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Abstract

The active contour/snake model [9, 2, 10] is one of the most well-
known segmentation variational models in image processing. However
this model suffers from the existence of local minima which makes
the initial guess critical for getting satisfactory results. In this paper,
we propose to solve this problem by finding global minimizers of the
active contour model following the original work of Chan, Esedoḡlu and
Nikolova [4]. Our approach uses the weighted total variation norm to
link the standard active contour segmentation model with the denoising
model of Rudin-Osher-Fatemi [15] and the Chan-Vese active contour
segmentation models [5, 18] based on the Mumford-Shah functional
[12].

1 Introduction

The segmentation problem is fundamental in the computer vision and im-
age processing fields since it is a core component towards e.g. automated
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vision systems and medical applications. Its aim is to find a partition of
an image into a finite number of semantically important regions. Various
variational and partial differential equations (PDEs) methods have been pro-
posed to extract objects of interest in images such as the well-known active
contour/snake model defined by Kass et al. in [9]. This method has been
widely used in different image processing applications such as in medical
imaging to extract anatomical structures [11, 20, 8].

Following this first model of active contours, Caselles et al. in [2] and
Kichenassamy et al. in [10] have proposed the following minimization prob-
lem invariant w.r.t. the curve parametrization:

min
C

Egac(C) =

∮ L(C)

0
g ds, (1)

where ds is the Euclidean element of length, L(C) is the length of the curve
C and g is an edge detecting function that vanishes at object boundaries
such as:

g =
1

1 + β|∇fσ|2
, (2)

where f is the original image, fσ is a smoothed version of the original image
and β is an arbitrary positive constant.

The calculus of variations provides the Euler-Lagrange equation of the
functional Egac and the gradient descent method gives the flow that mini-
mizes Egac (see [2]):

∂tC = (κg − 〈∇g,N〉)N , (3)

where κ is the curvature and N the normal to the curve. Osher and Sethian
have introduced in [14] the implicit and intrinsic level set representation of
contours to efficiently solve the contour propogation problem and to deal
with topological changes. Equation (3) can be written in the level set form:

∂tφ =

(

κg + 〈∇g,
∇φ

|∇φ| 〉
)

|∇φ|, (4)

where φ is the level set function embedding the active contour C.

The main drawback of this variational segmentation model, as many
other variational models in image processing, is the existence of local minima
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in the energy Egac. Local minima are undesirable in optimization problems
since they provide unsatisfactory results. For example, the initial active
contour (embedded in a level set function) on Figure 1(a) can not fully
segment both objects, Figure 1(b), because it gets stuck in a local minimum.

(a) Initial Active
Contour.

(b) Final Active
Contour.

Figure 1: Standard active contour fails to segment both objects.

The approach defined by Chan, Esedoḡlu and Nikolova in [4] proposes
a solution to overcome this limitation. In their paper, image segmentation
and image denoising are closely related. Image denoising aims at remov-
ing noise in images while keeping main features such as edges and textures.
Two important variational models of image denoising are the Rudin-Osher-
Fatemi (ROF) model [15] and the Mumford-Shah model [12] (even if the
Mumford-Shah model is primarily a segmentation model). In [19, 13], Vese
and Osher have shown that the level set method links the ROF and the
Mumford-Shah models.

The authors in [4] proposed a method to find global minimizers of two
well-known denoising and segmentation models. The first model is a binary
image denoising model which removes the geometric noise in a given shape.
And the second example is the powerful model of active contours without
edges of Chan and Vese [5].

In this paper, we propose three algorithms based on the work of Chan,
Esedoḡlu and Nikolova [4] to find global minimizers of the standard active
contour/snake model. Our first approach is based on the ROF model where
the total variation (TV) norm of the unknown function is replaced by the
weighted TV-norm and the L2-norm for the fidelity term is changed into the
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L1-norm [6]. We will show that the global minimizers of this new energy are
the global minimizers of the active contour model subject to an intensity
homogeneity constraint. Then, we will reconcile the standard active con-
tours and the Chan-Vese active contours defined from the Mumford-Shah
functional in a global minimization framework.

