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Abstract

This paper proposes a tree-based pursuit algorithm that efficiently trades off complexity and approximation performance
for overcomplete signal expansions. Finding the sparsest representation of a signal using a redundant dictionary is, in general,
a NP-Hard problem. Even sub-optimal algorithms such as Matching Pursuit remain highly complex. We propose a structuring
strategy that can be applied to any redundant set of functions, and which basically groups similar atoms together. A measure of
similarity based on coherence allows for representing a highly redundant sub-dictionary of atoms by a unique element, called
molecule. When the clustering is applied recursively on atoms and then on molecules, it naturally leads to the creation of a tree
structure. We then present a new pursuit algorithm that uses the structure created by clustering as a decision tree. This tree-based
algorithm offers important complexity reduction with respect to Matching Pursuit, as it prunes important parts of the dictionary
when traversing the tree. Recent results on incoherent dictionaries areextended to molecules, while the true highly redundant
nature of the dictionary stayshiddenby the tree structure. We then derive recovery conditions on the structured dictionary, under
which tree-based pursuit is guaranteed to converge. Experimental results finally show that the gain in complexity offered by
tree-based pursuit does in general not have a high penalty on the approximation performance. They show that the dimensionality
of the problem is reduced thanks to the tree construction, without significant loss of information at hand.

I. I NTRODUCTION

Building good sparse approximations of functions is one of the major themes in approximation theory. When applied to
signals, images or any kind of multidimensional data, it allows to deal with basic building blocks that essentially synthesize
the information at hand. It is known since the early successes of wavelet analysis that sparse expansions very often result in
efficient algorithms for characterizing signals, or even for analysis and compression. An interesting way of achievingsparsity
that has gained a lot of interest recently is to turn to very redundant systems. It often allows for short-length representation
of signals, since the probability of finding a good approximation generally increases with the redundancy of the dictionary. In
most cases, sparsity is measured by the`0 norm of the vector of coefficients. A review of the most usual sparseness measures
can be found in [1].

Finding the best linear expansion using a redundant dictionary of functions is however, in the general case, a daunting task.
It has been shown that it is in fact a NP-Hard problem [2]. Despite the difficulty to find thebest, sparsest solution, it is possible
to find sufficientlygood representations that are nearly optimal. Sub-optimal heuristics have been developed that recover the
main components of a function in a redundant dictionary. Among the most popular algorithms that finds good suboptimal
solutions to the sparsest signal representation problem, we can cite Matching Pursuit [3] and Basis Pursuit [4]: both reach a
solution close to optimum by relaxing some constraints of the original optimization problem. Even if specific optimizations
are possible for particular classes of dictionaries, the complexity of these algorithms remains very high in general.

Several methods have recently been proposed in order to decrease the computational complexity to find sparse signal
expansions. They generally propose modifications of eitherthe search algorithm itself, or the dictionary. Starting from existing
algorithms, it is indeed possible to introduce small changes to obtain efficient search algorithms. A two stage design isproposed
in [5], [6], [7], where the original dictionary functions are approximated by linear combinations of very simple, elementary
vectors. The search is then performed in the space of elementary vectors, hence a great reduction in computational complexity.

Approximation of functions of the dictionary, or special constructions can also lead to efficient search algorithms, without
an important penalty on the approximation performance [6].Multiscale [8] or subband dictionaries [9] can be used to decrease
search complexity, where the linearity of the inner productcan even be further exploited to speed-up the computation, at the
price of higher memory requirements. Similarly, [10] proposed to use a dictionary that is based on damped sinusoids, which
can be efficiently derived using simple recursive filter banks. Since the size of the dictionary has obviously an important impact
on the search complexity, several studies have also been proposed to prune the dictionary to its most meaningful elements, by
vector quantization for example [11], [12]. In general, these methods however only apply to specific dictionaries.

One of the aims of this paper is to study the reduction of the computational complexity of the search for the sparsest signal
expansion, for any arbitrary highly redundant dictionary.It naturally leads to the notion of data structuring, that becomes
critical when the amount of data gets very large. Dictionaryfunctions with similar properties can be clustered together, in
order to facilitate the search for the sparsest representation. Clustering is a widely used technique when the amount ofdata
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is huge and hides the underlying structures, see [13] for a survey. Clustering algorithms depend on a measure to quantifythe
similarity between two objects. Proper data arrangement then allows for the development of tree data structures, whichcan
be efficiently used for search when a huge amount of data is present [14]. Tree search has been proposed in [15] in order to
improve the performance of Matching Pursuit expansion. We however propose to study tree-based pursuit from a complexity
reduction perspective, as an interesting trade-off between efficient implementation and sufficiently sparse signal approximation.

The paper is organized as follows. Section II proposes an overview of linear expansions using redundant dictionaries of
functions. Section III presents a structuring method that allows to represent a subset of highly correlated atoms by a single
element, called molecule. Hierarchical clustering then allows for building trees, where each node corresponds to a molecule
that encompasses the characteristics of all its relative children. A tree construction method is then proposed that respects the
necessary conditions for nodes at each level to be sufficiently incoherent. A tree-based pursuit algorithm is then proposed in
Section IV that exploits the tree structure to reduce the computational complexity of the pursuit. Performance and characteristics
of the algorithm are analyzed in Section V. A bound is derived, which ensures that molecules cover the same span as the
initial dictionary. A minimal condition ensuring that the algorithm chooses onlygood molecules under the root node is also
presented. Section VI illustrates the performance of Tree-Based Pursuit in terms of approximation and complexity, compared
to Matching Pursuit. Section VII finally concludes the paper.

II. SPARSE APPROXIMATION USING REDUNDANT DICTIONARIES

A. Sparse approximations

For the last few years, there has been a tremendous activity in the field of sparse approximation. This is partly motivated
by the potential of the related techniques for typical tasksin signal processing such as analysis, dimensionality reduction,
de-noising or compression. This section provides an overview of the main recent results on sparse approximation, and practical
algorithms like Matching Pursuit.

Given ad dimensional signals in a real vector space, the central problem faced in this paper is the following: compute
a good approximatioñsN as a linear superposition ofN basic elements picked up in a huge collection of signals or probes
D, usually referred to as a dictionary. We will sometimes dealwith D as a big matrix of sized × |D|, where |D| is the
cardinality ofD. In this case, the columns of this matrix are the basic signals mentioned above, which are often called atoms.
The dictionary is said to be redundant when|D| � d. The approximant̃sN is sparse whenN � d and, in this paper, the
error is usually measured in the mean-square sense, i.e.,

s̃N =

N−1
∑

k=0

ckgk, gk ∈ D , ‖s − s̃N‖2 ≤ ε . (1)

There is no particular requirements concerning the dictionary, except that it should span the signal spaceH, and there is no
prescription on how to compute the coefficientsck in eq. (1). The main advantage of this class of techniques is the complete
freedom in designing the dictionary, which can then be efficiently tailored to closely match signal structures.

