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Abstract

This paper proposes a tree-based pursuit algorithm that efficientlgstratfi complexity and approximation performance
for overcomplete signal expansions. Finding the sparsest repaéisanof a signal using a redundant dictionary is, in general,
a NP-Hard problem. Even sub-optimal algorithms such as MatchinguiPwesnain highly complex. We propose a structuring
strategy that can be applied to any redundant set of functions, anth Wwhgically groups similar atoms together. A measure of
similarity based on coherence allows for representing a highly redtirsdndictionary of atoms by a unique element, called
molecule. When the clustering is applied recursively on atoms and therotetufes, it naturally leads to the creation of a tree
structure. We then present a new pursuit algorithm that uses the strecaated by clustering as a decision tree. This tree-based
algorithm offers important complexity reduction with respect to Matchings&ity as it prunes important parts of the dictionary
when traversing the tree. Recent results on incoherent dictionariesxtmeded to molecules, while the true highly redundant
nature of the dictionary staysddenby the tree structure. We then derive recovery conditions on the stegctlictionary, under
which tree-based pursuit is guaranteed to converge. Experimestdisrdinally show that the gain in complexity offered by
tree-based pursuit does in general not have a high penalty on thexapption performance. They show that the dimensionality
of the problem is reduced thanks to the tree construction, without sigrificss of information at hand.

I. INTRODUCTION

Building good sparse approximations of functions is onehaf tmajor themes in approximation theory. When applied to
signals, images or any kind of multidimensional data, ibval to deal with basic building blocks that essentially bestze
the information at hand. It is known since the early succesdavavelet analysis that sparse expansions very oftert iesu
efficient algorithms for characterizing signals, or evendoalysis and compression. An interesting way of achiegipaysity
that has gained a lot of interest recently is to turn to vedurelant systems. It often allows for short-length represam
of signals, since the probability of finding a good approxioragenerally increases with the redundancy of the dietignin
most cases, sparsity is measured bydhaorm of the vector of coefficients. A review of the most usysdrseness measures
can be found in [1].

Finding the best linear expansion using a redundant diatioof functions is however, in the general case, a daunésg. t
It has been shown that it is in fact a NP-Hard problem [2]. Dtegie difficulty to find thebest sparsest solution, it is possible
to find sufficientlygood representations that are nearly optimal. Sub-optimalibiées have been developed that recover the
main components of a function in a redundant dictionary. Agrthe most popular algorithms that finds good suboptimal
solutions to the sparsest signal representation problesmcam cite Matching Pursuit [3] and Basis Pursuit [4]: bothctea
solution close to optimum by relaxing some constraints ef dhiginal optimization problem. Even if specific optimimeats
are possible for particular classes of dictionaries, thepexity of these algorithms remains very high in general.

Several methods have recently been proposed in order teaterithe computational complexity to find sparse signal
expansions. They generally propose modifications of eitiesearch algorithm itself, or the dictionary. Startingnfrexisting
algorithms, it is indeed possible to introduce small changeobtain efficient search algorithms. A two stage desigmaposed
in [5], [6], [7], where the original dictionary functions empproximated by linear combinations of very simple, eletag
vectors. The search is then performed in the space of elanyevitctors, hence a great reduction in computational cexitgl

Approximation of functions of the dictionary, or specialnstructions can also lead to efficient search algorithm#)out
an important penalty on the approximation performanceNg]jltiscale [8] or subband dictionaries [9] can be used toarelase
search complexity, where the linearity of the inner prodtant even be further exploited to speed-up the computatiotinea
price of higher memory requirements. Similarly, [10] prepd to use a dictionary that is based on damped sinusoidshwhi
can be efficiently derived using simple recursive filter lmrfince the size of the dictionary has obviously an impoitapact
on the search complexity, several studies have also be@oged to prune the dictionary to its most meaningful elesdnt
vector quantization for example [11], [12]. In general,sthanethods however only apply to specific dictionaries.

One of the aims of this paper is to study the reduction of thepudational complexity of the search for the sparsest signa
expansion, for any arbitrary highly redundant dictiondtynaturally leads to the notion of data structuring, thatdraes
critical when the amount of data gets very large. Dictionfnyctions with similar properties can be clustered togethe
order to facilitate the search for the sparsest representatlustering is a widely used technique when the amourdasé
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is huge and hides the underlying structures, see [13] fomeeguClustering algorithms depend on a measure to quathtéy
similarity between two objects. Proper data arrangemesn #ilows for the development of tree data structures, whah

be efficiently used for search when a huge amount of data septd14]. Tree search has been proposed in [15] in order to
improve the performance of Matching Pursuit expansion. \&gdver propose to study tree-based pursuit from a complexit
reduction perspective, as an interesting trade-off betvedicient implementation and sufficiently sparse signgrapimation.

The paper is organized as follows. Section Il proposes amviaye of linear expansions using redundant dictionaries of
functions. Section Ill presents a structuring method thiaia to represent a subset of highly correlated atoms bynglesi
element, called molecule. Hierarchical clustering thdowa for building trees, where each node corresponds to @cubd
that encompasses the characteristics of all its relatildren. A tree construction method is then proposed thataets the
necessary conditions for nodes at each level to be suffigiemtoherent. A tree-based pursuit algorithm is then pegabin
Section IV that exploits the tree structure to reduce themgational complexity of the pursuit. Performance and abiristics
of the algorithm are analyzed in Section V. A bound is derjwellich ensures that molecules cover the same span as the
initial dictionary. A minimal condition ensuring that thégarithm chooses onlgood molecules under the root node is also
presented. Section VI illustrates the performance of Based Pursuit in terms of approximation and complexity, garad
to Matching Pursuit. Section VII finally concludes the paper

[l. SPARSE APPROXIMATION USING REDUNDANT DICTIONARIES
A. Sparse approximations

For the last few years, there has been a tremendous activityei field of sparse approximation. This is partly motivated
by the potential of the related techniques for typical taisksignal processing such as analysis, dimensionality atiaiy
de-noising or compression. This section provides an ogerdf the main recent results on sparse approximation, aectipal
algorithms like Matching Pursuit.