2 Global Minimization of the Active Contour Model

based on the ROF Model

The Rudin-Osher-Fatemi model defined in [15] is one of the most famous
and powerful variational and PDE based image denoising models. This
denoising technique removes the noise while preserving the edges in images.
The minimization problem of the convex ROF energy is as follows:

min
u

EROF (u, λ) =

∫

Ω
|∇u| + λ

∫

Ω
(u − f)2 dx, (5)

where Ω ⊂ R
N is an open set, f is a given (possibly noisy) image and λ

is an arbitrary positive parameter related to the scale of observation of the
solution.

Based on the works [3, 4], we propose to minimize the following convex
energy defined for any given observed image f ∈ L1(Ω) and any positive
parameter λ:

E1(u, λ) =

∫

Ω
g|∇u| + λ

∫

Ω
|u − f |dx. (6)

The difference between the energy (6) and the ROF model (5) is the intro-
duction of the weighted TV-norm of u with the weight g and the L1-norm
as a fidelity measure. The L1-norm, replacing the L2-norm square of the
original ROF model, has a big impact in the minimization process since it
will allow us to find global minimizers of the snake model.

In [3], Chan and Esedoḡlu have studied the differences between the stan-
dard ROF model and the ROF model that uses the L1-norm as a fidelity
measure. They have shown that L1-norm better preserves the contrast than
L2-norm and the order in which the features disappear is completely deter-
mined in terms of the geometry (such as area and length) of the features
and not in terms of the contrast. Figure 2 presents the difference between
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the ROF model with L1-norm as a fidelity measure and our model, defined
by energy E1, that uses the weighted TV-norm. The parameter λ for both
models is the largest value such that the four small circles in the original
image (Figure 2(a)) are removed. The difference between both models is
clear, the result generated by the weighted TV-norm and the L1 fidelity
term better preserves the geometry of the original features such as the cor-
ners and the largest circle.

The weighted total variation norm of the function u with the weight
function g is defined as the following way:

Definition 1: Let Ω ⊂ R
N be an open set and u ∈ L1(Ω) and let g be a

positive valued continuous and bounded function in Ω. Define the weighted
total variation norm of u with the weight function g by

TVg(u) =

∫

Ω
g|∇u| := sup

φ∈Φg

{∫

Ω
u(x)divφ(x) dx

}

, (7)

where

Φg := {φ ∈ C1(Ω,R) | |φ(x)| ≤ g, for all x ∈ Ω}. (8)

The coarea formula for the TVg-norm reads as follows (Strang [17]):

∫

Ω
g|∇u| =

∫ ∞

−∞

(
∫

γµ

gds

)

dµ, (9)

=

∫ ∞

−∞
Perg(Eµ := {x : u(x) > µ}) dµ, (10)

where γµ is the boundary of the set Eµ on which u(x) > µ. Hence, the term
Perg(Eµ) =

∫

γµ
gds is the perimeter of the set Eµ weighted by the function g.

The relation between the minimization of energy (6) and the active con-
tour/ snake model [2, 10] is as follows: If 1ΩC

is the characteristic function
of a set ΩC whose boundary is denoted C, then

E1(u = 1ΩC
, λ) =

∫

Ω
g|∇1ΩC

| + λ

∫

Ω
|1ΩC

− f |dx, (11)

=

∫

C

gds + λ

∫

Ω
|1ΩC

− f |dx. (12)
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Hence, minimizing the energy (12) is equivalent to

minimize

∫

C

gds = Egac(C) (the active contour energy (1)) ,

while

approximating f (in the L1 sense) by

a binary function of a set/region ΩC .

We now state the Theorem 1:

Theorem 1: Suppose that g(x) ∈ [0, 1] and f(x) is the characteristic func-
tion of a bounded domain in Ωf ⊂ Ω, if uλ(x) is any minimizer of E1(., λ),
then for almost every µ ∈ [0, 1] we have that the characteristic function

1ΩC(µ)={x:uλ(x)>µ} (x), (13)

where C is the boundary of the set ΩC , is a global minimizer of E1(., λ).

Proof. The proof of Theorem 1 is based on [16, 17, 3, 4] substituting the
TV-norm by the weighted TV-norm. It basically consists of expressing the
energy (6) in terms of the level sets of u and f :

E1(u, λ) =

∫ 1

0
Perg({x : u(x) > µ})+

λ |{x : u(x) > µ} 4 {x : f(x) > µ}| dµ,

then minimizing energy (6) pointwise in µ by solving a geometry problem.

