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Abstract

This paper introduces an algorithm for sparse approximation in redundant dictionaries, called the M-Term Pursuit
(MTP), based on the matching pursuit approach (MP). This algorithm decomposes the signal into a linear combination
of selected atoms, chosen to represent the signal components. The MTP algorithm provides adaptive representation
for signals in any dictionary. The basic idea behind the MTP, is to partition the dictionary into � disjoint sub-
dictionaries, each carrying some meaningful information. Then it iteratively finds a � -term approximation. During
each iteration, � atoms, where � ��� , are selected based on some thresholding parameter � . A comparison
against the matching pursuit algorithm is provided both from the theoretical and the practical point of views.
The approximation performances of the MTP algorithm have shown to yield comparable results with those of the
matching pursuit. Furthermore, it has a reduced computational complexity compared to MP.

Two applications have been developed using the MTP: (i) an image compression scheme and (ii) a video
compression technique. Both schemes have demonstrated the abilities of the MTP algorithm to be used for compact
representation and coding in either image or video compression fields. The MTP-based image coder yields compa-
rable results with those of JPEG-2000 in terms of rate-distortion and scalability. Whereas for the MTP-based video
coder, it is shown to provide interesting performances when compared to the state-of-the-art coding schemes, such
as H.264, MPEG-4 or the scalable MP3D, in terms of rate-distortion.

Index Terms

Sparse approximation, M-Term Pursuits, Matching pursuit, Dictionary partition, progressive image compression,
scalable video compression.

I. INTRODUCTION

Greedy approaches have gained impetus in sparse signal approximation, both in theory and practice, in many fields
such as mathematics, statistics, signal processing, and pattern recognition, etc. One can easily enumerate dozens
of applications based on such approaches. For instance, audio signal analysis using atomic decomposition, image
and video representation and compression using rich wavelet-like and ridge-like dictionaries, feature extraction in
images, classification, pattern recognition and machine learning, and so forth. Of course, without mentioning their
early use in statistical analysis, such as the projection pursuit algorithm.

In this paper, we analyze a greedy approach, called the M-term pursuit (MTP) algorithm, which can be regarded
as belonging to the framework of the matching pursuit algorithm [1], [2].

II. APPROXIMATION IN REDUNDANT DICTIONARIES

The problem of approximating functions using linear combinations of a small number waveforms or atoms, is
known as the sparse approximation problem. To obtain a compact expansion of a function which contains complex
structures, we must adapt our expansion to the various components of the function. Adaptive linear expansions can
be used to extract information from signals. One can obtain an adaptive decomposition of a signal by expanding
the signal into a sum of waveforms whose properties match those of the different signal structures, which can
be time-frequency localization, scale-space or phase-space features. Such adaptive representations are important in
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signal processing applications such as image/video compression and analysis. The atoms which have been used for
our expansions are drawn from a large and redundant collection, called a dictionary.

It was proved that in a finite dimensional space, computing the optimal solution for the sparse approximation
problem of any signal in any dictionary is an NP-complete problem, which motivates the use of sub-optimal greedy
algorithms.

The matching pursuit (MP) algorithm is a greedy algorithm which computes function expansions by iteratively
selecting dictionary atoms which best correlate to signal structures. An orthogonalized version of matching pursuit
(OMP) was introduced later in order to improve the approximation performances on the expense of some added
computational complexity.

Recently however, it was pointed out recently that the convex relaxation approach, such as the Basis Pursuit
(BB) algorithm, can be used to solve the sparse representation problem under certain conditions [3], [4].

Both Matching Pursuit or its orthogonalized version were proved to be efficient algorithms to tackle the sparse
approximation (or recovery) problem in any type of dictionaries. Their drawback lies in their computational
complexity, even by including all the necessary optimizations, it is still computational demanding. Mainly because
at each iteration, it selects one atom, which correlates the residual signal structure.

A greedy algorithm, called the M-Term Pursuit algorithm, is presented in this paper, where at each iteration a
number of � atoms are selected to form a sub-space highly correlated with the signal components. Then, the atom
selection process is followed by an orthogonal projection of the signal onto the span of these atoms to give the
best approximation in this span.