Given ad dimensional signak in a real vector space, the central problem faced in this mpapthe following: compute
a good approximatiody as a linear superposition @f basic elements picked up in a huge collection of signals ob¢s
D, usually referred to as a dictionary. We will sometimes de#h D as a big matrix of sizel x |D|, where|D| is the
cardinality of D. In this case, the columns of this matrix are the basic sggmantioned above, which are often called atoms.
The dictionary is said to be redundant whdn| > d. The approximangy is sparse whernV < d and, in this paper, the
error is usually measured in the mean-square sense, i.e.,

N-1
SN=)_ gk, gE€D, [ls—dnla<e. (1)
k=0
There is no particular requirements concerning the dietipnexcept that it should span the signal spateand there is no
prescription on how to compute the coefficientsin eq. (1). The main advantage of this class of techniquesasbomplete
freedom in designing the dictionary, which can then be effitty tailored to closely match signal structures.
This problem is better studied under the form of the follogvoconstrained optimization :
K—-1
Py : minimize |[c[lo subject tol|s — > cxgy,[l2 < €
k=0
where||c||op counts the number of nonzero entries in the sequéngck Usually, finding the solution oP; would be a hopeless
combinatorial problem. Recently though there has beenanelous advances studying particular instances of thewfiltp
relaxed version [16] of, :
K—-1
Py : minimize |||, subject tol|s — > cxgy,ll2 <€ .
k=0
For the particular case whete= 0, P, can be solved by a simple convex mathematical program kneaBaais Pursuit [17].
The interested reader may want to check [18], [19], [20] fdl &ccount on the exact sparse representation case: f-€).
The technical battle for fully understandigy, P, and their connections still rages on. In the more genera,dabas recently
been shown that a quadratic programming algorithm knownasssBPursuit Denoising is able to recover a solution vergeclo
to the optimal solution of?, under some technical hypotheses on the dictionary [21]. [¥®re surprisingly, even simple
greedy strategies such as Matching Pursuit and Orthogoatdhihg Pursuit are able to recover very good approximér@k [
On the downside, these results hold only for a limited clds$iaionaries :D has to be sufficientljncoherent The coherence
of a dictionaryD is defined as :
p= sup [(gi, ;)| 2
i,j€D
i#j



Coherence is a measure of the redundancy of the dictionargmall coherence means tlatis not too far from an orthogonal
basis (although it may be highly overcomplete). More prtpsrof such dictionaries can be found in [19], [20], [22]. W&l
also come back to incoherent dictionaries in the course isfghper.

So far the results obtained are not constructive. They &affgrtell us that, if a sufficiently sparse solution exists a
sufficiently incoherent dictionary, it can be found by saolyia problem closely connected 1. In practice, given a solution
computed by any algorithm, one could use the test describfB] to check if the solution is indeed the sparsest. Inoemee
is a very strict constraint imposed upon a dictionary. Big tias to be understood as a mathematical artifice to tackifculd
problem and redundant dictionaries work very well in preetiOne of the most widely used algorithm for computing spars
approximations with redundant dictionaries is the greddgrithm known as matching pursuit, which we review in thextne
section.

B. Greedy algorithms: Matching Pursuit

Greedy algorithms iteratively construct an approximantsejecting the element of the dictionary that best matches th
signal at each iteration. The pure greedy algorithm is knasflatching Pursuif3]. Assuming that all atoms i® have norm
one, we initialize the algorithm by settiny = s and we first decompose the signal as

Ro = (G5 R0) G + Ra

whereg,, is chosen so as to maximize the correlation with :
Gvo = arngaX |<g’Yo7 R0>| .

We then iterate the procedure on the residBaland, afterd steps, build the following approximation :
M-1
§= Z <g’\/¢”7Rm>g'y,m + R]\I 1)
m=0

where the norm of the residual (approximation error) J@isi

M-1
IR = 1lsll® = Y [{gms Bon) -
m=0

The performance of greedy algorithms like Matching Puraréttightly linked to the structure of the dictionary. Théwetence
1 described above is often not sufficient to represent thequtigs of a dictionary, since it represents a worst case dioun
and does not take into account the local structures of thgodary. Other more sophisticated metrics have been peubts
provide more precise description of dictionaries and welldescribed later on in this paper. Similarly, the strudttedundancy
[24] of a dictionary provides important information abobetstructure of a redundant dictionary. Matching Pursuilveayes
exponentially fast in finite dimension [3], [2]. There exisio constantsy > 0 and 3 > 0 such that

IR f|| < (1= a®8%)'2|IR" £, €)
where can be expressed as
B= inf supl|(a,g)|. 4)
allal|=1 jer

This equation confirms that the algorithm will behave welbhyided there is always an atom closely aligned with thedresi
The properties of the signal, dictionary and algorithm, tigbtly linked.

As already mentioned, solving the sparse approximatioblpno of eq. (1) using a redundant dictionary is of combinator
complexity. The greedy heuristic finds a usually satisfacswlution to the problem in polynomial time. There is hoeewno
guarantee on the optimality of the solution, except in theeashere sufficient conditions are set on the dictionary. [2Bjvever,
polynomial time still does not mean fast! Typical implenstians of Matching Pursuit suffer from a high computational
complexity when compared to most orthogonal transformsthin remainder of this paper, we therefore propose to group
similar atoms together, and represent them by a unique eleoalied molecule Applying clustering recursively on atoms
and molecules yields a hierarchical tree structure, thatlm exploited to design a search algorithm with greatly cedu
complexity.



IIl. STRUCTURING REDUNDANT DICTIONARIES
A. From atoms to molecules

This section discusses clustering of a generic, redundetivmiary, which eventually leads to the creation of a treaciure.
First, it describes the problem of representing a group ghlki correlated dictionary atoms by a unique element. Wa the
discuss the characteristics that are necessary for ambetido be efficiently clustered and organized in a tree 8irec

Let the elements of the dictionafy = {¢; }:cr be labelled by the index s&t A sub-dictionaryD, is such tha®D, = {g;}ica
where A C T and A # (. A collection of sub-dictionarie§D,,} forms a partition of the dictionarp if (J,A; =T and
Vi # 47, Ai(A; = 0. If the atoms inD are sufficiently uncorrelated, a simple greedy algorithnalite to recover a sparse
approximation of the signal (see for example [22]). This @ the case for highly correlated redundant dictionariesugh.
This can be explained intuitively by the fact that high ctatien in the dictionary can fool the pursuit and result inong
choices. We are thus going to try to represent a highly cated| sub-dictionaryD,, by a single molecule, while at the same
time minimizing the correlation among molecules. This gaure should result in a set of molecules that behaves ligaias()
incoherent dictionary.

