cp|2x, (178)

Γ2
jk∂pC

j∂pC
kgpp = 4h−1y δjk∂pC

j∂pC
kg−1, (179)

= 4h−1g−1|Cp|2y, (180)

which is as follows under the vectorial form:

Γjk∂µXj∂νXkgµν = 4h−1g−1|Cp|2x, (181)

where x = (x, y). Thus, the mean curvature vector is equal to:

H =
(
g−1/2∂µ(g1/2gµν∂νX) + Γjk∂µXj∂νXkgµν

)
gµν=∂µXi∂νXjhij

(182)

= g−1|Cp|2κN − 1
2
g−2|Cp|2〈∇g, T 〉T + 4h−1g−1|Cp|2x (183)

Then, the second part of the flow (108) is equal to:

∂kfgµν∂µXk∂νX l = ∂kfgpp∂pC
k∂pC

l (184)

= g−1|Cp|2∂kf
∂pC

k

|Cp|
∂pC

l

|Cp| (185)

= g−1|Cp|2〈∇f, T 〉T l, (186)

and the term −nM .nΣ
2 ∂kfhkl is equal for l = 1, 2 to:

−
(

∂xfhxx + ∂yfhxy

∂xfhxy + ∂yfhyy

)
= −

(
hxx hxy

hxy hyy

)(
∂xf
∂yf

)
= −(hij)∇f. (187)

Finally, the flow (108) for the active contours embedded on a parabolic
manifold is a follows:

∂tC = f

[
g−1|Cp|2κN − 1

2
g−2|Cp|2〈∇g, T 〉T + 4h−1g−1|Cp|2x

]

+g−1|Cp|2〈∇f, T 〉T − (hij)∇f. (188)

Epstein-Gage showed in [5] that the geometry of the curve deformation is
not affected by the tangential velocity T . This result is due to the fact that the
tangential velocity does not change the geometry of the curve but its parame-
trization. Hence, Equation (191) can be replaced by
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∂tC = f
[
g−1|Cp|2κN + 4h−1g−1|Cp|2〈x,N〉N ]− 〈(hij)∇f,N〉N (189)

= g−1|Cp|2(fκN + 4h−1〈x,N〉N )− 〈(hij)∇f,N〉N , (190)

As we said previously, we do not change the minimization solution if we
multiply the Euler-Lagrange equation by a strictly positive function. Thus, we
finally obtain:

∂tC = fκN − |T |(hij)par
〈(hij)∇f,N〉N + 4h−1〈x,N〉N , (191)

because g|Cp|−2 = |T |(hij)par
.

Summary:
It is possible to write a general formula for all active contour models devel-

oped in this section. Indeed, the active contour flow evolving on the Euclidean,
hyperbolic (Equation (122)), spherical (Equation (123)) and parabolic (Equa-
tion (160)) manifolds defined by a metric tensor hij has the following general
expression:

∂tC = fκN − |T |hij 〈(hij)∇f,N〉N − |T |hij 〈ΓjkCj
pCk

p gpp,N〉N , (192)

where |T |hij is the norm of the tangent vector T defined on the manifold hij .
Thus, Equation (192) is a general expression for Equations (121), (147) and
(191).

3 Conclusions and future work

In this technical report we have presented some basic image processing tech-
niques for non-Euclidean images (3600-images). These are Laplacian operator,
gradient and active contour. It is interesting to develop the multiscale active
contour for such images but this is a subject of future work.
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