This problem is better studied under the form of the following constrained optimization :

P0 : minimize ‖c‖0 subject to‖s −
K−1
∑

k=0

ckgγk
‖2 < ε

where‖c‖0 counts the number of nonzero entries in the sequence{ck}. Usually, finding the solution ofP0 would be a hopeless
combinatorial problem. Recently though there has been tremendous advances studying particular instances of the following
relaxed version [16] ofP0 :

P1 : minimize ‖c‖1 subject to‖s −
K−1
∑

k=0

ckgγk
‖2 < ε .

For the particular case whereε = 0, P1 can be solved by a simple convex mathematical program known as Basis Pursuit [17].
The interested reader may want to check [18], [19], [20] for full account on the exact sparse representation case (i.e.ε = 0).
The technical battle for fully understandingP0, P1 and their connections still rages on. In the more general case, it has recently
been shown that a quadratic programming algorithm known as Basis Pursuit Denoising is able to recover a solution very close
to the optimal solution ofP1 under some technical hypotheses on the dictionary [21], [16]. More surprisingly, even simple
greedy strategies such as Matching Pursuit and Orthogonal Matching Pursuit are able to recover very good approximants [16].
On the downside, these results hold only for a limited class of dictionaries :D has to be sufficientlyincoherent. The coherence
of a dictionaryD is defined as :

µ = sup
i,j∈D
i6=j

|〈gi, gj〉| . (2)
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Coherence is a measure of the redundancy of the dictionary and small coherence means thatD is not too far from an orthogonal
basis (although it may be highly overcomplete). More properties of such dictionaries can be found in [19], [20], [22]. Wewill
also come back to incoherent dictionaries in the course of this paper.

So far the results obtained are not constructive. They essentially tell us that, if a sufficiently sparse solution existsin a
sufficiently incoherent dictionary, it can be found by solving a problem closely connected toP0. In practice, given a solution
computed by any algorithm, one could use the test described in [23] to check if the solution is indeed the sparsest. Incoherence
is a very strict constraint imposed upon a dictionary. But this has to be understood as a mathematical artifice to tackle a difficult
problem and redundant dictionaries work very well in practice. One of the most widely used algorithm for computing sparse
approximations with redundant dictionaries is the greedy algorithm known as matching pursuit, which we review in the next
section.

B. Greedy algorithms: Matching Pursuit

Greedy algorithms iteratively construct an approximant byselecting the element of the dictionary that best matches the
signal at each iteration. The pure greedy algorithm is knownasMatching Pursuit[3]. Assuming that all atoms inD have norm
one, we initialize the algorithm by settingR0 = s and we first decompose the signal as

R0 = 〈gγ0
, R0〉gγ0

+ R1 ,

wheregγ0
is chosen so as to maximize the correlation withR0 :

gγ0
= argmax

D
|〈gγ0

, R0〉| .

We then iterate the procedure on the residualR1 and, afterM steps, build the following approximation :

s =

M−1
∑

m=0

〈gγm
, Rm〉gγm

+ RM ,

where the norm of the residual (approximation error) satisifies

‖RM‖2 = ‖s‖2 −
M−1
∑

m=0

|〈gγm
, Rm〉|2 .

The performance of greedy algorithms like Matching Pursuitare tightly linked to the structure of the dictionary. The coherence
µ described above is often not sufficient to represent the properties of a dictionary, since it represents a worst case bound,
and does not take into account the local structures of the dictionary. Other more sophisticated metrics have been proposed to
provide more precise description of dictionaries and will be described later on in this paper. Similarly, the structural redundancy
[24] of a dictionary provides important information about the structure of a redundant dictionary. Matching Pursuit converges
exponentially fast in finite dimension [3], [2]. There existtwo constantsα > 0 andβ > 0 such that

||Rn+1f || ≤ (1 − α2β2)1/2||Rnf ||, (3)

whereβ can be expressed as
β = inf

a,‖a‖=1
sup
i∈Γ

| 〈a, gi〉 | . (4)

This equation confirms that the algorithm will behave well, provided there is always an atom closely aligned with the residual.
The properties of the signal, dictionary and algorithm, aretightly linked.

As already mentioned, solving the sparse approximation problem of eq. (1) using a redundant dictionary is of combinatorial
complexity. The greedy heuristic finds a usually satisfactory solution to the problem in polynomial time. There is however no
guarantee on the optimality of the solution, except in the case where sufficient conditions are set on the dictionary [22]. However,
polynomial time still does not mean fast! Typical implementations of Matching Pursuit suffer from a high computational
complexity when compared to most orthogonal transforms. Inthe remainder of this paper, we therefore propose to group
similar atoms together, and represent them by a unique element called molecule. Applying clustering recursively on atoms
and molecules yields a hierarchical tree structure, that can be exploited to design a search algorithm with greatly reduced
complexity.



5

III. STRUCTURING REDUNDANT DICTIONARIES

A. From atoms to molecules

This section discusses clustering of a generic, redundant dictionary, which eventually leads to the creation of a tree structure.
First, it describes the problem of representing a group of highly correlated dictionary atoms by a unique element. We then
discuss the characteristics that are necessary for a dictionary to be efficiently clustered and organized in a tree structure.

Let the elements of the dictionaryD = {gi}i∈Γ be labelled by the index setΓ. A sub-dictionaryDΛ is such thatDΛ = {gi}i∈Λ

whereΛ ⊂ Γ and Λ 6= ∅. A collection of sub-dictionaries{DΛi
} forms a partition of the dictionaryD if

⋃

i Λi = Γ and
∀i 6= j, Λi

⋂

Λj = ∅. If the atoms inD are sufficiently uncorrelated, a simple greedy algorithm isable to recover a sparse
approximation of the signal (see for example [22]). This is not the case for highly correlated redundant dictionaries, though.
This can be explained intuitively by the fact that high correlation in the dictionary can fool the pursuit and result in wrong
choices. We are thus going to try to represent a highly correlated sub-dictionaryDΛi

by a single molecule, while at the same
time minimizing the correlation among molecules. This procedure should result in a set of molecules that behaves like a (quasi)
incoherent dictionary.

Let us first define the minimal coherenceλΛ of a sub-dictionary by :

λΛ = min
i,j∈Λ

| 〈gi, gj〉 | . (5)

A sub-dictionary will be referred to asreduciblewhen λΛ > 0 and sufficiently big. In order to quantify the adequation of
the molecule in representing the atoms in the sub-dictionary {DΛi

}, a distance measure has to be defined. Letd(gi, gj) be a
measure of the distance between two atomsgi andgj . In this paper, we chose to use the following distance measure, derived
from the simple cosine function :

d(gi, gj) = 1 − | < gi, gj > |2
‖gi‖2‖gj‖2

. (6)

Without loss of generality, the distance between two atoms therefore takes values between0 and 1, where two atoms are
strongly correlated if their distance is close to0. Since moreover the atoms we consider here have unit energy,the distance
d(gi, gj) is equal to:d(gi, gj) = 1 − | < gi, gj > |2. Note that an atomgi can be considered as equivalent to−gi, from an
approximation point of view, the sign of the weightsai in f =

∑

i∈Γ aigi + ε could be reversed. The distance measure given
in eq. (6) is independent of the direction ofgi.