Following Theorem 1, we look for any minimizer of the energy E1. Since
the energy functional E1 is convex, it does not possess local minima that are
not global minima. Therefore the gradient descent method is guaranteed to
find a global minimizer of the segmentation model. The minimization flow
of the functional E1 is:

ut = div

(

g
∇u

|∇u|

)

+ λ
u − f

|u − f | , (14)

= g div

( ∇u

|∇u|

)

+ 〈∇g,
∇u

|∇u| 〉 + λ
u − f

|u − f | , (15)
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where the first term of the right-hand side is the curvature of the level sets
of u multiplies by the weight function g, the second term is a shock term
which enhances the edges and the third term of the right-hand side is a data
fidelity term w.r.t. the observed image f .

Then, we discretize the evolution equation (15) according to the numer-
ical scheme:

un+1 − un

δt
= g(

√

(D0
xfσ)2 + (D0

yfσ)2) ·





D−

x




D+

x un

√

(D+
x un)2 + (D+

y un)2 + ε1





+D−
y




D+

y un

√

(D+
x un)2 + (D+

y un)2 + ε1











+ max(D0
xg, 0)

D−
x un

√

(D0
xun)2 + (D0

yu
n)2 + ε2

+ min(D0
xg, 0)

D+
x un

√

(D0
xun)2 + (D0

yu
n)2 + ε2

+ max(D0
yg, 0)

D−
y un

√

(D0
xun)2 + (D0

yu
n)2 + ε2

+ min(D0
yg, 0)

D+
y un

√

(D0
xun)2 + (D0

yu
n)2 + ε2

+ λ
un − f

√

(un − f)2 + ε3

, (16)

where ε1, ε2, ε3 are small positive constants. In all our experiments, we have
chosen ε1 = 10−12, ε2 = 10−4 and ε3 = 10−4.

Let us come back to the first image, Figure 1. However, our new initial
guess is more challenging since it is the characteristic function of a small
disk outside both objects, see Figure 3. Both objects are now successfully
segmented.

The second example is the cameraman picture, Figure 4. This example
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illustrates the limitation of the Theorem 1. Indeed, Theorem 1 makes the
hypothesis that the given image f is a binary function. Unlike Figure 3
which is a noisy binary function, Figure 4 is very different from a charac-
teristic function. This explains the important differences between the level
contours µ = 0.4, 0.5 and 0.6 (which are not global minimizers in this case)
observed on Figure 5.

The global minimization of the active contour model is extended to the
non-binary image f with the Mumford-Shah model following [4].

3 Global Minimization of the Active Contour Model

based on the Mumford-Shah Model

3.1 The Piecewise-Constant Case

In this section we consider the global minimization of the active contour/snake
model using the well-known Mumford-Shah functional [12]. Chan and Vese
have proposed in [5] the model of active contours without edges based on the
detection of homogeneous regions. The name of their model underlines well
the difference from the standard active contour model based on the detection
of edges. We propose to reconcile these two complementary segmentation
models in a global minimization framework.

The variational segmentation model of the active contours without edges,
i.e. the two-phase piecewise constant Mumford-Shah segmentation model,
is as follows:

min
ΩC ,c1,c2

Eacwe(ΩC , c1, c2) = Per(ΩC)+

λ

∫

ΩC

(c1 − f(x))2 dx+λ

∫

Ω\ΩC

(c2 − f(x))2 dx,
(17)

where the region ΩC ⊂ Ω and c1, c2 ∈ R.
The variational model (17) determines the best approximation, in the L2

sense of the image f as a set of regions with only two different values, c1 and
c2. If ΩC is fixed, the values of c1 and c2 which minimize the energy Eacwe are
the mean values inside and outside ΩC . Finally the term Per(ΩC) imposes
a smoothness constraint on the geometry of the set ΩC which separates the
piecewise constant regions.
The minimization problem (17) is non-convex since minimization is carried
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over functions that take only the values c1 and c2, which is a non-convex
collection. Hence, the optimization problem can have local minima, which
implies solutions with wrong scales of details. Despite the non-convex nature
of (17), a natural way to determine a solution (ΩC , c1, c2) is a two-step
algorithm where c1 and c2 are firstly computed, then region ΩC is updated to
decrease the energy Eacwe. Chan and Vese have proposed in [5] a solution to
determine an evolution equation for the region ΩC based on a level set based
approach. They represent the regions ΩC and Ω \ ΩC with the Heaviside
function of a level set function (which models a characteristic function).
Hence energy Eacwe can be written according to a level set function φ:

