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Abstract

This paper presents a novel method to correlate audio andldata generated by the same physical phenomenon,
based on sparse geometric representation of video secueiibe video signal is modeled as a sum of geometric
primitives evolving through time, that jointly describetheometric and motion content of the scene. The displademen
through time of relevant visual features, like the mouth spaaker, can thus be compared with the evolution of an
audio feature to assess the correspondence between a@nsstvisual signals. Experiments show that the proposed
approach allows to detect and track the speaker’s mouth sénaral persons are present on the scene, in presence of
distracting motion, and without prior face or mouth detaucti

Index Terms

Multimodal data processing, audiovisual associationpggtdc video representation, sparse redundant decompo-
sition, Matching Pursuit.

|. INTRODUCTION

Human perception of the world is essentially multimodal. We continuously combifeeatif sensorial experiences
to obtain an accurate and reliable representation of the surroundingmmeént, and this without any apparent effort.
Concerning audio and visual data modalities, human beings have a spiaimunderstanding what is happening
in an audiovisual scene and, given a particular sound event, in locatiogigia and if it has been generated by
some visible mechanical action. In other words, we are particularly effieieassessing audiovisual synchrony.
Automatic systems, on the other hand, encounter great difficulties wheg tiyinnderstand relationships between
audio and video signals. Providing computers with multimodal analysis capabiitiest an easy task, given the
already challenging nature of “monomodal” analysis itself. The goal of #gsarch work is that of studying and
possibly understanding the relationships that exist between acousti¢saiatisignals, in order to detect those regions
in an image sequence from which the soundtrack originates. To achidyemigropose a new representational
framework for audiovisual fusion.

The video signal is modeled as a superimposition of geometric primitives (Gathedd that evolve through time.
The characteristics of such primitives are described by a set of parametese time evolution indicates the motion
of the associated visual structure. We can track in this way the evolutiaievant image features and easily define
“significant events” occurring in the video channel. We will also build adi@feature based on the acoustic energy,
which reflects the presence of sound in the audio channel. Basedlorepuesentation, we can define in the same way
significant acoustic events. The definitioramustic and visual evenissthe central part of the proposed method, since
it allows to assess the correspondence between audio and video sigaalgasy, precise but still general fashion.
Audio-video signals are considered to be correlated, and thus to beatgohdy the same physical phenomenon,
simply when a co-occurrence of acoustic and visual events is obsefedinvestigated approach is tested on a set
of real-world sequences taken from the CUAVE database. Results d&atenthat our method allows to detect the
mouth of the active speaker, when distracting motion is present, and witleoweéd of any preprocessing step as face
or mouth detector.
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I[I. RELATED WORK

The problem we are challenging in this work is that of correlating audio abwsignals in multimedia sequences,
to detect consistent audiovisual pairs that could originate from the saysé&cahphenomenon. This problem is non
trivial, since complex relationships between complex signals of differént@baave to be modeled. The topic was first
faced by Hershey and Movellan [1]. They measured the correlatioreleetaudio and video using an estimate of the
mutual information between the energy of an audio track and the value ¢ gixgls. Since a per-pixel measure was
used, the hypothesis that pixels are independent of each other coeditiarthe speech signal was introduced. In [1],
the mutual information is derived from the Pearson'’s correlation coeffiaieder the assumption that the joint statistics
are Gaussian. Slaney and Covell [2] generalize this approach anddoaknethod able to measure the synchrony
between audio signals and video facial images. In order to deduce amshafidoetween the cepstral representation
of the audio and the video pixels, the authors use Canonical Correlatialysdsy which is equivalent to maximum
mutual information projection in the jointly Gaussian case. Netlal [3] evaluate three different algorithms for
assessing audiovisual synchrony in a speaker localization contexioffiive considered methods are based on mutual
information: one assumes discrete distributions and the other one considkinariate Gaussian distributions. A
third algorithm makes use of Hidden Markov Models trained on audiovisatal dAudio features are extracted from
Mel-frequency cepstral coefficients, while different video feataestested: the coefficients of the discrete cosine
transform and the pixel intensity change. All three algorithms require tiidatasets in order to build priori
models, like the methods proposed in [1], [2].

Recently, more general algorithms based on information theoretic feaptigsaation have been introduced. Butz
and Thiran [4] propose an approach based on Markov chains modalutig and video signals. The audiovisual
consistency is assessed by maximizing the mutual information between audi@aodeatures, where the distribu-
tions of such features are estimated using nonparametric density estimataise Budio, a linear combination of the
power spectrum coefficients that has the biggest entropy is learntfaataset, while the video is represented by pixel
intensity change. The audio and video joint densities are deduced by grair@restimator on a set of audio-video
sequences. The framework developed in [4] is used in [5], to extraanal audio features with respect to video
features. These audiovisual features are then correlated by maximigingnitual information, in order to locate the
active speaker among several candidates. A method that does not sga&Eany previous model training was first
proposed by Fishest al. [6] and has been extended in their latest work [7]. The algorithm is basedprobabilistic
generation model that is used to define projection rules on maximally infornsatbh&aces. The learnt densities are
used to define the relationship between different signal modalities usingparametric density estimator. This ap-
proach is used to solve a conversational audiovisual correspan@eniolem, obtaining encouraging results. In [8], a
slightly different approach is used to find, in a joint manner, an optimal maglatwl fusion criteria of data. Principal
Components Analysis and Independent Component Analysis are medarn audio and video features at the same
time, in order to find the maximally independent audio-video subspaces, asdxiract audiovisual independent
components. However, this technique is not able to deal with dynamic scenes