Most clustering algorithms represent a cluster by a centroid whose mean distance to all elements it represents is minimized.
Let us define the optimal centroid or unit norm moleculem

opt
Λ , for a sub-dictionaryDΛ, by :

m
opt
Λ = arg min

m
‖m‖=1

∑

i∈Λ

d(m, gi). (7)

Using the distance measure defined in eq. (6), the optimal centroid becomes :

m
opt
Λ = arg min

m
‖m‖=1

∑

i∈Λ

1 − |〈m, gi〉|2, (8)

= arg max
m

‖m‖=1

∑

i∈Λ

|〈m, gi〉|2, (9)

= arg max
m

‖m‖=1

m∗AΛA∗
Λm, (10)

where the columns of the matrixAΛ are the atoms of the sub-dictionaryDΛ. The moleculemopt
Λ is the eigenvector associated

to the biggest eigenvalue of the matrixAΛA∗
Λ. The eigenvalues ofAΛA∗

Λ are equal to the eigenvalues ofA∗
ΛAΛ (see theorem

1.3.20 of [25]). This last matrix is the Grammian ofAΛ. Fig. 5 illustrates the reduction capabilities of a molecule regarding a
group of similar atoms. As the matrixAΛA∗

Λ is symmetric, the associated eigenvalues are real and the associated eigenvectors
are orthogonal. The moleculemopt

Λ is also equivalent to the dominant left singular vector of the matrix AΛ [25]. This result
was exhibited in [26] for the computation of the centroid fora modified k-means algorithm that considers two anti-correlated
vectors, i.e.,g and−g, as being part of the same cluster.

The computation of the optimal molecule relies on the distance measure at hand; in a different context, [11] studied the
same problem with :d(gi, gj) = 1− | < gi, gj > | and derived an iterative method to compute the optimal molecule based on
a weighted average update. Assuming the existence of a past version of the moleculemk

Λ, the sub-dictionaryDΛ is divided
into two parts,D(+)

Λ andD(−)
Λ according to the sign of the scalar product between the atomsandmk

Λ. The new molecule is
found using:

mk+1
Λ =

∑

i∈D
(+)

Λ

wigi −
∑

i∈D
(−)

Λ

wigi
∑

i∈DΛ
wi

. (11)

The positive weightswi associated to each atoms are used to give more importance to some patterns. Due to the recursive
computation of the molecule, this kind of approach fits well into a k-means algorithm.
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B. Dictionary characterization

In the previous section, we introduced the definition of molecule in order to structure theinformation at hand in a highly
redundant sub-dictionary. We will now see how a dictionary can be partitioned into disjoint sub-dictionaries represented by
molecules through a simple clustering procedure. Further recursive application of clustering on the set of molecules results in
a hierarchical tree structure that will be used in an efficient search algorithm.

We previously stated that representing a sub-dictionary bya molecule makes sense only forreduciblesub-dictionaries. By
extension, a dictionaryD is said to bereducibleif it contains a partition{DΛi

}, such that all its sub-dictionaries are reducible
and |{DΛi

}| � |D|, i.e., the number of sub-dictionaries is much smaller that the number of atoms in the dictionary. A special
case ofreducibledictionaries is represented by theblock incoherentdictionaries [27]. These dictionaries are such that it is
possible to find a partition having a small block-coherenceµB defined by :

µB = max
i6=j

max
k∈Λi

l∈Λj

| 〈gk, gl〉 | . (12)

If D is reducible, then the coherenceµ of D is big; the reverse is however not necessarily true. A dictionaryD can have a
big coherenceµ without beingreducible, due to the fact that the coherence given in eq. (2) only reflects an extreme property of
the dictionary. Similarly, the quantityβ defined in eq. (4), or the structural redundancy [24], also reports an extreme property
of the dictionary. Forblock incoherentdictionaries, the structural redundancy is low and provides someinter sub-dictionaries
redundancy measure. It is however closely related to the block-coherenceµB given in eq. (12).

The cumulative coherence is a refinement of the simple coherence measure and therefore provides much more information
about the dictionary. It is defined as follows :

µ1(m) = max
|Λ|=m

max
i/∈Λ

∑

j∈Λ

| 〈gi, gj〉 | . (13)

A dictionary whose cumulative coherence grows slowly is said to bequasi-incoherent[22]. If it grows fast, it is at least possible
to have one highly correlated sub-dictionary. The cumulative coherence can be bounded using the coherence,µ1(m) ≤ mµ.
In the special case ofblock incoherentdictionaries, a better bound on the cumulative coherenceµ1(m) can even be proposed.
Let k be the cardinality of the most populated highly correlated sub-dictionary, we then have :

µ1(m) ≤
{

mµ if m < k.
(k − 1)µ + (m − k + 1)µB if m ≥ k.

(14)

The cumulative coherence provides more accuratelocal information than the coherence, but is more complex to compute.
Moreover, a fast growing cumulative coherence is not a sufficient condition for a dictionary to bereducible: it reflects the
behavior of the dictionary in the region of the space of signals that is bestcoveredby the dictionary [16]. For example, in the
case ofblock incoherentdictionaries, the cumulative coherence grows rapidly fromµ1(0) up toµ1(k−1) and then grows slowly,
with k being the cardinality of the most populated sub-dictionary. Fig. 1 presents the evolution of the cumulative coherence
for a dictionary having two highly redundant parts. Form = 5, there is a sharp inflection of the curve as the cardinality ofthe
most populated group of atoms isk = 6. To summarize, a quasi-incoherent dictionary has both small coherence, and small
structural redundancy, and its cumulative coherence growsslowly. Block incoherent dictionaries rather have a large coherence
and a cumulative coherence that grows fast up to an inflexion point at m = k − 1 and then grows slowly. Block incoherent
dictionaries are good candidates for one-step clustering of atoms into molecules.
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C. Tree-structured dictionaries

The hypothesis that the dictionary isreducibleensures that it is possible to partition it intoreduciblesub-dictionaries, and
recursively find molecules. However, we have not yet provided a way to compute the partition ofD in sub-dictionaries. Our
ultimate goal is to have as few sub-dictionaries as possible, with atoms within each sub-dictionary that are as similar (correlated)
as possible, and atoms from different sub-dictionaries as different (uncorrelated) as possible. We propose a clustering approach
that starts from an existing dictionary and endows it with a tree structureT , with nodesti ∈ T . The sub-dictionaries are seen
as clusters of atoms, and the associated molecules are the centroids of each cluster. Each nodeti of the tree is associated to
a list ci containing the indices of its children and to a moleculemi representing these children through eq. (7). A leaf node
ti is associated to an original atom from the dictionaryD, andci contains the index of that atom inD. The root node of the
tree is labeledt0 and has no associated molecule. See Figure 7 for an illustration of these notations.