Let us first define the minimal coherengg of a sub-dictionary by :

Ap = f,?ie% | {gi»95) | - (5)

A sub-dictionary will be referred to aeduciblewhen A, > 0 and sufficiently big. In order to quantify the adequation of
the molecule in representing the atoms in the sub-dictioq@r,, }, a distance measure has to be defined.d(et, g;) be a
measure of the distance between two atgmandg;. In this paper, we chose to use the following distance measiarived
from the simple cosine function : ,
[ <99, > ©)

llgill2llgsl2
Without loss of generality, the distance between two atohesefore takes values betweénand 1, where two atoms are
strongly correlated if their distance is close(®oSince moreover the atoms we consider here have unit erntegygistance
d(gi, g;) is equal to:d(gi, 9;) = 1 — | < gs,9; > |*. Note that an atong; can be considered as equivalent-tg;, from an
approximation point of view, the sign of the weightsin f = >". . a;g; + € could be reversed. The distance measure given
in eq. (6) is independent of the direction gf

Most clustering algorithms represent a cluster by a ceamtndiose mean distance to all elements it represents is nzadni
Let us define the optimal centroid or unit norm moIecut%Dt, for a sub-dictionaryD,, by :

d(gi,95) =1 —

i€l

m?\pt = arg min Z d(m, g;). @)

[mll=1ieA

Using the distance measure defined in eq. (6), the optimataidrbecomes :

m@ = arg min > 1—|(m,g;)/%, )

mll=1ieA
= arg mT%X Z ‘(magi>|27 (9)

Imll=1ieA
= arg max m Ay Aym, (20)

lmll=1

where the columns of the matrix, are the atoms of the sub-dictionaBy. The moleculezrrz%pt is the eigenvector associated
to the biggest eigenvalue of the matui A} . The eigenvalues afiy A} are equal to the eigenvalues 4f A, (see theorem
1.3.20 of [25]). This last matrix is the Grammian 4f,. Fig. 5 illustrates the reduction capabilities of a molectdgarding a
group of similar atoms. As the matrid, A} is symmetric, the associated eigenvalues are real and soeiated eigenvectors
are orthogonal. The molecubafxpt is also equivalent to the dominant left singular vector @& thatrix A, [25]. This result
was exhibited in [26] for the computation of the centroid fomodified k-means algorithm that considers two anti-cateel
vectors, i.e.g and —g, as being part of the same cluster.

The computation of the optimal molecule relies on the distameasure at hand; in a different context, [11] studied the
same problem with d(g;, g;) =1—1 < gs,9; > | and derived an iterative method to compute the optimal nubéebased on
a weighted average update. Assuming the existence of a pesibr of the moleculen’, the sub-dictionaryD, is divided
into two parts,Dl(\Jr) and DE\_) according to the sign of the scalar product between the atordsn’. The new molecule is
found using:

kil ZiE'D&‘H Wigi — ZieD(A—) W;iGi
my = . (12)
ZiEDA Wi
The positive weightsy; associated to each atoms are used to give more importanaamt® gatterns. Due to the recursive
computation of the molecule, this kind of approach fits wetbia k-means algorithm.




B. Dictionary characterization

In the previous section, we introduced the definition of roole in order to structure thimformationat hand in a highly
redundant sub-dictionary. We will now see how a dictionaay de partitioned into disjoint sub-dictionaries represdrby
molecules through a simple clustering procedure. Furtbeursive application of clustering on the set of molecutsuiits in
a hierarchical tree structure that will be used in an efficegarch algorithm.

We previously stated that representing a sub-dictionara loyolecule makes sense only feducible sub-dictionaries. By
extension, a dictionarf is said to bereducibleif it contains a partition{D,, }, such that all its sub-dictionaries are reducible
and|{Dy,}| < |D|, i.e., the number of sub-dictionaries is much smaller thatrtumber of atoms in the dictionary. A special
case ofreducible dictionaries is represented by thdéock incoherentdictionaries [27]. These dictionaries are such that it is
possible to find a partition having a small block-coherepngedefined by :

fip = Maxmax | {gr, 1) | - (12)
leA;

If D is reducible then the coherence of D is big; the reverse is however not necessarily true. A dietig D can have a
big coherence: without beingreducible due to the fact that the coherence given in eq. (2) only nsfleic extreme property of
the dictionary. Similarly, the quantity defined in eq. (4), or the structural redundancy [24], alsmrs an extreme property
of the dictionary. Foblock incoherentictionaries, the structural redundancy is low and providemeinter sub-dictionaries
redundancy measure. It is however closely related to thekkdoherence:s given in eq. (12).

The cumulative coherence is a refinement of the simple cobermeasure and therefore provides much more information
about the dictionary. It is defined as follows :

pa(m) = max max > | (gi,g;) | (13)
|Al=m i¢A ien
A dictionary whose cumulative coherence grows slowly isl $aibequasi-incoherenf22]. If it grows fast, it is at least possible
to have one highly correlated sub-dictionary. The cunudatioherence can be bounded using the cohergnde;) < my.
In the special case dflock incoherentictionaries, a better bound on the cumulative coheren¢e:) can even be proposed.
Let k£ be the cardinality of the most populated highly correlated-dictionary, we then have :

mi if m<k.
“1<m)§{ (k=Dp+(m—k+1Dup if m>k (14)

The cumulative coherence provides more accul@tal information than the coherence, but is more complex to cdaenpu
Moreover, a fast growing cumulative coherence is not a sefficcondition for a dictionary to besducible it reflects the
behavior of the dictionary in the region of the space of dgiaat is bestoveredby the dictionary [16]. For example, in the
case oblock incoherentictionaries, the cumulative coherence grows rapidly fgorf0) up tou; (k—1) and then grows slowly,
with k& being the cardinality of the most populated sub-diction&ig. 1 presents the evolution of the cumulative coherence
for a dictionary having two highly redundant parts. Fer= 5, there is a sharp inflection of the curve as the cardinalithef
most populated group of atoms ks= 6. To summarize, a quasi-incoherent dictionary has both |sto&lerence, and small
structural redundancy, and its cumulative coherence gsdwwsly. Block incoherent dictionaries rather have a largharence
and a cumulative coherence that grows fast up to an inflexa@nt @t m = k£ — 1 and then grows slowly. Block incoherent
dictionaries are good candidates for one-step clusterirggams into molecules.

Dictionary Cumulative Coherence

— wm
6 | bound

Fig. 1. Simpleblock incoherendictionary made of two highly redundant parts (a). Evolutadrits cumulative coherence and the upper bound provided by
eq. (14) (b).



C. Tree-structured dictionaries

The hypothesis that the dictionary nsducibleensures that it is possible to partition it inteducible sub-dictionaries, and
recursively find molecules. However, we have not yet pravideway to compute the partition @ in sub-dictionaries. Our
ultimate goal is to have as few sub-dictionaries as possiith atoms within each sub-dictionary that are as simitartelated)
as possible, and atoms from different sub-dictionariesiffereint (uncorrelated) as possible. We propose a clusgeapproach
that starts from an existing dictionary and endows it withies tstructureZ”, with nodest; € 7. The sub-dictionaries are seen
as clusters of atoms, and the associated molecules arertheide of each cluster. Each nodeof the tree is associated to
a list ¢; containing the indices of its children and to a molecuig representing these children through eq. (7). A leaf node
t; is associated to an original atom from the diction@ryandc; contains the index of that atom 2. The root node of the
tree is labeled, and has no associated molecule. See Figure 7 for an illisstraf these notations.