In contrast to previous works, in this paper the attention is focused onlmgdbe observed phenomena, i.e.
acoustic and visual stimuli. In particular, we propose a model of videcesmgs that describes concisely the content
of the scene. Such a representation allows the design of intuitive andgpeaaliovisual fusion criteria that do not
require the formulation of any complex statistical model describing the relaipmbetween audio and video.

[11. M ODELING AUDIOVISUAL PHENOMENA

The retrieval of correlations between audio and video signals is a profikbna very high dimensionality. The goal
is that of locating those spatio-temporal video regions that are interrelaied wertain audio track. In order to make
this problem feasible, audiovisual data need to be modeled such that dimaitgigets reduced and only relevant
signal information is used. Data modeling is thus supposed to capture the raactehistics of each signal modal-
ity that may contain information about the other modality. However, existingoagpes to multimodal processing
typically focus on the modeling of relationships between audio and videord#tay than on modeling the data itself.

To date, methods dealing with audiovisual fusion problems basically attempildocbmplete, general and com-
plex statistical models to capture the relationships between audio and videegeaBut surprisingly, the employed
features are extremely simple and poorly connected with the physics ofdbkepr, in particular for what concerns
visual information. Efficient signal modeling and representation reqtheease of methods able to capture particular
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characteristics of each signal kind. A question that arises at this poimhisshould we use a representation of video
based on a basis dkltas(i.e. pixel wise features), if video is made of moving regions surroungetbhtours with
high geometrical content? Pixel-related quantities seem to us a relativelyspome of information that has a huge
dimensionality, it is quite sensitive to noise and does not exploit structures gesnaA very simple example can
clarify this concept. If a person is moving back and forth while speakingpimt fof the camera, the pixel values on the
mouth region change depending on the lips movermamd®n the person movement. The result is that pixel intensities
evolve in an undistinguishable way.

Therefore, the idea is basically that of defining a proper model for V&gaals, instead of defining a complex
statistical fusion model that has, however, to find correspondentesdrebarely meaningful features. If an accurate
description of the scene is available, we can actually think of detecting temisgidiovisual pairs generated by the
same phenomenon (in this case, a speaker uttering a sound), by simpljirmdptiee co-occurrence of interesting audio
and video events (i.e. the presence of sound and the movement of the menthparticular applications, one may
consider the use of adapted template based approaches for videsergptien (in order to model particular objects
and their trajectories: lips, faces, etc...). However, for generiecapplication constrained approaches, the answer
seems to be that we should, indeed, use a signal model capable of explmgogstructural properties while keeping
generic and flexible enough.

Such properties are introduced into the video feature extraction pramssdering spatio-temporal video approx-
imations using geometric primitives. An image sequence is decomposed in 3-®cddgonents intended to capture
geometric features (like oriented edges) and their temporal evolutiondén tw represent the large variety of geomet-
ric characteristics of video features, redundant codebooks ofifunschave to be considered. The use of geometric
video decomposition has at least two main advantages:

« Unlike the case of simple pixel-based representations, when considerigg stractures that evolve in time we
deal with dynamic features that have a true geometrical meaning. Comingdao& example of a speaker
moving back and forth, if the mouth is represented using video componenttsabl image structures and
describe their position, size and orientation variations, then we are ablétéo i¢erpret what is happening in
the scene.

« Geometric sparse video decompositions provide compact representdtiofsraation, allowing a considerable
dimensionality reduction of the input signals. This property is particularlealipg in this context, since we
have to process signals of very high dimensionality.

We will show that combining geometric-driven video features with a simple gediare, makes it possible to define a
deterministic audiovisual correspondence measure. Audiovisual paicsasidered to be correlated when we observe
a temporal synchrony between “events” present in both audio and sigeals, that are thus supposed to be caused
by the same physical phenomenon. Events will be defined as local garturdof an equilibrium situation, exploiting
the motion information of the geometric primitives describing the scene and thgyesentent of the audio track. In
the next Sections, we will first present the algorithm used to repregde wignals using 3-D geometric functions,
and then we will describe the procedures adopted to extract and ¢emeldio and video features.