Our goal is to generate a tree representation of a dictionaryD through recursive clustering, in order to eventually decrease the
pursuit computational complexity. In general, two different clustering approaches can be chosen: (i) a top-down approach that
tries to divide thereducibledictionary (or sub-dictionary) into sub-dictionaries, which satisfy the similarity constraints, and (ii)
a bottom-up approach that groups similar atoms/molecules together as long as similarity constraints are satisfied. A top-down
approach using constraints on similarity has been introduced in [26] and is calleddiametrical clustering. This algorithm was
developed for gene clustering to fit an observation stating that genes with anti-correlated expression patterns can be functionally
similar. The same observation is true for a dictionary approach of signal decomposition : two anti-correlated atoms have the
same behavior as they capture the same structure. The algorithm proposed in [26] is a modifiedk-meansusing as distance
measured(x, y) = 〈x, y〉2 wherex andy are unit norm vectors. The correspondence between this distance and the correlation
distance measure of eq. (6) is straightforward. The optimalcentroid is indeed derived in the same way as the optimal molecule
(see section III-A). Note however that [26] contains an additional step that explicitly identifies two anti-correlatedclusters.

In this paper however, we will rather follow a bottom-up approach, which consists in grouping nodes, starting from atoms,
to create new nodes and molecules. The bottom-up approach isbetter appropriate to the clustering of arbitrary dictionaries,
since the number of clusters does not need to be known in advance. The top-down algorithm presented in [26] fixes a priori
the number of clusters (sub-dictionaries), while the bottom-up approach presented here sets the cardinalityk of each cluster.
Algorithm 1 presents a sketch of the method. Initially, it creates nodes containing the atoms from a dictionaryD and marks
all these nodes as potential candidates to be grouped by adding the indexes of the corresponding nodes to a listL. The next
step consists in finding a groupG ∈ L of k nodes that can be grouped. The distance measure is used to decide whether a
group of nodes can be merged and a new node added to the tree. The decision algorithm considers a setΩG of node indexes
(possibly different fromG) and computes the valuedmax = maxi,j∈ΩG

i6=j

d(mi,mj). This value is closely related to the minimal

coherence measure given in eq. (5) asdmax = 1 − λΩG

2, whereDΩG
is a sub-dictionary made of atoms and molecules. A

reduciblesub-dictionary has been defined to have a high minimal coherence and thus,dmax is low. According to this definition,
it makes sense to represent a sub-dictionary by a molecule ifdmax is smaller than a fixed thresholdδ. The molecules are
created from the atoms or molecules listed inΩG. The algorithm goes on as long as it is possible to find a group of nodes
fulfilling our requirements. If it is no longer possible, we create the root node of the tree; the remaining nodes inL are its
children.

Algorithm 1 Tree Creation by grouping.
INPUT: A dictionaryD, the desired cardinalityk of clusters.
OUTPUT: A treeT
INITIALIZATION: Create nodest1 up to t|D| containing the atoms fromD. Add all indices to a listL of free nodes.
while possible to find a groupG of nodes whose index are inL that can be represented by a molecule,card(G) = k do

create molecule
removek selected nodes from listL
create new node; its children are thek selected nodes
add index of new node to listL

end while
create root node
children of root node are the nodes whose indexes are inL

We further define aweakand astrongdecision rules, which differ in the creation of the list of nodesΩG associated toG.
The weakversion definesΩG = G, the set of indexes of the nodes to group, while for thestrongdecision rule,ΩG contains
the indexes of the leaf nodes that are the descendants of the different nodes ofG. In the remainder of this paper we use trees
built using this bottom-up strategy, with aweak decision rule for grouping the atoms. Finally, finding the best group ofk
nodes is still a combinatorial problem, but it can be easily solved for small values ofk (our results are based on trees created
with k = 2), and the tree can anyway be constructed off-line, without penalizing the pursuit algorithm. Figure 2 illustrates
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the construction of a binary tree, for a dictionary of 12 random vectors. The most similar atoms are paired together, until the
algorithm reaches level 1 with 3 molecules, which are too incoherent to be further clustered.
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Fig. 2. Creation of a tree on top of a 2D dictionary. The upper-left part shows all atoms in the dictionary. The bottom-right part summarizes the structure of
the tree. The other parts correspond to the molecules or atoms present at the different levels of the tree.

IV. T REE-BASED PURSUIT ALGORITHM

A. Tree-based search

In a sense, a single iteration of Matching Pursuit can be seenas a classification problem where each atom corresponds to
a class of signals. Its aim becomes to successively map the residual signal to a class according to a given distance measure.
When considering the greedy approximation problem as an iterative classification problem, the tree structure can be usedto
divide the decision into smaller steps in a manner similar toa decision tree. Matching Pursuit simply tries all possibilities
to find the best class. The use of a the hierarchical structureallows to discard an important part of the dictionary atoms at
each node. In the following, we describe a practical implementation of this technique, the Tree-Based Pursuit algorithm. Like
Matching Pursuit, the proposed algorithm iteratively searches for a good atom to approximate a residual signalRnf . Instead of
testing all possible atoms fromD, Tree-Based Pursuit uses the tree structureT that groups similar atoms in the same subtree.
The search starts at the root node and goes down through the tree until a leaf node is reached. At each node, the algorithm
chooses the child whose molecule best approximates the signal (i.e., the one that leads to the highest amplitude of the scalar
product with the residual).

In practice, a dictionaryD is often built using several generating functions, that aretranslated to different positions in the
signal space, e.g., in time or space. Position parameters are conceptually part of the atom index or description. However,
we chose to decouple translation from the other atom parameters, to allow for a more efficient search algorithm. Dictionary
structuring does not consider atom shifts, and the tree is therefore built on atoms that are all centered on the same arbitrary
reference position. Since the tree does not consider atom translations, the search algorithm itself has to deal with theposition
of atoms. The search algorithm has therefore to identify notonly the best atom in the dictionary, but also its position inthe
signal space. Let[popt, iopt] = mp(f, p, σ, i) be the primitive operation that finds the atom or molecule that best approximates
the signalf among the children of a nodeti of T . The tree is shift-invariant, and the primitivemp searches in a window of
sizeσ around a positionp in f , and returns the indexiopt of the best child, and the best positionpopt. If the search window
totally covers the functionf , the primitivemp is equivalent to Matching Pursuit; in this case, we denote the search function
as [popt, iopt] = mp(f, i).

Tree-Based Pursuit is described by Algorithm 2. At the root node, the scalar products between the residualRnf and all
shifted versions of the molecules of the nodes at the first level of the tree are computed usingmp(Rnf, 0). This operation
corresponds to an execution of Matching Pursuit using the molecules of the first tree level as dictionary. The best molecule
and its associated node are found; the initial step also gives the position of the best molecule. It can also be consideredas
an energy localization phase. Note that in our case, this localization method is particularly efficient, since molecules really
represent the kind of features the dictionary is able to catch. The search at the next node down the tree benefits from the
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Algorithm 2 Tree-Based Pursuit algorithm
INPUT: A dictionaryD and its tree representationT , the sizeσ of the search window and a signals.
OUTPUT: Atoms fromD and projection coefficients.
INITIALIZATION: R0f = f , n = 0
repeat

[p, i] = mp(Rnf, 0)
while ti is not a leaf nodedo

[p, i] = mp(Rnf, p, σ, i)
end while
gn the atom fromD equivalent tomi at positionp.
an+1 =< Rnf |gn >

Rn+1 = Rnf − an+1gn

n = n + 1
until Stop condition is met.

information about the optimal position of the molecule associated to the parent node. The scalar products between the residual
and the molecules of the candidate nodes are computed locally, around the position of the molecule, in a search window of
sizeσ. The traversal is over when the algorithm reaches a leaf node. The information about the position and the node of the
tree uniquely identifies an atom from the dictionaryD. The residual function is updated and the algorithm is iterated, back to
the root node, until a stopping criteria is reached. It couldbe a predetermined number of atoms, or a threshold on the residual
energy.