This paper is organized as follows: Section III provides some basic concepts in matrix algebra and extensively
used throughout the remaining of the paper. The MTP algorithm is entirely described and is presented in Section IV.
The theoretical approximation performances of the MTP are compared against those of MP in Section V. Section VI
extends the algorithm into Hilbert spaces, and illustrates the gain in computational complexity when compared to
MP. An image representation and compression scheme based on MTP is fully described in Section VIII along with
a comparison against the JPEG-2000 standard in terms of rate-distortion (R-D) behavior. Another application for
progressive and scalable video representation and compression using the MTP algorithm is discussed in Section IX.
Its R-D performances are very comparable with those of the state-of-the-art video coders, such as H.264 and
MPEG-4. Finally, some conclusions and future directions are discussed in Section X to wrap the paper.

III. MATHEMATICAL PRELIMINARIES

A. The Dictionary

We work in the finite dimensional complex space 	�
 , though the extension to the Hilbert space � is described
in section VI. The Hermitian inner product for 	�
 is defined as 
�������� , and the norm as ������� . The dictionary � is
a collection of unit norm elementary signals, which are called atoms, and denoted as ��� , where � belongs to an
index set � , of cardinality  "!$# , as �&%(')� �+* �-,.�0/ (1)

A usual notation is to represent the dictionary by a matrix 1 of size #32+ , where the columns of 1 correspond
to the atoms and whose order is irrelevant in the matrix 1 . Strictly speaking, 1 is the synthesis matrix of the
dictionary. Its analysis matrix is merely the conjugate transpose 154 .

The � -term approximation problem, which is also referred as sparsity-constrained approximation, is to provide
the best approximation of a signal 6 using a linear combination of � atoms or fewer from the dictionary. Formally,798;:<>=@?BA ��6DCE1GFH� � Subject to �IFH�IJLKM�N� (2)

Provided that the input signal has no representation using fewer than � atoms,
A sub-dictionary �PO is defined as a set of atoms drawn from � . The atoms are indexed by the set Q , of cardinality LO . These atoms define a synthesis matrix 1RO , of size #S2T UO , and an analysis matrix 1T4O , which are both sub-matrices

of 1 and 1 4 respectively.
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B. The Coherence

An important parameter of the dictionary is the coherence, which is defined as the maximum inner product
between any two different atoms: V 
XWZY% 79[)\]H^_ �a` 
b�c�d��� ] � ` � (3)

When the coherence is large, the atoms are very correlated to each other, and if
V %�e it means that � contains at

least two identical atoms. On the other hand, when the coherence is small we say that the dictionary is incoherent
and in the extreme case

V
vanishes in an orthonormal basis.

C. The Cumulative Coherence

A more accurate estimate of the dictionary elasticity is the cumulative coherence [4], [5]. It measures how much
an atom can be correlated to a set of atoms. It is defined as:Vgf�hji+k 
IW�Y% 7l[)\m nom _qp 79[)\� ^= n+r] = n ` 
b�c�s��� ] � ` � (4)

When
Vtf

grows slowly, the dictionary is said to be incoherent.
Property 1: The cumulative coherence has the following properties:u It generalizes the coherence:

V f h e k % V and
V f hji+k K ivV .u In an orthonormal dictionary,

Vwf�hji+k %yx for all
i

.

D. The Dictionary Partition

A dictionary partition z h � k is a collection of { disjoint sub-dictionaries, �|O~}�� , where {�K�# and in such a
way that their union preserves the dictionary � integrity. Formally, it is defined as:

Definition 1: z h � k %�'��PO *�� %�eg�����I{R/ such that:u �&%��|�O _ f ��O ,u ��O����T��%�� for �0�%��
In matrix notation, the concatenation of the sub-matrices 1�O , in a row-wise manner, must produce the original

matrix 1 , regardless of the order of the columns.
Of course, one should expect that a sub-dictionary �UO may carry some meaningful information. Two special

cases are predominant for dictionary analysis. One case is when �UO is an orthonormal basis, in such a case the
dictionary � is simply the union of { orthonormal bases. For example, a dictionary consisting of the union of a
wavelet and a Fourier basis. This class of structured dictionaries has received lot of research efforts and let to very
interesting and established results [3], [6], [7].