IV. GEOMETRICVIDEO REPRESENTATION

Natural image sequences are composed of successive projecteasays 3-D objects. Considering these objects
to describe smooth trajectories through time, one usually assumes that imagaeEjare well modeled by smooth
transformations of a reference frame [9]. A video sequence can éemisidered as a series of frames represented by a
mixture of homogeneous regions and regular contours, where the moteprésented by smooth local deformations
of those regions. Coping with regular geometric deformations necessitatesehof flexible visual primitives. In
order to achieve this, we advocate the use of parametric over-completadi@i®of basic waveforms, referred to as
atoms. Local deformations are then propagated along the sequencddiingpghe atoms’ parameter field in order to
approximate the succession of frames. Assuming that an ithage be approximated with a linear combination of
atoms retrieved from a redundant dictiondry of 2-D atoms, we can write:

f = Z Cyi G (1)

Y €Q
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Fig. 1. The generating functiof(x1, z2) described by Eq. 5.

wherei is the summation index;, corresponds to the coefficient for every atgmand(? is the subset of selected
atom indexes from dictionarf,,. We also require that the representatiosparse i.e. the cardinality of2 is much
smaller than the dimension of the signal. The decompositichaf an overcomplete dictionary is not unique, and
several decomposition approaches have been proposed, like the rakftaodes [10], Matching Pursuit [11] or Basis
Pursuit [12]. Here we consider Matching Pursuit (MP), an iteratieedy algorithm that selects the element of the
dictionary that best matches the signal at each iteration.

Each video frame is decomposed into a low-pass part, that takes into atiselsmooth components of images,
and a high-pass part, where most of the energy of edge discontinuitsesTlag low frequency component is obtained
by low-pass filtering and downsampling the images in the sequence, usingpkecian-pyramid scheme [13]. We
employ here the FIR low-pass filter proposed in [14]. The high-pasaefsaare obtained by subtracting the low
frequency parts from the original images. These high frequencyua@didmes which contain the geometric structures
of images, are represented using MP. At each step, MP picks up th@fubelonging toDy, that best approximates
the first frame of the sequench, The first step of the MP algorithm decomposes the image as

Il = <Ilvg’YO>g’yo+R1117 (2)

where R'I; is the residual component after approximatifign the subspace described by,. The functiong,, is
chosen such that the projectitiy, g, )| is maximal. At the next step, we simply apply the same proceduf? 19,
which yields:

R'II = (R'I1,9,,) g + R*I. (3)

This procedure is recursively applied, and afiéiterations, we can approximale as

N-1
Il = Z Cy; G; 5 (4)
1=0

wherec,, = (R'I1, g-,).

The dictionaryD, is built by varying the parameters of a mother function, in such a way thatnitrgées an
overcomplete set of functions spanning the input image space. The difdloe generating function is driven by
the observation that it should be able to represent well edges on thd&hB. (Thus, it should behave like a smooth
scaling function in one direction and should approximate the edge alongttiegonal one. We use here an edge-
detector atom with odd symmetry, that is a Gaussian along one axis and thiefivsttive of a Gaussian along the
perpendicular one (see Fig. 1). The generating fungtion, =) is thus expressed as:

g(21,22) = 21y - e~ 1 HT3), &

The codebook of functior®y, can be defined &, = {g,, : v € I'}. Each atony, = U, g is built by applying a set
of geometrical transformatiofi, to the mother functio. Basically, this set has to contain three transformations:
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« Translationg = (t1,t2) all over the image plane.

« Rotationsd to locally orient the function along the edge.

« Anisotropic scaling’ = (s1, s2) to adapt the atom to the considered image structure.
Any atomg, in the dictionary rotated by, translated by; andt,, and anisotropically scaled By ands; can thus be
written as:

C 2 2
T1,T2) = e (WYY 6
gy (21, 22) NG (6)
whereC is a normalization constant and
" cos(0)(x1 — t1) + sin(0) (z2 — tZ)’ @)
S1

and .

b sin(f)(x1 — t1) + cos(0)(xa — 752). @)

52
We consider an approach where 2D spatial primitives obtained in the sigpaof a reference frame of the form of

Eqg. 4 are tracked from frame to frame. Given a set of images belongingequence, the changes suffered from a
framel, to I, are modeled as the application of an operdioto the imagel; such that

L = F(L),
Liro = Fii(li1) = Fa (Fy(1y)), 9
Iiys =

wheret is the time index.
From the model of Eqg. 4 and 9, follows that

N-1
Iy = Ft( Z Ctygf,> (10)
=0

Making the hypothesis thdt; represents the set of transformatidis of all individual atoms that approximate each
frame, we obtain:

N-1
Ieyr =) F'(chd5)- (12)
1=0

A MP-like approach similar to that used for the first frame is applied to rettizeenew set o@ﬁl (and the associ-
ated parametric transformatidn). However, at every greedy decomposition iteration some new criteria tiodve
considered in order to establish the relationship with the expansion of #remet frame. Only a subset of functions
of the general dictionary is considered as candidate functions to espresch deformed atom. This subset is defined
according to the past geometrical features of every particular atom imgki@ps frame, such that only a limited set of
transformations (translation, scale and rotation) are possible. This imposeghness on the set of deformed primi-
tives, following the assumption of smooth transformation. The formulation dih@pproach to video representation
is complex and is treated in detail in [15], to which the interested readersfereed.