B. Complexity Analysis

The complexity of the proposed algorithm highly depends on the structure of the tree. In order to be able to evaluate the
complexity of Tree-Based Pursuit, let us first make some hypothesis about the tree. Assume that the number of children per
node is a constantk, except for the root node, which has|c0| children. A tree generated by the algorithm proposed in Section
III-B fulfills these constraints. Let us also suppose that the tree is balanced, meaning that the length of the longest path differs
at most by1 from the length of the shortest path. It ensures that the maximum length of the paths to the leaves is minimized.
Under these assumptions, the length of the longest path isd1 + logk

|D|
|c0|

e, where|c0| is the number of nodes under the root
node andk is the size of the groups formed during the creation of the tree.

The proposed algorithm looks for the best child of a node, according to the adequation of the corresponding molecule with
the signal. When doing so, a local search is performed at an internal node of the tree. At the root node, a full search is done,
which is equivalent to Matching Pursuit using the reduced dictionary made of the molecules of the nodes that are located at the
first level of the tree. Let us first derive the complexity of both these searches. Since our atoms are centered and we have todeal
with all possible translations, a commonly used and smart implementation of Matching Pursuit consists in using a Fast Fourier
Transform to compute all scalar products with shifted atoms. Such an implementation has a complexity ofO(|D|N log N) to
find the best atom, whereN is the size of the signal to decompose. When computed by Tree-Based Pursuit, the complexity
of the search at the root node becomesO(|c0|N log N). During the traversal of the tree, only local searches are performed. It
leads to a complexity ofO((d−1)σN) whered is the depth of the tree. Putting it all together, the complexity of the proposed
algorithm for finding the best atom is:

O(|c0|N log N + (dlogk

|D|
|c0|

e)σN). (15)

The complexity of Matching Pursuit depends linearly on the size of the dictionary. A decision-tree approach to find the
best atom reduces this complexity, since the divide and conquer procedure eliminates many possibilities at each level.In most
cases, the second term of eq. (15) is small compared to the first one, which means that most of the complexity of Tree-Based
Pursuit lies in the initial search at the root node. The complexity highly depends on the number of nodes at the first level of
the tree.

The complexity of the descent through the tree depends on both the size of the search windowσ, and the length of the path.
The search window parameter is chosen empirically such thatσ � N . The length of the path depends on the cardinality of
the dictionary, on the number of nodes at the first level of thetree, and on the numberk of children per node. This last value
is also empirically chosen such thatk � |D|. Figure 3 shows the evolution of the complexity of the proposed algorithm, as
given by eq. (15), as a function of the number of nodesc0 at the first level under the root node. The evolution is quasi linear.
It illustrates the fact that, for reasonable values of the search windowσ, the descent trough the tree is negligible regarding the
complexity of the initial step. The influence of the search window size is generally negligible as compared to the influence of
c0, which is usually large. The second part of the figure presents the evolution of the complexity given as a function of the
size of a dictionary, for fixed number of nodes at the first level of the tree. It can be seen that the complexity of the Tree-based
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Pursuit is almost unaffected by the growth of the dictionary, while the complexity of Matching Pursuit increases linearly. This
confirms the weak relative importance of the second term of (15). However, it has to be noticed that the approximation rate
of the Tree-Based Pursuit algorithm decreases when the number of children of the root becomes smaller relatively to the size
of the dictionary, as discussed in the next section.
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Fig. 3. Evolution of the complexity given the number of nodes atfirst level of the tree for a dictionary of fixed size (a) and in function of the size of the
dictionary for a fixed number of nodes at the first level of the tree (b).

V. CONSISTENCY ANALYSIS

A. From redundant to block incoherent dictionaries

Most theoretical results in the field of sparse approximations rely on (quasi) incoherent dictionaries. Only little work has
been done on highly redundant dictionaries despite their interesting properties for approximation and compression. Interestingly,
endowing the dictionaryD with a tree structure can also be thought of as a way to artificially lower the coherence. During
the creation of the tree, our clustering algorithm minimizes the coherence among molecules. Thus, even for highly correlated
dictionaries, the theoretical results relying on small coherence most probably remain valid at the granularity level of the
molecules. In this section, we build upon this idea and analyze the theoretical approximation performance of the algorithm.

The creation of molecules relies on having sub-dictionaries containing highly correlated atoms. As discussed in Section
III-A, it makes sense in this case to define a measure of the minimal coherence of a sub-dictionary, as given in eq. (5). For
an arbitrary sub-dictionaryDΛ of a dictionaryD, the minimal coherenceλΛ is very likely to be null. This measure is strictly
positive only if the mostdistantatoms of the considered sub-dictionary are correlated. As explained in Section III-A, a highly
redundant sub-dictionary is the favorable case in which it is possible to represent the information at hand in the sub-dictionary
by a unique element. These constraints are summarized by thefollowing definition.

Definition 1. A sub-dictionaryDΛ is reducible to a moleculemΛ, which is calledrepresentativeif

• λΛ strictly positive.
• mink∈Λ | 〈gk,mΛ〉 |≥ λΛ.
• mΛ ∈ span {DΛ}.

In other words, the coherence between a good molecule and anyatom in the sub-dictionary should be at least greater than
the minimal coherence of the sub-dictionary. In section III-A, we have defined an optimality criterion for a molecule relying
on the measure of a mean distance. This measure has been used for the creation of a molecule and has the advantage to define
a convex set. This implies that standard optimization toolscan be applied to find an optimal molecule. The adequation of
a molecule regarding the sub-dictionary it represents can be defined in different ways. One possible measure consists inthe
minimal coherence between a sub-dictionary and its associated molecule, given by :

σΛ = min
i∈Λ

| 〈mΛ, gi〉 | . (16)

The definition of a representative molecule therefore implies that the minimal coherence of a molecule regarding its associated
sub-dictionary is such thatσΛ ≥ λΛ. In other words, adding the moleculemΛ to its sub-dictionaryDΛ does not change
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the minimal coherence. This condition defines a subset ofD where the molecule is allowed to exist. For example, in two
dimensions, Figure 4 presents the region of admittance for asub-dictionary of6 atoms.
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Fig. 4. A molecule must have unit norm; thus, the region of admittance is the circle in the light grey region.