ECV (φ, c1, c2) =

∫

Ω
|∇Hε(φ)|+

λ

∫

Ω
Hε(φ) (c1 − f(x))2 +Hε(−φ) (c2 − f(x))2 dx,

(18)

where Hε is a regularization of the Heaviside function.
The flow minimizing energy (18) is the following one:

φt = H ′
ε(φ)







div

( ∇φ

|∇φ|

)

− λ
(

(c1 − f(x))2 − (c2 − f(x))2
)

︸ ︷︷ ︸

r1(x)







. (19)

Chan and Vese [5] have chosen a non-compactly supported smooth strictly
monotone approximation of the Heaviside function. As a result, the steady
state solution of the gradient flow (19) is the same as:

φt = div

( ∇φ

|∇φ|

)

− λr1(x), (20)

and this equation is the gradient descent flow of the energy:

∫

Ω
|∇φ| + λ

∫

Ω
r1(x)φdx. (21)

As explained in [4], this energy is homogeneous of degree 1 in φ. This means
that this evolution equation does not have a stationary solution if we do not
restrict the minimization to φ such as 0 ≤ φ(x) ≤ 1.

Based on the work [4], we propose to minimize the following constrained
minimization problem for any given observed image f ∈ L1(Ω) and any
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positive parameter λ:

min
0≤u≤1

E2(u, λ) =

∫

Ω
g|∇u| + λ

∫

Ω
r1(x)udx. (22)

The relation between the standard active contour model [2, 10] and the
model of active contours without edges [5] is as follows: If 1ΩC

is the char-
acteristic function of a set ΩC whose boundary is denoted C, then

E2(u = 1ΩC
, λ) =

∫

Ω
g|∇1ΩC

| + λ

∫

Ω
r1(x)1ΩC

dx, (23)

=

∫

C

gds +

λ

∫

Ω

(

(c1 − f(x))2 − (c2 − f(x))2
)

1ΩC
dx. (24)

Hence, minimizing the energy (24) is equivalent to

minimize

∫

C

gds = Egac(C) (the active contour energy (1)) ,

while

approximating f (in the L2 sense) by

two regions ΩC and Ω \ ΩC with two values c1 and c2.

We state the Theorem 2:

Theorem 2: Suppose that f(x), g(x) ∈ [0, 1], for any given c1, c2 ∈ R, if
uλ(x) is any minimizer of E2(., λ), then for almost every µ ∈ [0, 1] we have
that the characteristic function

1ΩC(µ)={x:uλ(x)>µ} (x), (25)

where C is the boundary of the set ΩC , is a global minimizer of E2(., λ).

Proof. The proof of Theorem 2 is in [4] with the weighted TV-norm re-
placing the TV-norm.
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Finally, the constrained problem (22) becomes an unconstrained mini-
mization problem according to the following theorem given in [4]:

Theorem 3: Let r(x) ∈ L∞(Ω). Then the following convex constrained
minimization problem

min
0≤u≤1

∫

Ω
g|∇u| + λ

∫

Ω
r(x)udx (26)

has the same set of minimizers as the following convex and unconstrained
minimization problem:

min
u

∫

Ω
g|∇u| + λ

∫

Ω
αν(u) + λr(x)udx (27)

where ν(ξ) := max{0, 2|ξ − 1
2 | − 1} provided that α > λ

2 ‖ r(x) ‖L∞(Ω).

Proof. The proof is in [4] with the weighted TV-norm replacing the TV-
norm.

We look for any minimizer of the convex energy E2. The Euler-Lagrange
technique and the gradient descent based algorithm are used to give us the
minimization flow:

ut = div

(

g
∇u

|∇u|

)

− λr(x) − αν ′(u), (28)

= g div

( ∇u

|∇u|

)

+ 〈∇g,
∇u

|∇u| 〉 − λr(x) − αν ′(u), (29)

where r(x) = (c1 − f(x))2 − (c2 − f(x))2.