A cartoon example of the used approach can be seen in Fig. 2(a), tileeapproximation of a simple synthetic
object by means of a single atom is performed. The first and third row tingie show the original sequence and
the second and fourth rows provide the approximation composed of a gjaghaetric term. Fig. 2(b) shows the
parametric representation of the sequence. We see the temporal evofutiencoefficientc!, and of the position,
scale and orientation parameters. The MP decomposition of the video sequevides a parametrization of the
signal which represents the image geometrical structamegheir evolution through time. In this way we can track
the movements of relevant image features, getting an accurate descripgti@soene content. Besides, it is important
to underline that the stream of video atoms that we consider is absolutelfagydneould be generated using different
approximation techniques and it can be used to encode video sequenites shown in [16].
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(a) Synthetic sequence approximated by 1 atom: first and third row #ewriginal sequence made by a
simple moving object. Second and fourth row depict the different slicgdohm a 3-D geometric atom.
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(b) Parameter evolution of the approximated object; from left to rightfeord up down, we
find: coefficientc,, horizontal positiort,, vertical positiontz, short axis scale;, long axis

scales,, rotationd.

Fig. 2. Approximation of a synthetic scene by means of a 2-D time-evobhtog.

V. AUDIOVISUAL FUSION

We have now a generic representation of the video that describes tgaitiidnow the scene is composed and how
image components evolve. Using such a parametric representation, wedhpwothe temporal evolution of relevant
image features, like those constituting the speaker’s mouth or chin. The sétad¢ 3-D geometric primitives used to
represent the video are considered, and they are sorted by comreddtiiothe audio. Such correspondence between
acoustic and visual signals is assessed by comparing the evolution dfstisicaures with that of some audio track
descriptors. The features considered in the following of this work agsgmted in Sections V-A and V-B, while the
criteria used to relate them are introduced and discussed in Section V-C.

A. Audio Feature

Audio signals have a rich variety of components that human auditive systdsteito perceive (Fig. 3). Correlations
of the wide diversity of sounds with the also large variety of geometric cor#tgns of the visual stimulus of a mouth
are possible. Indeed, this is the main basidifpreading A positional model of lips may be assigned to each sound
and transitional models between sounds can be established.

We consider here a much simpler and generic approach. As already, statebk for synchrony between audio-
video events. An interesting audio event, from our point of view, is thegmree of a sound. Therefore, we need an
audio feature that simply allows to assess the presence or not of atiaevest. Finer audio features are unnecessary
in this setting, but can be considered to perform more complex tasks.

Typical features used to represent audio signals are the Mel-freguepstral coefficients (MFCC) [17], mainly
used in the speech recognition field, and employed in [2], [3], [5]. ]tHd audio feature is obtained from the spectro-
gram of the audio track by learning from a training dataset the linear cotigninaf the power spectrum coefficients
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Fig. 3. Audio signal of a subject uttering eight digits in English (top), its tinegffiency energy distributiof, (¢, w) (middle), and the
estimated audio featurg, (¢) (bottom). The signal is decomposed using 1000 Gabor atoms. Thersafpof the time-frequency plane image
goes from black to red, through blue, green and yellow, and the pixelsitygrepresents the value of the energy at each time-frequency lacation

with biggest entropy. Fisher and Darrell [7] propose a similar featutaniaaimizes the mutual information with the
video. This uses an on-line procedure that does not require a trairoeggs. In all cases, the final feature is a 1-D
function that is downsampled in order to obtain the same length for audio aed fédtures.

Here, an estimate of audio energy contained per frame is consideredomifute such an estimate, we exploit
the properties of signal representations over redundant dictionasiieg MP. The sparse decomposition of the audio
track, in fact, performs a denoising of the signal, pointing out its most nelesteuctures. In the next paragraph we
will briefly recall the basic steps of the MP algorithm for 1-D signals.

1) MP Audio Decomposition: The audio signak(t) is decomposed using the MP algorithm over a redundant
dictionaryD 4, composed of unit norm atoms. The family of atoms that comf®ges generated by scaling by
translating in time by, and modulating in frequency bya generating functiog(t) € L?(R). Indicating with the
index~y the set of transformations, u, ), an atom can be expressed as

S

gy(t) = %gc_u)e’ft_ (12)

In our case, we consider a dictionary of Gabor atoms, that is, the dgergefanctiong(t) is a normalized Gaussian
window. The choice of a Gabor dictionary is motivated by the optimal time-&eqy localization of the Gaussian
core [18].