Our goal is to generate a tree representation of a dictioRatyrough recursive clustering, in order to eventually dasecthe
pursuit computational complexity. In general, two differelustering approaches can be chosen: (i) a top-down apprinat
tries to divide thereducibledictionary (or sub-dictionary) into sub-dictionaries, ial satisfy the similarity constraints, and (ii)
a bottom-up approach that groups similar atoms/molecwoigsther as long as similarity constraints are satisfied. pAdmyn
approach using constraints on similarity has been intredun [26] and is calledliametrical clustering This algorithm was
developed for gene clustering to fit an observation statiagjgenes with anti-correlated expression patterns caarimidnally
similar. The same observation is true for a dictionary apphoof signal decomposition : two anti-correlated atomsehiae
same behavior as they capture the same structure. Thethatfggproposed in [26] is a modifiek-meansusing as distance
measurel(z,y) = (z,y)? wherex andy are unit norm vectors. The correspondence between thandistand the correlation
distance measure of eq. (6) is straightforward. The optteatroid is indeed derived in the same way as the optimal catde
(see section IlI-A). Note however that [26] contains an ddal step that explicitly identifies two anti-correlatellisters.

In this paper however, we will rather follow a bottom-up aggrh, which consists in grouping nodes, starting from afoms
to create new nodes and molecules. The bottom-up approawmbiter appropriate to the clustering of arbitrary dictioes,
since the number of clusters does not need to be known in advame top-down algorithm presented in [26] fixes a priori
the number of clusters (sub-dictionaries), while the butigqp approach presented here sets the cardinalitf each cluster.
Algorithm 1 presents a sketch of the method. Initially, itates nodes containing the atoms from a dictiorfargnd marks
all these nodes as potential candidates to be grouped bpatik indexes of the corresponding nodes to allisThe next
step consists in finding a group € L of k£ nodes that can be grouped. The distance measure is useditie edwether a
group of nodes can be merged and a new node added to the teeetision algorithm considers a $&t of node indexes
(possibly different from=) and computes the valug,,,, = max; €% d(m;, m;). This value is closely related to the minimal

i)

coherence measure given in eq. (5)das.. = 1 — Aa. >, WhereDq,, is a sub-dictionary made of atoms and molecules. A
reduciblesub-dictionary has been defined to have a high minimal cokerand thusg,, ... is low. According to this definition,

it makes sense to represent a sub-dictionary by a moleculg,jf is smaller than a fixed threshold The molecules are
created from the atoms or molecules listed(ip. The algorithm goes on as long as it is possible to find a grdupodes
fulfilling our requirements. If it is no longer possible, weeate the root node of the tree; the remaining nodes &re its
children.

Algorithm 1 Tree Creation by grouping.
INPUT: A dictionary D, the desired cardinality of clusters.
OUTPUT: A tree7T
INITIALIZATION: Create nodest; up tot;p| containing the atoms fror®. Add all indices to a list. of free nodes.
while possible to find a groug: of nodes whose index are ib that can be represented by a molecute;d(G) = k do
create molecule
removek selected nodes from ligt
create new node; its children are theselected nodes
add index of new node to list
end while
create root node
children of root node are the nodes whose indexes aie in

We further define aveakand astrongdecision rules, which differ in the creation of the list ofdes 2 associated td-.
The weakversion definef2; = G, the set of indexes of the nodes to group, while for streng decision rule 2 contains
the indexes of the leaf nodes that are the descendants offtbieidt nodes ofG. In the remainder of this paper we use trees
built using this bottom-up strategy, with weak decision rule for grouping the atoms. Finally, finding thestogroup ofk
nodes is still a combinatorial problem, but it can be easilyed for small values ok (our results are based on trees created
with &k = 2), and the tree can anyway be constructed off-line, witharnatizing the pursuit algorithm. Figure 2 illustrates



the construction of a binary tree, for a dictionary of 12 mmdvectors. The most similar atoms are paired together, tinati
algorithm reaches level 1 with 3 molecules, which are tomlwerent to be further clustered.

Dictionary Molecules at level 4 Molecules at level 3

Fig. 2. Creation of a tree on top of a 2D dictionary. The ugdpéirpart shows all atoms in the dictionary. The bottom-righttgsummarizes the structure of
the tree. The other parts correspond to the molecules or atoessmi at the different levels of the tree.

IV. TREE-BASED PURSUIT ALGORITHM
A. Tree-based search

In a sense, a single iteration of Matching Pursuit can be ssea classification problem where each atom corresponds to
a class of signals. Its aim becomes to successively map #iduet signal to a class according to a given distance measur
When considering the greedy approximation problem as aatiiter classification problem, the tree structure can be trsed
divide the decision into smaller steps in a manner similaa tdecision tree. Matching Pursuit simply tries all posgiba
to find the best class. The use of a the hierarchical structlloers to discard an important part of the dictionary atorns a
each node. In the following, we describe a practical impletaigon of this technique, the Tree-Based Pursuit algarithike
Matching Pursuit, the proposed algorithm iteratively shas for a good atom to approximate a residual sigifgf. Instead of
testing all possible atoms froM, Tree-Based Pursuit uses the tree structlirhat groups similar atoms in the same subtree.
The search starts at the root node and goes down throughethautil a leaf node is reached. At each node, the algorithm
chooses the child whose molecule best approximates thalgige, the one that leads to the highest amplitude of tlaéasc
product with the residual).

In practice, a dictionanyD is often built using several generating functions, thatteseslated to different positions in the
signal space, e.g., in time or space. Position parameters@rceptually part of the atom index or description. Howeve
we chose to decouple translation from the other atom pammeb allow for a more efficient search algorithm. Dictigna
structuring does not consider atom shifts, and the treeeigetbre built on atoms that are all centered on the samerampit
reference position. Since the tree does not consider ammslations, the search algorithm itself has to deal withpibstion
of atoms. The search algorithm has therefore to identifyamdy the best atom in the dictionary, but also its positiorthia
signal space. Lelpopt, iopt] = mp(f,p,0,4) be the primitive operation that finds the atom or moleculé best approximates
the signalf among the children of a nodg of 7. The tree is shift-invariant, and the primitivep searches in a window of
sizeo around a positionp in f, and returns the indek,,, of the best child, and the best positipy,.. If the search window
totally covers the functiory, the primitive mp is equivalent to Matching Pursuit; in this case, we denotegbarch function
as [Popm iO;Dt} = mp(f,i).