Then, we discretize the evolution equation (29) according to the numer-
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ical scheme:

un+1 − un

δt
= g(

√

(D0
xfσ)2 + (D0

yfσ)2) ·





D−

x




D+

x un

√

(D+
x un)2 + (D+

y un)2 + ε1





+D−
y




D+

y un

√

(D+
x un)2 + (D+

y un)2 + ε1











+ max(D0
xg, 0)

D−
x un

√

(D0
xun)2 + (D0

yu
n)2 + ε2

+ min(D0
xg, 0)

D+
x un

√

(D0
xun)2 + (D0

yu
n)2 + ε2

+ max(D0
yg, 0)

D−
y un

√

(D0
xun)2 + (D0

yu
n)2 + ε2

+ min(D0
yg, 0)

D+
y un

√

(D0
xun)2 + (D0

yu
n)2 + ε2

− λr(x) − αν ′
ε3

(u), (30)

where ν ′
ε3

is a regularized version of ν ′ with νε3(ξ) such that:

νε3(ξ) =







−ξ if ξ < −ε3/
√

2,

(1 +
√

2)ξ −
√

tan2(3π/8)ξ2 − (ξ − ε3)2 if −ε3/
√

2 ≤ ξ < ε3,
0 if ε3 ≤ ξ < 1 − ε3,

(1 +
√

2)ξ −
√

tan2(3π/8)ξ2 − (ξ − 1 + ε3)2 if −ε3/
√

2 ≤ ξ < ε3,
ξ − 1 if 1 − ε3 ≤ ξ.

(31)

In all our experiments, we have chosen ε1 = 10−12, ε2 = 10−4 and ε3 = 0.01.

The minimization flow (29) is applied to the cameraman picture, Figure
6. The two constants c1 and c2 are updated every 50 iterations. The final
solution (Figure 6(d)) is close to a binary function which gives us, according
to Theorem 2, similar global minimizers as we can observe on Figure 7.
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3.2 The Piecewise-Smooth Case

We extend the result of Section 3.1 to the two-phase piecewise smooth
Mumford-Shah segmentation model. In this situation, the variational prob-
lem to solve is given in [18] by:

min
ΩC ,s1,s2

EMS2phase
(ΩC , s1, s2) = Per(ΩC)+

λ

∫

ΩC

(s1(x) − f(x))2 + µ|∇s1(x)|2dx

λ

∫

Ω\ΩC

(s2(x) − f(x))2 + µ|∇s2(x)|2dx,

(32)

where the region ΩC ⊂ Ω and s1 and s2 are two C1 functions on ΩC and on
Ω \ ΩC respectively.
The variational problem (32) determines the best approximation, in the L2

sense, of the image f as a set of smooth regions represented by the function
s(x) such that

s(x) =

{
s1(x) if x ∈ ΩC ,
s2(x) if x ∈ Ω \ ΩC ,

(33)

and C = ∂ΩC is the boundary between the smooth regions.
As (17), the minimization problem (32) is also non-convex, which implies the
existence of local minima and possible unsatisfactory segmentation results.
As in the previous section, both regions ΩC and Ω \ ΩC are represented by
the Heaviside function of a level set function. This leads to the following
energy:

ECV 2
(ΩC , s1, s2) =

∫

Ω
|∇Hε(φ)|+

λ

∫

Ω
Hε(φ)((s1 − f)2 + µ|∇s1|2)dx

λ

∫

Ω
Hε(−φ)((s2 − f)2 + µ|∇s2|2)dx.

(34)

Minimizing ECV 2
with respect to the functions s1 and s2 using the calculus

of variations gives us:

{
s1 − f = µ∆s1 in ΩC ,
s2 − f = µ∆s2 in Ω \ ΩC ,

(35)
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with the Neumann boundary conditions:
{

∂s1

∂N = 0 on ∂ΩC ∪ ∂Ω,
∂s2

∂N = 0 on ∂(Ω \ ΩC) ∪ ∂Ω.
(36)

And the flow minimizing the energy (34) is as follows:

φt = H ′
ε(φ){div

( ∇φ

|∇φ|

)

−

λ
(

(s1 − f)2 − (s2 − f)2 + µ|∇s1|2 − µ|∇s2|2
)

︸ ︷︷ ︸

r2(x)

} (37)

If a non-compactly supported smooth approximation of the Heavide function
is chosen, the steady state solution of the gradient flow (37) is the same as:

φt = div

( ∇φ

|∇φ|

)