As in the case of images, aftéf iterations the signal(¢) is represented by MP as

N-1

a(t) =Y (R"a,gy,)9,, + RVa, (13)
n=0

whereRY = ¢ and R"a is the residual aften iterations.
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An estimate of the time-frequency energy distribution of the real funetiohcan be derived from its MP decom-
position by summing the Wigner-Ville distribution® ¢ (¢, w) of the obtained atoms [11]:

N-1
Eo(t,w) = Y [(R"a,g3,) " - Wy, (t:w). (14)

n=0

If g(¢) is, as in that case, the Gaussian window, its Wigner-Ville distribution is
Wy(t,w) =2- e 2m(t?+(w/2m)?), (15)

The time-frequency energy distributidty, (¢, w) is a sum of 2-D Gaussian functions, whose positions and variances
along time and frequency axes depend on the set of paramgters s, u,, &, ). One of the analyzed signals and its
time-frequency energy distribution are shown in Fig. 3.

2) Audio Feature Extraction:The audio representation that we obtain from the MP decomposition it is reatigir
exploitable to our end and has to be further processed in order to obtaintéoh that is comparable with the evolution
of the video parameters. We require audio features composed of the samhben?” of samples as the MP video
features. Moreover, we would like to depict the audio signal with only one-éwadving feature, in order to speed-up
the computation and to simplify the problem formulation.

Our audio feature,(t) is obtained by estimating the energy present at each time instant, where thectirnercy
energy distribution of the audio signal is found by decomposing it with the Igérighm (Eq. 14):

N-1
fa(t) =Y [{R"a,gy,)1* - Wgy, (t,0). (16)

n=0

Note that now the Wigner-Ville distributions are projected over the time axis.sdhabtained estimate of the audio
energy per time instant is downsampled, in order to get a convenient ndimifdrme samples. Fig. 3 shows one of
the analyzed audio signal with its time-frequency energy distribution andthesponding functiorf, (¢). In fact, our
feature is similar to those described in [4], [7], with the difference that tivébate to each frequency component the
same weight.

In Fig. 4, the signal of Fig. 3 and four possible audio features assdd@feare depicted:

« We draw in Fig. 4(b) a feature based on the average, over a time windaisiy two video frames, of the
squared modulus of the audio signal.

« Fig. 4(c) shows another audio feature computed from the averagdregeiencies of the energy spectrogram
of the signal. The spectrogram is computed as the magnitude of the windaseeete-time Fourier transform
of the signal using a sliding window. The energy distribution is given by theased absolute value of such
time-frequency function.

« Fig. 4(d) shows a third feature based on the mean over frequencies efidhgy spectrogram of the audio signal
after MFCC processing. In this case, the spectrogram is reconstaftéegrocessing it using a Mel filter bank
composed of 40 filters and taking the,, of the output. The energy distribution is the squared absolute value of
the time-frequency function.

« We draw in Fig. 4(e) the audio featufg(¢) obtained by estimating the per-frame audio energy using Eq. 16.
The four features behave similarly, and we have chosen the forth ooe isiexhibits a smoother and more regular
profile (see Fig. 4). This is due to the sparseness and the fine time4figgesolution of the dictionary decomposition,
that allows to obtain a description that captures nicely the evolution of the tradlq filtering out most of the signal
noise. Moreover, informal tests on a set of real-world sequencesdmfirmed our intuition, showing that slightly
better audiovisual fusion results are obtained when the audio featuge @bEs used in our proposed framework.

B. Video Feature

Clearly, video features need to capture temporal variations. To dat®, fédrires used for multimodal audiovisual
fusion are often based on pixel-wise intensity difference measure3] &mg [4], the pixel intensity change measured
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Fig. 4. The signal of Fig. 3 is drawn in (a). The average, over a timeawnaf two video frames, of the squared modulus of the audio signal
is shown in (b), the average over frequencies of the energy speatnogf the audio signal in (c), the mean over frequencies of the energy
spectrogram after MFCC processing in (d) and the per-frame audiggpstimated from the MP decomposition in (e).
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in a 3x 3 averaging spatial window is considered. The approach in [5] loakgafa exploiting local motion infor-
mation by means of optical flow measures. In any case, none of the apgfuabahes try to exploit the real structural
nature of video signals.

We have decided thus to explore the possibilities offered by the MP videog®sition technique presented in Sec-
tion IV. In this way, we hope to be able to track important geometric featurestionre and to effectively parameterize
those transformations that represent changes in the scene. TheafutpuMP algorithm is a set of atom parameters
that describe the temporal evolution of 3-D video features. Each atonarsaterized by a coefficient, 2 position
parameters, 2 scale parameters and a rotation, i.e. 6 parameters. Fgh@®{B)the atom parameters evolution as a
function of time.