The other case, which is of significant importance also, is when �UO has a given coherence 1 between its own
atoms, but very small coherence between atoms where each is in a distinct sub-dictionary. We call this type of
dictionary partition an incoherent partition. Though, there is very limited work in this direction we think that it is
as important as the previous case. In an incoherent-partitioned dictionary, if

i
selected atoms, where

i K-{ , and
each one pertains to a different sub-dictionary, then they are linearly independent and their cumulative coherenceVgf

is small.

E. Vector and Matrix Norms

It is helpful to remind some definitions about vector and matrix norms. Let � and � be a vector and a matrix
respectively, � and � integers in the remaining of this section.

The ��� norm of a matrix is defined as: �X�~��� 
XWZY% h ` � f ` �T�������@� ` ��� ` � k��� � (5)

Two common special cases are

1We use the term coherence interchangeably to refer to either   or  ¢¡ depending on the context



4u when � tends to £ , called the max norm, �¥¤ norm of a vector is defined as:�X�w� ¤ 
IW�Y% 79[)\ ' ` � f ` � ����� � ` � � ` /�� (6)u when �v%yx , called the quasi norm, ��J norm is defined as the number of non-zero elements in � .
The norm of a matrix is given by the �I�l���@¦ § as follows:�I�9����¦ § 
XWZY% 7l[)\¨ ^_ J �I���w�I§�X�w� � % 79[)\© ¨ © � _ f �I���w�I§)� (7)

An interesting equality is �I�l���@¦ §G%ª�I� 4 �I§Z«¬¦ ��« (8)

where e®­I� � e®­I��¯�%�e , if �D%�e then �¢¯ is £ and so true for
h �°�X�@¯ k .

Another quantity measure related to the norm is the restricted minimum
h¥± ��£ k of a matrix, which is defined as

the following: ² 
XWZY% 798;:¨ ^_ J �I���w��¤�X�w� � � (9)

If � spans 	P
 then

²
is strictly positive and less than one. This quantity, introduced in [1] to prove the convergence

of MP in finite dimensional spaces, gives a worst case performance for the atoms to capture the signal energy.

F. Singular Values of The Gram Matrix

Suppose that 1 n , with ` Q ` % i
, is a given sub-dictionary of

i
linearly independent atoms. Then, the Gram

matrix is simply ³�%N1R4n 1 n , i.e. ³ hb´ �>� k %&
b� ] ���c�B� .
Now, each singular value µ � h 1 n k satisfies the following bounds [4]e¶C Vgf·hji C-e k KMµ � h 1 n k K�e � Vgf®hji C-e k (10)

Proof: Using the Geršgorin Disc Theorem [8], it states that each eigenvalue of ³ , i.e. µ � h 1 n k , lies in one of
the

i
discs ¸ ] 
XWZY%M'®¹ * ` ³ hb´ � ´¢k Cº¹ ` K r� ^_ ] ` ³ hb´ �>� k ` / (11)

Since the atoms are normalized, it follows that ³ hb´ � ´qk %�e and the sum is bounded by
VSf®hji C-e k .

The inverse of the Gram matrix is given by ³¼» f %½1¶¾n h 1¶¾n k 4 . Where 1R¾n is the Moore-Penrose generalized
inverse. The singular values µ � h>h 1 ¾n k 4 k of the generalized inverse are also bounded as follows:ee � Vgf®hji C-e k K-µ � h>h 1R¾n k 4 k (12)

Remark 1: Another lower bound [5] for µ � of ³�» f is
h e¶C ±)Vtf·hji C�e k>k ­ h e�C Vgf®hji C�e k>k . However, it is valid

only when
Vgf®hji CMe kG¿ e®­ ± in contrast to the one in Eq. 12, which holds for any

V~f
.

IV. THE M-TERM PURSUIT ALGORITHM IN FINITE SPACES

Let z h � k be an incoherent partition of the dictionary � having a synthesis matrix 1 , into { sub-dictionaries,
each ��O is associated with its synthesis matrix 1RO . Suppose that { ¿ # .