− λr2(x) (38)

and this equation is the gradient descent flow of the energy:
∫

Ω
|∇φ| + λ

∫

Ω
r2(x)φdx. (39)

As a result, the following constrained minimization problem is proposed
for any given image f ∈ L1(Ω) and any positive parameter λ :

min
0≤u≤1

E3(u, λ) =

∫

Ω
g|∇u| + λ

∫

Ω
r2(x)udx. (40)

We point out that in formulation (34) of the piecewise smooth functional the
two functions s1 and s2 need to be defined only on their respective domains
(namely ΩC and Ω\ΩC) because of the Heaviside function. However, in the
relaxed formulation given in (40), these functions need to be defined in the
entire domain Ω (by a suitable extention).

The relation between the standard active contour model [2, 10] and the
model of active contours based on the 2-phase Mumford-Shah functional [18]
is as follows:

E3(u = 1ΩC
, λ) =

∫

Ω
g|∇1ΩC

| + λ

∫

Ω
r2(x)1ΩC

dx, (41)

=

∫

C

gds +

λ

∫

Ω

(

(s1 − f)2 − (s2 − f)2 + µ|∇s1|2 − µ|∇s2|2
)

1ΩC
dx. (42)
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Hence, minimizing the energy (24) is equivalent to

minimize

∫

C

gds = Egac(C) (The active contour energy (1)) ,

while

approximating f (in the L2 sense) by

two piecewise smooth regions ΩC and Ω \ ΩC .

We state Theorem 4:

Theorem 4: Suppose that f(x), g(x) ∈ [0, 1], for any given s1 ∈ C1(Ω),
s2 ∈ C1(Ω), if uλ(x) is any minimizer of E3(., λ), then for almost every
µ ∈ [0, 1] we have that the characteristic function

1ΩC(µ)={x:uλ(x)>µ} (x), (43)

where C is the boundary of the set ΩC , is a global minimizer of E3(., λ).

Proof. The proof of Theorem 4 is similar to the proof of Theorem 2.

And finally, the constrained problem (40) becomes an unconstrained
minimization problem according to the Theorem 3, Section 3.1.

A minimizer of the convex energy E3 can be found using the following
minimization flow:

ut = div

(

g
∇u

|∇u|

)

− λr2(x) − αν ′(u), (44)

with α > λ
2 ‖ r2(x) ‖L∞(Ω).

The previous minimization flow is applied to the cameraman picture, Figure
8. The two functions s1 and s2 are initially chosen to f and updated every
10 iterations according to Equation (35). The final solution (Figure 8(e)) is
close to a binary function which gives us, according to Theorem 4, similar
global minimizers.
We have also segmented (Figure 9(f)) and denoised (Figure 9(b)) a piece-
wise smooth image (Figure 9(a)). And finally we have applied our segmen-
tation/denoising model to the galaxy picture on Figure 10.
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4 Conclusion

In this paper, we have proposed three algorithms to find global minimiz-
ers of the active contour/snake variational model following the approach of
Chan, Esedoḡlu and Nikolova [4, 3]. The first algorithm, defined from the
ROF model, determines global minimizers of the snake model for any ob-
served image close to a binary function. The two other algorithms, based on
the Chan-Vese version of the Mumford-Shah model, find global minimizers
(when parameters c1, c2 or functions s1, s2 are fixed) for any type of images,
binary or non-binary.
It will not be surprising to see new applications of the approach introduced
in [4, 3] to other image processing models to get global minima. The key
idea is to express the energy functionals in terms of level sets as observed
by Strang [16, 17].
In this work, we have determined not one but several global minimizers of
the active contour model, which looks to be a drawback. However, all global
solutions are reasonable solutions and most of them are close to each other.
From a numerical point of view, the three algorithms are slow even if the
standard re-initialization process of the level set function is not used in
this approach. The non-linear nature of our PDEs requires to use a very
small temporal step to guarantee a consistent evolution process. However,
fast numerical schemes can be used to speed up the algorithms such as the
second-order cone programming algorithm [1].
Let us finally mention the paper [7] of Cohen and Kimmel which also ad-
dresses the problem of determining a global minimum for the active contour
model’s energy. However, their approach is different from ours since it is
focused on finding a minimal path between two given end points of an open
curve. They have extended their method to closed curves but a topology-
based saddle search routine is needed.
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(a) Original image. (b) Initial ∂{x :
u(x) > 0.5}.