The video features we consider, however, are not all these 6 vidampgers. The scale and orientation parameters
have been discarded, since they carry few information about the moutmmemis. Clearly, they can be used if needed
in a more complex application, but in this context the natural choice seemd t@isidering a feature that takes into
account the movement of image structures. Therefore, for each videowae compute the absolute value of the

displacement as
d=/t3+13, (17)

wheret; andt. are the horizontal and vertical position parameters of the atom. The quaititised as video feature,
and indicates a sort of “activation” of the video structure that it reprissén order to be more easily compared to the
audio feature, that has a smooth behavior, we convolve the video feaiitlke a Gaussian filter, obtaining a smooth
function like the one depicted in Fig. 5 (bottom-left). Since a video sequenepliesented withV time-evolving
atoms, we end up with a list @¥ such functions composed @ftime samples.

C. Fusion Criteria

Once features are available, a measure is required to determine how mselatbeelated among them, and thus
to detect those 2-D time-evolving atoms that are more correlated with the sacindtr the literature, different fusion
criteria may be found. These are selected depending on the assumptientodormulate the multimodal analysis
problem.
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Fig. 5. Scheme of the proposed audiovisual fusion criterion. The amitogy peaks and the displacement peaks for each video atom are
extracted and activation vectors are built. The Synchronization Scetegén the audio activation vector and the video activation vectors are
computed as the scalar product between those signals.

Earlier works in literature [1], [2] usBPearson’s correlation coefficieit9] to measure the level of correspondence
between acoustic and visual data. The Pearson’s coefficient is mgtai@ameasure of correlation and reflects the
degree of linear relationship between two variables. The observatiorsofo variables should be approximately
(bivariate) normally distributed. We have also employed such a measure fnaowework, to asses the degree of
synchronization between audio and video signals [20], obtaining integesults. However, the assumptions of
linearity and Gaussianity, that are far from being satisfied in complex scenasiderably limit the analysis power
in real-world cases. Information theoretic formulations [4], [5], [7] @éalso proposed fusion criteria based on the
use ofmutual information21] measure. However, when few data samples are available (as inehenpcase), the
estimation of probability densities may pose some problems.

We propose here a very simple and powerful approach, that is detikectly from the physics of the phenomenon,
and whose main steps are sketched in Fig. 5. The considered videcfesatflect the movement, from frame to
frame, of the image structures associated with the corresponding geonnietitovps. The audio feature indicates the
acoustic energy content at a given time instant. Peaks in such signaksstigg presence of an event. In the video
case, it can be the movement with respect to a certain equilibrium position (§@plgning or closing). For the audio,
a peak in the functiorf, (¢) indicates the presence of a sound. If those audio and video peaksabtiawe instants that
are temporally close, we can expect that they reflect the presence expressions (acoustic and visual signals) of the
same physical phenomenon (utterance of a sound). Therefores aeaéxtracted from the audio feature and from the
N video features. Using the information about the peaks locations, we aoti&ir each audiovisual feature function
an “activation vector”. Such a vector describes the presence ofean agsociated to the corresponding signal. It has
value 1 when the feature is considered to be “active”, and 0 otherwisec#vation vectoy(t) is built from a given
feature vector:(t) following the rule:

y(t):{(l)

wheret is the time index. The windoWy’ models delays and uncertainty. It rarely happens, in fact, that activation
peaks occur exactly at the same time instant in the acoustic and in the videe feattors. The value di should
be chosen considering the video acquisition frame rate and the chatéxgerithe observed phenomenon. However,
empirical observations have shown that the choice of the value is not kriticaur experiments with videos recorded
at 29.97 frames per second (fps), we have obtained slightly similar resuitsvalues o#l” between 1 and 4.

At this point, by simply computing the scalar products between the audio andtigne activation vectors built over
a given observation time slot, we can assess the degree of correlatiarebdtve audio track and a 3-D atom. These

if z(j) isapeak, withj —W <t <j+ W

otherwise (18)
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"
(d)
Fig. 6. Results foExperiment 1 the first row shows the original video frames, the second row shosvetiite footprints of the video atoms

correlated with the corresponding audio signal. In all cases, the géakauths are correctly detected. In the third row the more correlated
video atoms for a different audio source are plotted.

(b)

basic observations drive the definition of the audiovisual correlatiorricrite

Definition 1: A visual primitive (3-D atom) is considerembrrelated with the audio signal over an observation time
slot, if the scalar product between the corresponding activation vasttangye. This value is calleBynchronization
Score
In here, we select the 3-D atoms that are characterized by the highetrSgization Score with the audio, among all
those that represent the video sequence.

VI. EXPERIMENTS

The framework we have developed is used to locate the source of ansagiéb in the video sequence. Such an
application can be included in a conversational human-machine interfaghjdh one or more persons interact with
a computer just by speaking in front of a camera, or in a smart videeoamie system.