B. Covering conditions

Since the search is organized along a tree structure, it has to be ensured that the re-structured dictionary is still ableto cover
the full space of the input signal. In particular, conditions have to be set, such that representative molecules cover the same
space as the original dictionary atoms. The structural redundancy [24] can be used to define such a criteria on the dictionary
construction. For example, finding a dictionary made ofN vectors with good covering of the signal space can be interpreted
as maximizing the structural redundancy. This quantity is however very hard to compute in practice and creating a dictionary
with optimal structural redundancy is even more complex. This problem is closely related to finding an optimal covering of a
projective space, i.e., a Grassmanian packing [28]. Note that Tropp has defined a measure of the covering radius of a dictionary
[29], as :

cover(D) = max
s 6=0

min
i∈Γ

√

1 − (
| 〈gi, s〉 |
‖gi‖2‖s‖2

). (17)

The relation between the covering radius and the characteristic parameterβ (4) of a dictionary is straightforward, i.e., the
covering is minimal whenβ is maximal :

cover(D) =
√

1 − β2. (18)

We now set the conditions that are necessary for the clustered dictionary to fully cover the signal space. In particular,it
is necessary that the molecules at the first level under the root node, cover the signal space. Note that such a requirement
is naturally met at other levels of the tree: by the bottom-upconstruction, each molecule is indeed representative of the
related sub-dictionary. The following lemma states a minimal condition on the molecules to ensure that a signalf , which
can be represented using atoms fromD, can also be represented using only molecules. More precisely it provides a minimal
condition, given the parameterβ of D, to ensure that the molecules at the first level of the tree cover the same span as the
dictionary itself.

Lemma 1. If the collection of sub-dictionaries{DΛi
, i = 1, . . . , K} forms a partition ofD and the associated molecules are

representative, thenspan{mΛi, i=1,..., K} = span D if

σΛi
> β + 2

√

1 − β − 1,∀i. (19)

PROOF Let f 6= 0 be a signal lying in the span ofD. Without loss of generality, letf be a unit norm signal. In addition,
let the atomg0 ∈ D carry the best one-term approximation of the signal, i.e.,| 〈f, g0〉 |= max

i∈Γ
| 〈f, gi〉 |. Suppose the atom

g0 belongs to the sub-dictionaryDΛ0
which is represented by the moleculemΛ0

. The distance betweenf and mΛ0
can be

bounded by :
‖f − mΛ0

‖2 ≤ ‖g0 − mΛ0
‖2 + ‖f − g0‖2. (20)

Without loss of generality, assume that〈f, g0〉 > 0 and〈mΛ0
, g0〉 > 0, by construction of the clustered dictionary. Recall that

the direction of an atom does not have any impact in terms of approximation rate, so that we can assume positive correlation
values. Since all vectors have unit norm, it is possible to rewrite eq. (20) as :

√

1 − 〈f,mΛ0
〉 ≤

√

1− | 〈g0,mΛ0
〉 | +

√

1− | 〈f, g0〉 |. (21)
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We can also lower bound the last scalar product by :

| 〈f, g0〉 |≥ β. (22)

Using eqs (22) and (16), we obtain :
√

1 − 〈f,mΛ0
〉 ≤

√

1 − σΛ0
+

√

1 − β. (23)

We would like to show that the projection of the signalf onto the molecule that is representative of the sub-dictionary DΛ0

is never null. In other words, we would like to ensure that, ifthe best one-term approximation off lies within DΛ0
, then the

signalf is never orthogonal to the moleculemΛ0
. By extension to all the sub-dictionaries{DΛi

} at the first level of the tree,
it guarantees that the signalf lies in the span of their representative molecules. Imposing thatmΛ0

is not orthogonal tof is
equivalent to require that

√

1 − 〈f,mΛ0
〉 6= 1. Using eq. (23), this holds whenever

√

1 − σΛ0
+

√

1 − β < 1, (24)

which leads to :
σΛ0

> β − 2
√

1 − β − 1. (25)

If this condition given is verified, it ensures that〈f,mΛ0
〉 > 0 whenever the signalf ∈ D has a component alongg0 ∈ DΛ0

.
Furthermore, since the molecules are by construction in thespan of their associated sub-dictionaries, the span of the molecules
is within the span of the original dictionaryD :

span {mΛi
, i = 1, . . . , K} ⊆ span D. (26)

In order to ensure that the span of the molecules covers the span of the dictionary, it remains to show that the orthogonal
complement ofspan {mΛi

, i = 1, . . . , K} in span D is actually empty. If the condition given in eq. (25) is true for all
sub-dictionaries of the first level of the tree (that form a partition of D), then@f ∈ span D such that〈f,mΛi

〉 = 0, ∀i. Hence
span D = span {mΛi

, i = 1, . . . , K}.

When Lemma 1 holds, we can treat the set of molecules as a genuine dictionary. Let{DΛi
} form a partition ofD and let

DM = {mΛi
} be the dictionary made of the molecules. This dictionary hasan associated characteristic parameterβM . For

any signalf ∈ span D, we thus can lower bound the projection on the molecules ;

max
mi∈DM

|〈f,mi〉| ≥ βM ||f ||. (27)

This also leads to :
max

mi∈DM

|〈f,mi〉| ≥ βM max
i∈Γ

|〈f, gi〉|. (28)

Of courseβM ≤ β. It would also be interesting to characterize the (cumulative) coherence of the dictionary. In the next section
we show that Tree Based Pursuit benefits from representativemolecules and is able to identify the signal at the granularity
level of its representative sub-dictionaries.

C. Recovery Condition

In the previous section, we have set the conditions for the tree structured dictionary to cover the span of the original
dictionaryD. We now derive a condition for the search algorithm to chooseconsistent molecules given a signalf , that is a
linear combination of vectors inD. Let the signalf have an exact representation using atoms from the dictionary D :

f =
∑

i
gi∈Ω

aigi, (29)

whereΩ is a subset of indices.
Tropp [22] derived a minimal condition that guarantees thatOrthogonal Matching Pursuit and Basis Pursuit recoverΩ, where

Ω is the smallest set such that eq. (29) holds. We now show that this recovery condition holds true for TBP at the level of
representative molecules of a very redundant dictionary. Let Φ be a matrix whose columns contain the atoms that are inΩ.
The signal can be written asf = ΦA, where the vectorA contains the weightsai relative to atoms inΩ.

Let fk be the approximation off afterk iterations of Tree-Based Pursuit. We writefk = ΨkAk, whereΨk contains the atoms
found by Tree-Based Pursuit andAk the corresponding weights. Since we do not impose any restriction on the cumulative
coherence of the dictionary, we cannot directly apply the results developed in [22], that typically use the cumulative coherence
for an estimation of the exact recovery condition. We do not necessarily intend to recover exactly the atoms inΦ, but we
rather want to ensure that the atoms found by Tree-Based Pursuit are close to the optimal ones (and in particular, in the same
sub-dictionaries). We focus on the decision taken by Tree-Based Pursuit at the root of the tree and want to guarantee thatit
never chooses a node that does not contain at least one atom from Ω in its subtree.
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If after k iterations of Tree-Based Pursuit, the decisions at the rootnode are alwayscorrect, no atom fromΨk is located in
a subtree that does not contain an atom fromΩ. Let Φk be a matrix containing the distinct atoms fromΦ andΨk. Similarly,
the index setΩk is the se of atoms present inΦk. As it has been discussed, due to the bottom-up constructionof the tree, the
critical step consists in choosing the correct molecules atthe first level of the tree. Assume once again that the sub-dictionaries
{DΛi

} form a partition of the dictionary, and that each sub-dictionary is reduced to a moleculemΛi
. We say thatmΛi

is a
goodmolecule if it represents at least one atom participating inf . The matrixMG contains allgoodmolecules in its columns.
Similarly, MB contains thebad molecules of the first tree level in its columns. The following theorem states the necessary
conditions for the tree-based pursuit algorithm to choose the correct molecule at the first level of the tree.