Tree-Based Pursuit is described by Algorithm 2. At the rooden the scalar products between the residefaf and all
shifted versions of the molecules of the nodes at the firstl lef the tree are computed usimgp(R" f,0). This operation
corresponds to an execution of Matching Pursuit using thiecotes of the first tree level as dictionary. The best mdiecu
and its associated node are found; the initial step alsosgive position of the best molecule. It can also be considased
an energy localization phase. Note that in our case, thiglilation method is particularly efficient, since molecukeally
represent the kind of features the dictionary is able totcaite search at the next node down the tree benefits from the



Algorithm 2 Tree-Based Pursuit algorithm
INPUT: A dictionaryD and its tree representatidh, the sizeos of the search window and a signal
OUTPUT: Atoms fromD and projection coefficients.
INITIALIZATION: ROf = f, n=0
repeat
[p, i] = mp(R"f,0)
while ¢; is not a leaf node&lo
[p,i] = mp(R"f,p,0,i)
end while
gn the atom fromD equivalent tom, at positionp.
apy1 =< Rnf'.gn >
Rn+1 — Rnf — Gnt19n
n=n+1
until Stop condition is met.

information about the optimal position of the molecule assted to the parent node. The scalar products between sfoied
and the molecules of the candidate nodes are computedyloaadiund the position of the molecule, in a search window of
sizeo. The traversal is over when the algorithm reaches a leaf.ribigle information about the position and the node of the
tree uniquely identifies an atom from the dictiondPy The residual function is updated and the algorithm is feetaback to
the root node, until a stopping criteria is reached. It ccagda predetermined number of atoms, or a threshold on thauedsi
energy.

B. Complexity Analysis

The complexity of the proposed algorithm highly depends lmn structure of the tree. In order to be able to evaluate the
complexity of Tree-Based Pursuit, let us first make some thgsis about the tree. Assume that the number of children per
node is a constarit, except for the root node, which hasg| children. A tree generated by the algorithm proposed ini&ect
[1I-B fulfills these constraints. Let us also suppose thattiiee is balanced, meaning that the length of the longebtdifiers
at most byl from the length of the shortest path. It ensures that the mmaxi length of the paths to the leaves is minimized.
Under these assumptions, the length of the longest path islog; %1, where|cg| is the number of nodes under the root
node andk is the size of the groups formed during the creation of the.tre

The proposed algorithm looks for the best child of a nodepating to the adequation of the corresponding molecule with
the signal. When doing so, a local search is performed at amiait node of the tree. At the root node, a full search is done,
which is equivalent to Matching Pursuit using the reducetiaiary made of the molecules of the nodes that are locdtdoha
first level of the tree. Let us first derive the complexity oftibthese searches. Since our atoms are centered and we ta to
with all possible translations, a commonly used and smaptémentation of Matching Pursuit consists in using a FastriEo
Transform to compute all scalar products with shifted atoech an implementation has a complexity@f|D|N log N) to
find the best atom, wherd' is the size of the signal to decompose. When computed by TasedBPursuit, the complexity
of the search at the root node becond®dcy| N log N). During the traversal of the tree, only local searches artopmed. It
leads to a complexity o ((d — 1)oN) whered is the depth of the tree. Putting it all together, the comipfeaf the proposed
algorithm for finding the best atom is:

Olcol¥ 10g N -+ ([log () ). (15)

The complexity of Matching Pursuit depends linearly on tiee ©f the dictionary. A decision-tree approach to find the
best atom reduces this complexity, since the divide and wemprocedure eliminates many possibilities at each lémahost
cases, the second term of eq. (15) is small compared to thefies which means that most of the complexity of Tree-Based
Pursuit lies in the initial search at the root node. The caxipf highly depends on the number of nodes at the first lefel o
the tree.

The complexity of the descent through the tree depends dnthetsize of the search windawy and the length of the path.
The search window parameter is chosen empirically suchahat N. The length of the path depends on the cardinality of
the dictionary, on the number of nodes at the first level ofttee, and on the numbér of children per node. This last value
is also empirically chosen such thiat« |D|. Figure 3 shows the evolution of the complexity of the pragbalgorithm, as
given by eq. (15), as a function of the number of nodgat the first level under the root node. The evolution is quasilr.

It illustrates the fact that, for reasonable values of trerd® windowo, the descent trough the tree is negligible regarding the
complexity of the initial step. The influence of the searcindaw size is generally negligible as compared to the inflaesfc

co, Which is usually large. The second part of the figure prestrg evolution of the complexity given as a function of the
size of a dictionary, for fixed number of nodes at the first l@fghe tree. It can be seen that the complexity of the Trezeta
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Pursuit is almost unaffected by the growth of the dictionaryile the complexity of Matching Pursuit increases ligafhis
confirms the weak relative importance of the second term Bf. (However, it has to be noticed that the approximation rate
of the Tree-Based Pursuit algorithm decreases when the etaitchildren of the root becomes smaller relatively to tlze s

of the dictionary, as discussed in the next section.

Complexity (| c,|=50, =5, N = 256)

Complexity (|D|=1600, g=5, N = 256) ,
10’ : : 10
—— TreeBased Pursuit — TreeBased Pursuit 1
— — Matching Pursuit — — Matching Pursuit | - - — 7
6 _ - :
2z 200 -~
a Q /
§ § |/
() () 105 L
10 - - - 10° : :
0 500 1000 1500 0 1000 2000 3000
|, ID|
b.

Fig. 3. Evolution of the complexity given the number of nodedirat level of the tree for a dictionary of fixed size (a) and im¢tion of the size of the
dictionary for a fixed number of nodes at the first level of treettb).

V. CONSISTENCY ANALYSIS

A. From redundant to block incoherent dictionaries

Most theoretical results in the field of sparse approxinmsticely on (quasi) incoherent dictionaries. Only little Wwdras
been done on highly redundant dictionaries despite thegrasting properties for approximation and compressiueréstingly,
endowing the dictionaryD with a tree structure can also be thought of as a way to adiifjclower the coherence. During
the creation of the tree, our clustering algorithm minirsizee coherence among molecules. Thus, even for highly latece
dictionaries, the theoretical results relying on small erx@mce most probably remain valid at the granularity leviethe
molecules. In this section, we build upon this idea and aathe theoretical approximation performance of the allyori

The creation of molecules relies on having sub-dictiorsagentaining highly correlated atoms. As discussed in 8ecti
llI-A, it makes sense in this case to define a measure of thémalncoherence of a sub-dictionary, as given in eq. (5). For
an arbitrary sub-dictionarp, of a dictionaryD, the minimal coherencg, is very likely to be null. This measure is strictly
positive only if the mostlistantatoms of the considered sub-dictionary are correlated.xfpamed in Section 1lI-A, a highly
redundant sub-dictionary is the favorable case in which fidssible to represent the information at hand in the sciiedary
by a unique element. These constraints are summarized bipltbeing definition.

Definition 1. A sub-dictionaryD, is reducible to a moleculen,, which is calledrepresentativef

e A, Strictly positive.
e mingep | (gr,ma) [> Aa.
o mp € span {Dx}.
In other words, the coherence between a good molecule andtanyin the sub-dictionary should be at least greater than
the minimal coherence of the sub-dictionary. In sectiorAlllwe have defined an optimality criterion for a moleculeyied
on the measure of a mean distance. This measure has beerougleel reation of a molecule and has the advantage to define
a convex set. This implies that standard optimization taals be applied to find an optimal molecule. The adequation of
a molecule regarding the sub-dictionary it represents eaddiined in different ways. One possible measure considisein
minimal coherence between a sub-dictionary and its ageaciaolecule, given by :
= 1 ) ; . 1
o =min | {my, gi) | (16)
The definition of a representative molecule therefore iegpthat the minimal coherence of a molecule regarding itscéssd
sub-dictionary is such thaty > A\A. In other words, adding the molecule, to its sub-dictionaryD, does not change
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the minimal coherence. This condition defines a subseb afhere the molecule is allowed to exist. For example, in two
dimensions, Figure 4 presents the region of admittance Bubedictionary of6 atoms.