Experiments have been carried out on real-world video streams rafirgsene or two persons speaking and mov-
ing in front of a camera. The clips used for the tests have been takerttimimdividualsandgroupssections of the
CUAVE database [22] The video data was recorded at 29.97 fps and at a resolution ot 42D pixels. The size
of the clips has been then reduced to 22076 pixels to be more easily and quickly processed. The input soundtrack
was collected at 44 kHz and it was sub-sampled in order to obtain a sig@&Ha. The image sequence is repre-
sented using the procedure described in Section IV, obtaining a sebdfrge-evolving atoms. The audio part is
decomposed over a dictionary of Gabor atoms whose window lengths framgé&12 to 16384 time samples, using
the implementation of MP for 1-D signals [23] of thastWavesoftware package [24]. Based on such decompositions,
the audio and video features are extracted and the activation vectdmgilaresing a windowi” = 3, as described in
Section V. The Synchronization Scores between audio and video atocmapeited and the 3-D atoms characterized
by the maximum value of correlation are selected. The number of basis functsed for the decomposition of the
image and audio sequences is heuristically chosen for these experimenmt$eiinio get convenient representations.
However, a distortion criteria can be easily set, to automatically determine thieeggqumber of atoms.

Two sets of experiments have been carried out. In the first series, &ljgetiment 1 we consider sequences
involving only one active speaker. We have used clips consisting of ers®p standing in front of a camera reading
digit strings, and videos involving two persons, only one of which is spgakEach sequence lasts about 6—-8 seconds.

LOnly the luminance component of the video sequences has been cedside



ITS TECHNICAL REPORT 13

Fig. 7. Results foExperiment 2 four frames taken from a clip with two speakers in front of the camédadeurn in reading digit string.
In the first two frames the right person is speaking, while in the last two fhere is speaking. The footprint of the most correlated atom is
highlighted in white. The mouth of the correct speaker is detected.

Snapshots of some of the analyzed clips are shown in the first row of Figleshow here four non-trivial cases:
speakers in sequence (a) and (b) move left and right and back dhavtale uttering, the left person in clip (c) clearly
mouths the text which is being pronounced by the right speaker and fitheglyight subject in (d) moves significantly
while the left person is speaking. In the second row of Fig. 6, the imagetsites that are more correlated with
the corresponding soundtrack are highlighted in white. The third row of@-ilfustrates the video components that
are more correlated with the audio signal of a different video sequédrtezaudiovisual correspondence is assessed
following the methodology described above and using the entire length oéthesce. Image sequences involving
only one person are represented using 30 video atoms, while sequeititeao subjects are represented with 50
functions. All the audio tracks are decomposed with MP using 1000 Gahotifns.

The experimental results show that the proposed methodology allows tly dbeate and track the speaker’s mouth.
In all the tested sequences, the algorithm chooses those visual primitivestistitute the mouth and/or chin structures
of the speaker. Even when the active speaker moves, as in Fig. &{dpgror in presence of distracting motion
(Fig. 6(c), (d)), the source of the sound signal is detected. On theargnwhen the video sequence is dubbed with an
incongruous audio track, visual primitives which do not representbkaler's mouth are typically detected (Fig. 6,
third row). We expected such a behavior, since the proposed methgdiideg not simply extract moving structures,
but it detects those geometric features that evolve synchronously withdiee &inally, it is interesting to remark how
video atoms adapt their orientation and shape according to the geometactehitics of the structures they represent.
Such information can be exploited in a successive stage of processioglento estimate the size, orientation and
position of the speaker in the scene. The characteristics of the progppeshch and in particular its mouth tracking
ability can be better appreciated by watching the resulting video sequehaesyre available on the author’'s web
page [25].

In Experiment 2we have analyzed clips involving two active speakers, arranged ag.ifr.FVideos show two
persons taking turn in reading series of digits and last about 20 secdndhis context, we have to introduce a
sliding temporal window over which the Synchronization Scores are compiateake into account the dynamics of
the scene. A window of 2 seconds length (i.e. 60 frames) is used to dezedtito atom that produces the highest
Synchronization Score with the audio. The observation window is then dtbite20 samples and the procedure
repeated. Clearly, the values of window length and shift have to be gltossidering a trade-off between the response
time delay of the system, and the robustness of the audiovisual associdt®madge sequences are represented with
50 video atoms and the audio signals are decomposed using 2000 or 3000aBams, depending on the length of
the clip. Fig. 7 shows the results of the described approach detecting thk ofdhe speaker in one sequence where
two persons speak in turns in front of the camera. In white are highlightefbttprints of the video atoms found to
be correlated with the soundtrack. The mouth of the correct speakdeisteld

In order to quantify the accuracy of the proposed algorithm, we have atigidabelled the center of the speaker’s
mouth in 10 sequences from the CUAVE database. The mouth of the acta&espis considered to be correctly
detected if the position of the most correlated 3-D atom falls within a circle efisadcentered in the “true” mouth
center. If more than one atom is selected, we estimate an atoms’ centroid pdsiisen on the image plane is given
by the average of the coordinates of the single atoms. Since Synchronidatioes are computed every 20 frames,
mouth labels are placed with this same frequency throughout each segaedgerformances are thus evaluated at
test points distant 20 samples one from the other. In total, we have an@y2ddst points. The values of the radius
r that have been considered are 12.5 and 25 pixel. Fig. 8 shows rediomsext mouth detection for the two values
of r. The green marker indicates the position of the video atom that is found to cooelated with the audio.
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(a) (b)