(c) Final u (TV-
L1).

(d) Final ∂{x :
u(x) > 0.5} (TV-
L1).

(e) Final u

(weighted TV-L1).
(f) Final
∂{x : u(x) > 0.5}
(weighted TV-L1).

Figure 2: Comparison between the ROF model with L1-norm as a fidelity
measure and our model defined by the weighted TV-norm and the L1-norm.
The difference between both models is clear. The result generated by our
model better preserves the geometry of the original features such as the
corners and the largest circle.
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(a) Original image.

(b) Initial u. (c) Initial ∂ΩC(µ =
0.5).

(d) Final u. (e) Final ∂ΩC(µ =
0.5).

Figure 3: Our segmentation/denoising model has successfully extracted both
objects (Figure 3(e)) in the noisy image (Figure 3(a)) whereas the initial
guess (Figure 3(c)) was a small circle outside both objects. This improves
the standard active contour result obtained on Figure 1 where a good initial
guess is needed to get the same result.
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(a) Original image.

(b) Initial u. (c) Initial ∂ΩC(µ =
0.5).

(d) Final u. (e) Final ∂ΩC(µ =
0.5).

Figure 4: Figure 4(e) presents the result obtained by the minimization the
energy E1. This example illustrates the limitation of the Theorem 1 which
makes the hypothesis that the observed image f is a binary function. Since
this condition is not respected here, we get different level contours (which
are not global minimizers) as we can observe on Figure 5.
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(a) Final ∂ΩC(µ =
0.5).

(b) Final ∂ΩC(µ =
0.4).

(c) Final ∂ΩC(µ =
0.6).

Figure 5: Since the cameraman picture is not a binary function, different
level contours (which are not global minimizers) are obtained for µ = 0.4, 0.5
and 0.6.
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(a) Original image.

(b) Initial u. (c) Initial ∂ΩC(µ =
0.5).

(d) Final u. (e) Final ∂ΩC(µ =
0.5).

Figure 6: Figure 6(e) presents the contour obtained by the global mini-
mization of the active contour energy subject to an intensity homogeneity
constraint based on the Mumford-Shah energy (the 2-phase piecewise con-
stant case defined in [5]). Our global minimization approach allows us to
reconcile the standard active contour model with the model of Active Con-
tours Without Edges.
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(a) Final ∂ΩC(µ =
0.5).

(b) Final ∂ΩC(µ =
0.4).

(c) Final ∂ΩC(µ =
0.6).

Figure 7: Unlike Figure 5 where level contours are different from each other
since the given image is not binary, the level lines of Figure 6(d) are similar
and correspond to global minimizers.
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(a) Original image. (b) Piecewise-smooth
approximation.

(c) Initial u. (d) Initial ∂ΩC(µ =
0.5).

(e) Final u. (f) Final ∂ΩC(µ =
0.5).

Figure 8: Figure 8(f) presents the contour obtained by the global minimiza-
tion of the active contour energy subject to an intensity homogeneity con-
straint based on the Mumford-Shah energy (the 2-phase piecewise smooth
case defined in [18]). Our global minimization approach allows us to recon-
cile the standard active contour model with the model of Active Contours
based on the Mumford-Shah approach. Finally, Figure 8(b) shows the best
piecewise smooth approximation of the original image (Figure 8(a))
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(a) Original image. (b) Piecewise-
smooth approxima-
tion.

(c) Initial u. (d) Initial ∂ΩC(µ =
0.5).

(e) Final u. (f) Final ∂ΩC(µ =
0.5).

Figure 9: Figure 9(f) presents the contour obtained by the global mini-
mization of the active contour energy subject to an intensity homogeneity
constraint. Figure 9(b) shows the best piecewise smooth approximation of
the original image (Figure 9(a)).
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(a) Original image. (b) Piecewise-smooth
approximation.

(c) Initial u. (d) Initial ∂ΩC(µ =
0.5).

(e) Final u. (f) Final ∂ΩC(µ = 0.5).

Figure 10: Figure 10(f) presents the contour obtained by the global mini-
mization of the active contour energy subject to an intensity homogeneity
constraint. Figure 10(b) shows the best piecewise smooth approximation of
the original image (Figure 10(a)).
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