Dictionary

270

Fig. 4. A molecule must have unit norm; thus, the region of admgttais the circle in the light grey region.

B. Covering conditions

Since the search is organized along a tree structure, itohlas ensured that the re-structured dictionary is still &bleover
the full space of the input signal. In particular, condisomave to be set, such that representative molecules cavesathe
space as the original dictionary atoms. The structuralnddncy [24] can be used to define such a criteria on the danjon
construction. For example, finding a dictionary made\bfvectors with good covering of the signal space can be int¢zdr
as maximizing the structural redundancy. This quantityasdwver very hard to compute in practice and creating a diatip
with optimal structural redundancy is even more complexs Hnoblem is closely related to finding an optimal coverifigao
projective space, i.e., a Grassmanian packing [28]. N&teTtopp has defined a measure of the covering radius of adaty
[29], as :

: | (9i,5) |
cover(D) = maxmin 4 /1 — (— 7). a7)
)=z Gl st

The relation between the covering radius and the charati,eparameters (4) of a dictionary is straightforward, i.e., the

covering is minimal wherg is maximal :
cover(D) = /1 — 2. (18)

We now set the conditions that are necessary for the clustdictionary to fully cover the signal space. In particulir,
is necessary that the molecules at the first level under tberrode, cover the signal space. Note that such a requirement
is naturally met at other levels of the tree: by the bottomegpstruction, each molecule is indeed representative @f th
related sub-dictionary. The following lemma states a malimondition on the molecules to ensure that a sighaWhich
can be represented using atoms frémcan also be represented using only molecules. More phgéigerovides a minimal
condition, given the parametér of D, to ensure that the molecules at the first level of the treerctdve same span as the
dictionary itself.

Lemma 1. If the collection of sub-dictionarie§D,,, i = 1,..., K} forms a partition ofD and the associated molecules are
representative, thespan{ma,, =1, x} = span D if
on, > [+2y/1—F—1,Y. (19)

PROOF Let f # 0 be a signal lying in the span @b. Without loss of generality, lef be a unit norm signal. In addition,
let the atomg, € D carry the best one-term approximation of the signal, |.€f, go) |= max | (f,g9:) |- Suppose the atom
go belongs to the sub-dictionarf,, which is represented by the molecute,,. The distance betweefi and m,, can be
bounded by :

1f = maollz < llgo — maoll2 + 1f — goll2- (20)

Without loss of generality, assume thgt go) > 0 and (ma,, go) > 0, by construction of the clustered dictionary. Recall that
the direction of an atom does not have any impact in terms pfaqimation rate, so that we can assume positive correlatio
values. Since all vectors have unit norm, it is possible write eq. (20) as :

V1= {(f,may) < V1= {g0,ma,) |+ V1= | {f. 90) | (21)
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We can also lower bound the last scalar product by :

| {f90) [= B- (22)
Using eqgs (22) and (16), we obtain :

\/1_<f’m/\0>§\/1_0-/\0+\/1_ﬂ' (23)

We would like to show that the projection of the sigrfabnto the molecule that is representative of the sub-diatp®,
is never null. In other words, we would like to ensure thathé best one-term approximation gflies within D,,, then the
signal f is never orthogonal to the molecute,,. By extension to all the sub-dictionari¢®,,} at the first level of the tree,
it guarantees that the signgllies in the span of their representative molecules. Imgp#iatm,, is not orthogonal tof is
equivalent to require tha{/1 — (f, ma,) # 1. Using eq. (23), this holds whenever

Vi—on+V1-8<1, (24)

which leads to :
opg > P —2y/1—-0F—1. (25)

If this condition given is verified, it ensures thgt, m,) > 0 whenever the signaf € D has a component along € Dy, .
Furthermore, since the molecules are by construction irsplaa of their associated sub-dictionaries, the span of tileaules
is within the span of the original dictionar® :

span {my,, i =1,..., K} C span D. (26)

In order to ensure that the span of the molecules covers the spthe dictionary, it remains to show that the orthogonal
complement ofspan {my,,i = 1,..., K} in span D is actually empty. If the condition given in eq. (25) is trus fll
sub-dictionaries of the first level of the tree (that form atiian of D), then?f € span D such that(f, m,,) = 0, Vi. Hence
span D = span {mp,,i=1,..., K}. m

When Lemma 1 holds, we can treat the set of molecules as a gedigtionary. Let{D,,} form a partition of D and let
Dy = {ma,} be the dictionary made of the molecules. This dictionary &rasassociated characteristic parametgr. For
any signalf € span D, we thus can lower bound the projection on the molecules ;

mnax [(fm)| 2 Barl ]| @7
This also leads to :
Jmax |(f.m)| = B max| (£, g:)] (8)

Of coursel;; < 3. It would also be interesting to characterize the (cunwddtcoherence of the dictionary. In the next section
we show that Tree Based Pursuit benefits from representaidlecules and is able to identify the signal at the gramyiari
level of its representative sub-dictionaries.

C. Recovery Condition

In the previous section, we have set the conditions for the structured dictionary to cover the span of the original
dictionary D. We now derive a condition for the search algorithm to choomesistent molecules given a signglthat is a
linear combination of vectors if®. Let the signalf have an exact representation using atoms from the dictidBar

f= Z @;9i, (29)
givéﬂ
where(2 is a subset of indices.

Tropp [22] derived a minimal condition that guarantees ahogonal Matching Pursuit and Basis Pursuit recévewhere
Q is the smallest set such that eq. (29) holds. We now show tigtrécovery condition holds true for TBP at the level of
representative molecules of a very redundant dictionagy.d_be a matrix whose columns contain the atoms that ar@.in
The signal can be written g&= ® A, where the vectord contains the weights; relative to atoms irf.

Let fi be the approximation of after iterations of Tree-Based Pursuit. We wrjte = ¥, Ax, whereW,, contains the atoms
found by Tree-Based Pursuit ant}, the corresponding weights. Since we do not impose any c#strion the cumulative
coherence of the dictionary, we cannot directly apply trslts developed in [22], that typically use the cumulatieberence
for an estimation of the exact recovery condition. We do netessarily intend to recover exactly the atomsbinbut we
rather want to ensure that the atoms found by Tree-BasediiPars close to the optimal ones (and in particular, in thaea
sub-dictionaries). We focus on the decision taken by Trasel Pursuit at the root of the tree and want to guaranteetthat
never chooses a node that does not contain at least one aionffin its subtree.