Theorem 1: If Lemma 1 holds true, then Tree-Based Pursuit chooses agoodmolecule at the first level of the tree, at iterationk,
if

max
m∈MB

||Φ+
k m||1 < βM , (30)

whereΦ+
k is the Moore-Penrose pseudo-inverse ofΦk. ♦

PROOF The proof of Theorem 1 is a simple extension of Tropp’s Recovery Condition [22] and we provide it here for
completeness. Assume that at each iterationi < k, Tree-Based Pursuit has chosen a good molecule at the first level of the tree.
It has to be noted that the atoms inΩ all belong to subtrees of nodes associated togood molecules. Under the assumption
that we have chosen onlygood molecules, the atoms inΩk also belong to subtrees of nodes associated togood molecules.
The residual signalrk can be exactly represented asrk = ΦkAk, whereAk contains appropriate weights. The vectorsM∗

Brk

andM∗
Grk list all possible scalar products of the residualrk with, respectively, thebad and good molecules (M∗ stands for

the adjoint ofM ). The aim is to find a condition that ensures that the current step also recovers a good molecule. Agood
molecule is therefore chosen by the search algorithm if :

||M∗
Brk||∞

||M∗
Grk||∞

< 1. (31)

Developing further the left-hand side of the previous equation, using eq. (28), we can write :

||M∗
Brk||∞

||M∗
Grk||∞

≤ ||M∗
Brk||∞

βM ||Φ∗
krk||∞

=
||M∗

B(Φ+
k )∗Φ∗

krk||∞
βM ||Φ∗

krk||∞
≤ 1

βM
||M∗

B(Φ+
k )∗||∞,∞. (32)

The matrix norm‖ ‖∞,∞ is the maximum absolute row sum and the matrix norm‖ ‖1,1 is the maximum absolute column
sum. Thus, we can write that:

1

βM
||M∗

B(Φ+
k )∗||∞,∞ =

1

βM
||Φ+

k (MB)||1,1

=
1

βM
max

m∈MB

||Φ+
k m||1 (33)

Combining eqs (31) and (33), eq. (30) finally leads to the conservative condition :

1

βM
max

m∈MB

||Φ+
k m||1 < 1. (34)

One could further straightforwardly apply Tropp’s estimate of (34) in terms of the cumulative coherence [22] of the set of
molecules to obtain a condition that would depend on the set of molecules only (and not on the unknown optimal setMB).
This estimate requires the set of molecules to be quasi-incoherent. Note that this is very likely to be the case here, but it
would even be better to actually prove howµ1 behaves as we climb up the granularity level of the tree. Finally, note that the
recovery condition itself holds at a coarser level than in previous works : Tree-Based Pursuit recovers only which molecules
are involved and not which individual atoms. On the other hand, this allows to shift the incoherence constraint to the molecules
and work with a possibly highly correlated dictionary.

VI. EXPERIMENTAL RESULTS

A. 1-D signals

This section now illustrates the Tree-Based Pursuit algorithm, and compares its performances to Matching Pursuit. We
present results for both 1-D and bi-dimensional signals (i.e., images). Let us first consider a dictionary made of real Gabor
functions, as in [3] :

gu,s,ξ,φ(t) = cu,s,ξ,φg(
t − u

s
) cos(2πξ(t − u) + φ), (35)
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with
g(t) =

1√
s
e−πt2 . (36)

The normalizing constantcu,s,ξ,φ is such that the corresponding atom is of unit energy. The parameteru is the position,s is
the scale,ξ represents the frequency andφ is the phase. Figure 5 presents 3 atoms of such a dictionary, and the representative
molecule, which is the eigenvector associated to the biggest eigenvalue ofAΛA∗

Λ, as discussed in Section III-A. Figure 6
presents the time-frequency representations of the atoms and the molecule of Figure 5. We can observe that the molecule
indeed provides global information about all the atoms, andnicely summarizes the characteristics of the sub-dictionary.
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Fig. 5. Representing a group of atoms by a molecule. From top-left to bottom-left: Real Gabor atoms with same frequencyf and positionp but with different
scaless. Bottom-right: the molecule is the eigenvector associated tothe biggest eigenvalue ofAΛA∗
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Fig. 6. Time-Frequency plane of the atoms and the molecule presented in Figure 5.

In our experiments, we used a dictionary built on real Gabor atoms with size 256, where the phaseφ is set to zero in
eq. (35). We used 200 different frequencies uniformly spread over the interval of normalized frequencies[0 0.5] and the scales
are dyadic. The overall size of the dictionary is 1600, without taking into account all possible shifts, which are not considered
in the tree construction. The translation parameters are however computed by the search algorithm. Figure 7 shows a partof
an example tree built on the multiscale Gabor dictionary, where we only usecenteredversions of the atoms.

We now compare the performance of the Tree-based Pursuit algorithm, for different tree constructions, with Matching
Pursuit. The reference Matching Pursuit computes all possible convolutions in the frequency domain by using a Fast Fourier
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Fig. 7. Tree structure on top of a multiscale Gabor dictionary.

Transform. Tree-Based Pursuit uses the same Matching Pursuit implementation at the initial step for the first level of the tree.
This technical choice makes it possible to compare the complexity of both algorithms.

Numerous tree structured dictionaries have been generatedfor different values of the distance thresholdδ, using the grouping
strategy given in Algorithm 1, with aweakdecision rule for clustering of the atoms. We selected threedifferent trees, with
δ values[0.36 0.75 0.99]. This corresponds respectively to minimal values of[0.8 0.5 0.1] of the scalar product between two
molecules to form a cluster. The value ofδ determines|c0|, the number of nodes at the first level of the tree. In these particular
case, the trees respectively present240, 51 and11 nodes at the first level under the root node. Moreover, under the assumption
that the trees are balanced, their expected depth would be 3,5 and 8 in the order of increasing values forδ. Figure 8 presents
the molecules at the first level of the tree created with aδ = 0.99, while Figure 9 illustrates the corresponding time-frequency
planes.