Fig. 8. Regions of correct mouth detection for= 12.5 (a) and- = 25 (b). The green marker indicates the position of the most correlated
video atom.

| Sequence r =12.5 | r =25 |

go1 95 95
go4 86 86
gll 46 54
gl2 75 82
gl3 82 82
gl5 83 83
g19 87 87
g20 90 93
g21 79 79
g22 87 87
Overall 81 83
TABLE |

RESULTS OFExperiment ZXPRESSED IN PERCENTAGE OF CORRECT DETECTIONS

Table | summarizes the results in term of percentage of test points at whispeh&er’'s mouth is correctly detected.
The clips are referred to with the names they have on the CUAVE datadetg@d, etc...).

The values of- have been chosen in such a way that we can have a rough comparisahemittsults presented
in [3]. Nock and colleagues propose an algorithm to detect the mouth ottive apeaker founding the image region
over which the mutual information between audio and video features is maxinmizedmethod requires a training
step, that is performed on the first 10 sequences oftbep partition of CUAVE. The results are then evaluated on
the remaining 12 clips, considering portions of about 20 seconds invobriegsingle speaker. As in our algorithm,
in [3] mutual information values are estimated using a sliding time window of 2 siscitrat is shifted in time with
steps of one second (30 samples). The goodness of the detectiorssealsssing the criterion that we use here, with
the only difference that in [3] the speaker’s mouth is considered to breattyr located if it is placed within aquare
of T' x T pixel centered on the mouth center that was manually labelled. The conbidgves ofl” are 100 and 200
pixel. Thus, taking into account a downsampling factor of 4 that we hapkeaito the video sequences, the areas of
correct mouth detection are comparable.

The set of test sequences that we consider here does not coingigéetaly with that used in the cited paper. How-
ever, considering those sequences analyzed in both works, we obtaiterably better performances (cfr. Table 2
in [3]). Our proposed method compares particularly favorably with N&ckie when the smaller region of correct
mouth detection is considered and for challenging sequences where sbraetihg motion is present. For example,
in clip g12, we get 7% accuracy against 46, while for the sequence g13 we improve thé/d8ccuracy up to 8%.

An overall mouth detection accuracy of81s obtained, in contrast with a B5average accuracy measured in [3]. To
be fair, we want to underline again that the considered test sets dompteately coincide, even if we have analyzed
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a larger number of test points (273 in our case, 252 in the cited papesultRelearly denote a superiority of the
proposed algorithm, also considering that our correct mouth detectiaristgér times smaller than in [3] because
of the circular shape of the window. Moreover, a large fraction ofreni®due to the delay introduced by the sliding
observation window that causes an incorrect detection when the spaeleges. Such errors are practically imper-
ceptible for a human observer, as can be checked observing the coregldteng sequences, that are available on the
author’s web page [25].

VIlI. CONCLUSIONS

In the present work, we propose a novel dictionary approach to amtlovideo representation in the context of
multimodal audiovisual fusion. The motivation for exploring this way is mainly theeovation that image sequences
are typically interpreted as huge pixel intensities matrices evolving in time. Thefaconsidering pixel-related
guantities seems to us a strong limiting factor, since the pixel itself is a pooresotinaformation. Video atoms, on
the other hand, represent time-evolving image structures, and their garamescribe concisely how such structures
move and change their characteristics in space and time. This consentslk® indormation in an easier and faster
way, and thus to develop relatively simple and intuitive, but effectiveicaigial fusion criteria.

All the work in the field use very simple representations for the signals. @derg advantage of using redundant
parametric decompositions, is that we obtain a sparse representatiorrofatifm, that is at the same time accurate. In
our case, for example, instead of processingx206 = 21120 time-evolving variables (pixel intensities) to deal with
the video signal, we consider only 30 or 50 variables (atoms displacemagpgnding on the scene’s complexity. The
price to pay, for the moment, is the high computational complexity of the MP algorébpgcially in what concerns
the video signal. However, from our point of view this price is virtually zesiace the audio and video atoms we are
using are exactly the same that the MP decoders use to reconstruct theeseetpbaudiovisual sequence. Moreover,
recent results on signal approximation show that fast algorithms for tieespepresentation of signals using redundant
dictionaries can be achieved [26].

We have extensively tested the proposed methodology on a large dadéisasgiences, obtaining encouraging re-
sults. Our approach shows to be able to accurately locate the mouth okaisaea compares favorably with existing
multimodal mouth detection algorithms. In addition, we are able in most of the casexckovisual features that
have a physical meaning and indicate position, size, orientation of the imageus#s to which they are associated.
Finally, we want again to underline that the atoms streams employed herengpietaly generic, could be generated
by algorithms other than Matching Pursuit and can be used to encode additdao sequences.
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