13

If after k iterations of Tree-Based Pursduit, the decisions at themode are alwaysorrect no atom from¥,, is located in
a subtree that does not contain an atom fi@nml_et ®;, be a matrix containing the distinct atoms franand ¥;,. Similarly,
the index sef};, is the se of atoms present @y. As it has been discussed, due to the bottom-up construcfitime tree, the
critical step consists in choosing the correct moleculabafirst level of the tree. Assume once again that the suidaries
{D,,} form a partition of the dictionary, and that each sub-diwdity is reduced to a molecute,,. We say thatn,, is a
goodmolecule if it represents at least one atom participating.ithe matrix M contains allgood molecules in its columns.
Similarly, Mg contains thebad molecules of the first tree level in its columns. The follogiitheorem states the necessary
conditions for the tree-based pursuit algorithm to chobsecorrect molecule at the first level of the tree.

Theorem 1: If Lemma 1 holds true, then Tree-Based Pursuit choogg®dmolecule at the first level of the tree, at iteration
if

+
max (|2 ml|y < B, (30)
Wherecbﬁ is the Moore-Penrose pseudo-invers@gf &

PrROOF The proof of Theorem 1 is a simple extension of Tropp’s Repgov@ondition [22] and we provide it here for
completeness. Assume that at each iteratienk, Tree-Based Pursuit has chosen a good molecule at the fiestdEthe tree.

It has to be noted that the atoms Ghall belong to subtrees of nodes associatedi@od molecules. Under the assumption
that we have chosen onlyood molecules, the atoms if2;, also belong to subtrees of nodes associatedotmd molecules.
The residual signat;, can be exactly represented ms= ®;, A, where A;, contains appropriate weights. The vectads;
and Mgy, list all possible scalar products of the residuglwith, respectively, théad and good molecules {/* stands for
the adjoint of M). The aim is to find a condition that ensures that the curréeg also recovers a good molecule.gaod
molecule is therefore chosen by the search algorithm if :

[ MErsloo

IMarille (31)
||MGTk||oo
Developing further the left-hand side of the previous eigumatusing eq. (28), we can write :
IMErillo - _IMEralloo
IMErkllee = Burll®frells
|[M5 (@) @iralloo
B |25kl
1 N .
S 7HMB((I)z) ||oo,oo~ (32)
Bu

The matrix norm|| ||, is the maximum absolute row sum and the matrix ndrify ; is the maximum absolute column
sum. Thus, we can write that:

1 i} . 1
F—IME(@)) s = 5= 12 (Mp)][1,1

B Bum

1
= BiM m]{rel%jfB H‘ng\h (33)

Combining egs (31) and (33), eq. (30) finally leads to the eorative condition :
1

— g 1. 34
Bar i, %l < 34

One could further straightforwardly apply Tropp’s estimatf (34) in terms of the cumulative coherence [22] of the det o
molecules to obtain a condition that would depend on the Satatecules only (and not on the unknown optimal 3ét).
This estimate requires the set of molecules to be quasharemt. Note that this is very likely to be the case here, but i
would even be better to actually prove hew behaves as we climb up the granularity level of the tree.llyinaote that the
recovery condition itself holds at a coarser level than ievimus works : Tree-Based Pursuit recovers only which mubdesc
are involved and not which individual atoms. On the otherdhahis allows to shift the incoherence constraint to theauoles
and work with a possibly highly correlated dictionary.

VI. EXPERIMENTAL RESULTS
A. 1-D signals
This section now illustrates the Tree-Based Pursuit dlgorj and compares its performances to Matching Pursuit. We

present results for both 1-D and bi-dimensional signats,(images). Let us first consider a dictionary made of redloBGa

functions, as in [3] : .
—Uu

gu,s,ﬁﬂﬁ(t) = CU,&E@Q( s )COS(Qﬂ-f(t - U) + ¢)a (35)
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with
(36)

The normalizing constant, . ¢, is such that the corresponding atom is of unit energy. Tharpateru is the position,s is

the scale¢ represents the frequency ands the phase. Figure 5 presents 3 atoms of such a dictionaayth@ representative
molecule, which is the eigenvector associated to the biggigenvalue ofA, A%, as discussed in Section IlI-A. Figure 6
presents the time-frequency representations of the atordsttee molecule of Figure 5. We can observe that the molecule
indeed provides global information about all the atoms, aicdly summarizes the characteristics of the sub-dictipna
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Fig. 5. Representing a group of atoms by a molecule. From topeldottom-left: Real Gabor atoms with same frequerfcgnd positionp but with different
scaless. Bottom-right: the molecule is the eigenvector associatetth@éobiggest eigenvalue ofy A7 .
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Fig. 6. Time-Frequency plane of the atoms and the molecule quexbén Figure 5.

In our experiments, we used a dictionary built on real Galioma with size 256, where the phageis set to zero in
eq. (35). We used 200 different frequencies uniformly spr@zer the interval of normalized frequenci@s0.5] and the scales
are dyadic. The overall size of the dictionary is 1600, withtaking into account all possible shifts, which are notsidaered
in the tree construction. The translation parameters aneeWer computed by the search algorithm. Figure 7 shows agpart
an example tree built on the multiscale Gabor dictionaryerghwe only useenteredversions of the atoms.

We now compare the performance of the Tree-based Pursuitithign, for different tree constructions, with Matching
Pursuit. The reference Matching Pursuit computes all péssionvolutions in the frequency domain by using a Fast iEour
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Fig. 7. Tree structure on top of a multiscale Gabor dictionary

Transform. Tree-Based Pursuit uses the same Matching iPurglementation at the initial step for the first level oktlree.
This technical choice makes it possible to compare the cexitplof both algorithms.

Numerous tree structured dictionaries have been genei@téifferent values of the distance threshéldusing the grouping
strategy given in Algorithm 1, with aveakdecision rule for clustering of the atoms. We selected tldifferent trees, with
4 values[0.36 0.75 0.99]. This corresponds respectively to minimal value§®8 0.5 0.1] of the scalar product between two
molecules to form a cluster. The value Htleterminegcy|, the number of nodes at the first level of the tree. In thestcpéar
case, the trees respectively preseffi, 51 and11 nodes at the first level under the root node. Moreover, urideassumption
that the trees are balanced, their expected depth would B&aBd 8 in the order of increasing values forFigure 8 presents
the molecules at the first level of the tree created with-a0.99, while Figure 9 illustrates the corresponding time-fratggye
planes.