Once the dictionary has been structured in a tree representation, the search algorithm can still adapt different settings, to
trade off computational complexity and approximation rate. In particular, the sizeσ of the local search window plays an
important role in the performance of the Tree-based Pursuitalgorithm. We compare results for search windows of sizeσ = 5,
andσ = 11. Figure 10 represents distribution of the shift values, computed by the search algorithm descending along the tree,
relative to the position determined in the upper-level molecules. Part (a) of Figure 10 presents the shift values, independently
from the depth at which the Tree-Based Pursuit is making a position refinement. In most cases, the displacement is very small:
almost90% of them are catched by a search window of sizeσ = 5. Part (b-d) of Figure 10 presents the shift values at the
first level of the tree (i.e., right after the initial stage has determined the correct subtree and position). In a majority of the
cases, there is only a shift of1. It is due to the fact that the Fourier transforms of the molecules at the first level are centered
by a multiplication with the Fourier transform of a unit impulse located in the center of the representative molecule. Asthe
size of the signal is even, there is a shift of 1. Due to the successive transforms, numerical imprecisions may occur, and a
local search has to be performed. The shift is corrected by this refinement step. Parts (c) and (d) of Figure 10 show a similar
behavior of the local search at the next levels of the tree. Ingeneral, trees with a large value of the thresholdδ have correction
shift values that are more uniformly distributed over the whole search window. Finally, Figure 10 illustrates the fact that the
energy localization is quite efficient and that the molecules at the first level of the tree represent well the features contained
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Fig. 8. Molecules associated to the nodes located at the firstlevel of the tree created with a grouping thresholdδ = 0.99.

Fig. 9. Time-frequency distributions corresponding to the molecules exhibited by figure 8.

in their sub-dictionaries.
We can now compare the approximation performance, and the computational complexity of Tree-based Pursuit, as opposed

to Matching Pursuit. Part (a) of Figure 11 compares the mean square error obtained with Matching and Tree-Based Pursuit
using the different trees defined above. The results have been averaged over 100 zero-mean random signals with Gaussian
distribution of unit variance. When using trees created withsmall values forδ, the results are very close to the reference
Matching Pursuit. Recall that small values ofδ impose very strict constraints on the clustering of atoms and molecules, which
may result in a large number of molecules at the first level of the tree. This fact is particularly well illustrated in Figure 11
(b), where the approximation rate of Tree-based Pursuit with δ = 0.18 is close to Matching Pursuit. On the other hand, the
computation time obviously also depends onδ, since computation time depends on the amount of nodes at thefirst level of
the tree|c0|, as discussed in Section IV. Experimental results confirm the complexity analysis in Figure 12. Indeed, if we
compute a linear approximation of the Tree-based Pursuit computation time curve as a function of|c0|, in a mean square sense,
it intersects the Matching Pursuit computation time around|c0| = 1618 (the dictionary contains1600 atoms). This shows that
most of the complexity of Tree-based Pursuit lies in the fullsearch at the first level of the tree; after this initialization, the
cost of the traversal of the tree can be considered as negligible regarding the initial step.



17

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
All Levels

Displacement

P
e

rc
e

n
ta

g
e

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Level 1

Displacement

P
e

rc
e

n
ta

g
e

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Level 2

Displacement

P
e

rc
e

n
ta

g
e

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Level 3

Displacement

P
e

rc
e

n
ta

g
e

0.

All Dictionaries

δ = 0.36

δ = 0.75

δ = 99

a. b.

c. d.

0.

All Dictionaries

δ = 0.36

δ = 0.75

δ = 99

0.

All Dictionaries

δ = 0.36

δ = 0.75

δ = 99

0.

All Dictionaries

δ = 0.36

δ = 0.75

δ = 99

Fig. 10. Displacement of the optimal position during the execution of Tree-Based Pursuit, independently of the level (a) and for first (b), second (b) and third
level (c) of the tree.
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Fig. 11. Comparison of the error produced by the proposed algorithm when using different bounds for the grouping (a). The grouping parameterδ influences
the approximation rate (b).

B. Extension to multi-dimensional signals

This section extends the analysis of the Tree-based Pursuitalgorithm to images. Reduction of the complexity in the case
of multidimensional signal is even more crucial than for 1-Dsignals. We use a dictionary that is built on gaussian generating
functions that are scaled, rotated and translated [30]. Thefirst generating function is a Gaussian as given by eq. (37), that
suits well the task of capturing the low-frequency parts of natural images. The second generating function, given in eq.(38)
is made of a Gaussian in one direction and its second derivative in the other direction. It has a good ability to capture edges
in images and is spatially and frequencially well located.

g1(x, y) =
1√
π

exp−(x2 + y2). (37)

g2(x, y) =
2√
3π

(4x2 − 2) exp−(x2 + y2). (38)

In our experiments, the atoms usingg2 as generating function have translation parameters that take any positive integer value
smaller than the size of the image. The rotation parameter varies by increments ofπ18 . The scaling parameters are uniformly
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distributed on a logarithmic scale from one up to an eighth ofthe size of the image, with a resolution of one third of octave.
The scaling along the second derivative part is always smaller. For the pure Gaussian atoms, the translation parameterscan
take the same values, the scaling is isotropic and varies from 1

32 to 1
4 of the size of the image on a logarithmic scale with a

resolution of one third of octave. Due to isotropy, rotationis obviously useless for this kind of atoms.
The tree structured dictionaries have been generated here using a top-down approach. The trees have been constructed using

a k-meansalgorithm with different values for the number of children per node. Figure 13 represents a bottom part of the tree
structure, built on the 2-dimensional gaussian dictionary, where the bottom components represent dictionary atoms. Figure 14
show the molecules at the first level of the tree.

Fig. 13. Bottom part of the tree-structured dictionary, built on gaussian 2-dimensional atoms.

Fig. 14. Centroids at the first level of the tree built on 2-dimensional gaussian atoms. The first row presents the atoms in the spatial domain, the second one
shows their frequency representation.

Figures 15 presents a comparison of the computational complexity of Tree-based Pursuit and Matching Pursuit, for different
dictionary and image sizes (the Lena image has been used in these experiments). It can be seen that the number of children
per node in the clustering algorithm clearly influences the computational complexity. However, approximation qualityalso
depends on the number of children per node, as shown in Figure16, which presents the quality of the approximation for 500
atoms. Interestingly, the computational time also varies linearly with the number of children per node, similarly to the behavior
observed in the 1d signal case.

VII. C ONCLUSIONS

This paper has presented a generic algorithm to reduce the computational complexity of pursuit algorithms. Hierarchical
clustering of dictionary atoms in molecules has been proposed, as an efficient structuring of large set of functions. Themolecules
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Fig. 15. Complexity comparison between Tree-based Pursuit, and Matching Pursuit, versus the size of the dictionary, and the size of the image to represent.
The parameterM is the number of children per node used for the creation of different trees.

represent a sub-dictionary of highly correlated atoms and are used to create a tree structure from an arbitrary highly redundant
dictionary. A tree-based pursuit algorithm is then proposed, which exploits the tree structure, resulting in a computational
complexity that is significantly lower than the classic puregreedy algorithm. We experimentally showed that the reduction
in complexity does not imply a large penalty in approximation rate. It is shown also that Tree-Based Pursuit recovers coarse
structures of the signal, even for highly redundant dictionaries, thanks to the hierarchical clustering into sufficiently incoherent
dictionaries of molecules. Finally, practical applications are often based on highly redundant dictionary, whose properties are
however poorly studied. On the other hand, the class ofincoherentdictionaries has been widely studied, but is rarely used in
practical applications. Our study tries to bridge that gap,by demonstrating that, from a molecular point of view, it is possible
to apply the approximation results forincoherentdictionaries, to highly redundant dictionaries.
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