Once the dictionary has been structured in a tree repragentshe search algorithm can still adapt different sgsinto
trade off computational complexity and approximation rdte particular, the sizer of the local search window plays an
important role in the performance of the Tree-based Pugdgdrithm. We compare results for search windows of size 5,
ando = 11. Figure 10 represents distribution of the shift values, potad by the search algorithm descending along the tree,
relative to the position determined in the upper-level rooles. Part (a) of Figure 10 presents the shift values, iecégntly
from the depth at which the Tree-Based Pursuit is making #@ipnsefinement. In most cases, the displacement is verjlsma
almost90% of them are catched by a search window of size- 5. Part (b-d) of Figure 10 presents the shift values at the
first level of the tree (i.e., right after the initial stageshdetermined the correct subtree and position). In a mgjofithe
cases, there is only a shift af It is due to the fact that the Fourier transforms of the malies at the first level are centered
by a multiplication with the Fourier transform of a unit inlpe located in the center of the representative moleculethAs
size of the signal is even, there is a shift of 1. Due to the esgige transforms, numerical imprecisions may occur, and a
local search has to be performed. The shift is corrected isyréfinement step. Parts (c) and (d) of Figure 10 show a gimila
behavior of the local search at the next levels of the tregelmeral, trees with a large value of the threshblthve correction
shift values that are more uniformly distributed over theolghsearch window. Finally, Figure 10 illustrates the fdwittthe
energy localization is quite efficient and that the molesude the first level of the tree represent well the featuresatoed
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Fig. 8. Molecules associated to the nodes located at thedirst of the tree created with a grouping threshéle- 0.99.

Fig. 9. Time-frequency distributions corresponding to thdetwales exhibited by figure 8.

in their sub-dictionaries.

We can now compare the approximation performance, and tmputional complexity of Tree-based Pursuit, as opposed
to Matching Pursuit. Part (a) of Figure 11 compares the megare error obtained with Matching and Tree-Based Pursuit
using the different trees defined above. The results have beeraged over 100 zero-mean random signals with Gaussian
distribution of unit variance. When using trees created wsittall values ford, the results are very close to the reference
Matching Pursuit. Recall that small valuesd®impose very strict constraints on the clustering of atont rolecules, which
may result in a large number of molecules at the first levelhef tree. This fact is particularly well illustrated in Figutl
(b), where the approximation rate of Tree-based Pursult wit 0.18 is close to Matching Pursuit. On the other hand, the
computation time obviously also depends &rsince computation time depends on the amount of nodes dirshdevel of
the tree|cy|, as discussed in Section V. Experimental results confirendbmplexity analysis in Figure 12. Indeed, if we
compute a linear approximation of the Tree-based Pursuipatation time curve as a function f2f|, in a mean square sense,
it intersects the Matching Pursuit computation time aroligti= 1618 (the dictionary containd600 atoms). This shows that
most of the complexity of Tree-based Pursuit lies in the §aarch at the first level of the tree; after this initialinati the
cost of the traversal of the tree can be considered as nelgligggarding the initial step.
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Fig. 11. Comparison of the error produced by the proposedittigo when using different bounds for the grouping (a). Theuging parametes influences
the approximation rate (b).

B. Extension to multi-dimensional signals

This section extends the analysis of the Tree-based Pulgdtithm to images. Reduction of the complexity in the case
of multidimensional signal is even more crucial than for kiDnals. We use a dictionary that is built on gaussian géngra
functions that are scaled, rotated and translated [30]. fireegenerating function is a Gaussian as given by eq. (3iaL, t
suits well the task of capturing the low-frequency parts afunal images. The second generating function, given in38).
is made of a Gaussian in one direction and its second desvatithe other direction. It has a good ability to captureesdg
in images and is spatially and frequencially well located.

a(z,y) = %exp—(:n2 —|—y2). (37)
g2(x,y) = \/%(41‘2 — 2)exp — (22 + y?). (38)

In our experiments, the atoms usiggas generating function have translation parameters tkatamy positive integer value
smaller than the size of the image. The rotation parametées/ay increments of;. The scaling parameters are uniformly
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Fig. 12. Comparison of the complexity between Matching Purand Tree-Based Pursuit, when using different valuesifduring the creation of the tree
structure.

distributed on a logarithmic scale from one up to an eighttthefsize of the image, with a resolution of one third of octave
The scaling along the second derivative part is always smdfor the pure Gaussian atoms, the translation paramedars
take the same values, the scaling is isotropic and varies g}pto i of the size of the image on a logarithmic scale with a
resolution of one third of octave. Due to isotropy, rotatisrobviously useless for this kind of atoms.

The tree structured dictionaries have been generated berg a top-down approach. The trees have been construdtegl us
a k-meansalgorithm with different values for the number of childreermode. Figure 13 represents a bottom part of the tree
structure, built on the 2-dimensional gaussian dictionaestyere the bottom components represent dictionary atoigard-14
show the molecules at the first level of the tree.

B E Bl BB -2

Fig. 13. Bottom part of the tree-structured dictionary,ltan gaussian 2-dimensional atoms.

v
7

Fig. 14. Centroids at the first level of the tree built on 2-digienal gaussian atoms. The first row presents the atoms irp#tisdomain, the second one
shows their frequency representation.

Figures 15 presents a comparison of the computational @xitplof Tree-based Pursuit and Matching Pursuit, for déffe
dictionary and image sizes (the Lena image has been use@se #xperiments). It can be seen that the number of children
per node in the clustering algorithm clearly influences tbenputational complexity. However, approximation qualitigo
depends on the number of children per node, as shown in Fidyrerhich presents the quality of the approximation for 500
atoms. Interestingly, the computational time also vaiirsarly with the number of children per node, similarly te thehavior
observed in the 1d signal case.

VIl. CONCLUSIONS

This paper has presented a generic algorithm to reduce th@uwtational complexity of pursuit algorithms. Hierardclic
clustering of dictionary atoms in molecules has been pregoss an efficient structuring of large set of functions. indecules
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Fig. 15. Complexity comparison between Tree-based PursuitMatching Pursuit, versus the size of the dictionary, dreddize of the image to represent.
The parameted/ is the number of children per node used for the creation oéudfit trees.

represent a sub-dictionary of highly correlated atoms aediaed to create a tree structure from an arbitrary higldyndant
dictionary. A tree-based pursuit algorithm is then propiosghich exploits the tree structure, resulting in a comppoital
complexity that is significantly lower than the classic pgreedy algorithm. We experimentally showed that the rédnct

in complexity does not imply a large penalty in approximatiate. It is shown also that Tree-Based Pursuit recoverseoa
structures of the signal, even for highly redundant diares, thanks to the hierarchical clustering into suffitieimcoherent
dictionaries of molecules. Finally, practical applicasoare often based on highly redundant dictionary, whospepties are
however poorly studied. On the other hand, the classiasherentdictionaries has been widely studied, but is rarely used in
practical applications. Our study tries to bridge that gapdemonstrating that, from a molecular point of view, it @spible

to apply the approximation results forcoherentdictionaries, to highly redundant dictionaries.
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