Then the decomposition of any signal 6 is performed iteratively. At each iteration, the algorithm performs two
steps: (i) the selection step, and (ii) the projection step. During the selection step, all the inner products between
each atom in � and 6 are calculated. The quantities �À1�4�6Á� ¤ and �À1¶4O 6Á� ¤ designate the largest inner product
magnitude in � and �PO respectively. Then, only the atom �BOg,Â��O , if any, which satisfies the thresholding condition:�À1 4O 6Á��¤�À1 4 6Á��¤$ÃÅÄ (13)

is selected for a fixed threshold Ä . Now, the collection of the selected atoms 1 n has a cardinality
i K-{ .

The second step consists in an orthogonal projection Æ¼Ç of 6 onto the span of the atoms indexed in Q . Then
signal is updated by extracting the quantity Æ Ç 6 from 6 .
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Before citing the theorem, let state the following lemma about the existence of 1 n for a given Ä .
Lemma 1: (Cardinality of 1 n ) Suppose that Ä is used to select 1 n in a single iteration s.t,1 n %�')� ] * � ] % [@ÈIÉÊ =@ËcÌ h �À1 4O 6Á��¤ k � �À1¶4O 6Á��¤�À1 4 6Á��¤ ÃÅÄ / (14)

and let
i % ` 1 n ` . Then

i
is upper-bounded as follows:i½¿ eÄ �ÂÍ

Vgf®hji C-e k² � � e² � C-e�Î � e@� (15)

This upper bound on the cardinality should be ` 1 n ` K-{ , otherwise it is meaningless!
Proof: The best approximation of 6 on 1 n is obtained through the orthogonal projection on the span of 1 n .

This projection ( Æ�Çg6 ) is defined as: Æ Ç 6Â%N1 n 1¶¾n 6q� (16)

where 1R¾n % h 1 4n 1 n k » f 1 4n � (17)

Denote �v%N1R4n 6 and the Gram matrix ³�%�1R4n 1 n , one can easily verify that�IÆ Ç 6Á� �� %�� 4 ³ » f �s� (18)

Where the inverse of the Gram matrix ³¼» f is also defined as 1T¾n h 1¶¾n k 4 . This matrix is Hermitian, hence we can
bound the approximation by [8], �IÆ Ç 6Á� �� Ã µ �p OÏ� h>h 1 ¾n k 4 k �X�~� �� � (19)

By using Eq 12, we get �IÆ Ç 6Á� �� Ã ee � Vgf®hji C-e k �X�w� �� � (20)

We know that the all admitted atoms in 1 n , their corresponding inner product magnitudes satisfy ` �oO ` ÃÅÄ �X�~��¤ ,
we have �X�w� �� Ã h e � hji C-e k Ä � k �X�~� �¤ ,

Introducing this expression into Eq 20 gives�IÆ Ç 6Á� �� Ã
h e � hji C-e k Ä � ke � V f hji C-e k �X�w� �¤ � (21)

To proceed, we combine bounds in Eq 9 and Eq 21 to get�IÆ Ç 6Á� �� Ã ² �
h e � hji C-e k Ä � ke � Vgf·hji C-e k ��6Á� �� � (22)

Since Æ�Çg6 is orthogonal projection, it must always satisfy �IÆ|Çg6Á� �� KÐ��6Á� �� . By using Eq 22 and rearranging
the terms, we get the upper bound 15 of

i
for a given Ä .

Theorem 1: Let z h � k be a partition of � and 6 be any signal. Fix a threshold Ä s.t,

Ä K e² Vgf®hji C-e khji C-e k �-Ñ (23)

Suppose that 1 n exists with
i % ` 1 n ` , and that the MTP returns an approximation Ò p in a single iteration.

Then the approximation error is bounded by:��6DCºÒ p � �� K Í eRC ² � h e � hji C-e k Ä � ke � Vgf®hji C-e k Î-��6Á� �� � (24)

Proof: The m-term approximation Ò p of 6 produces an error 6DCÓÒ p satisfying the triangular equality, i.e:��6DCºÒ p � �� %ª��6Á� �� Cy�IÆ Ç 6Á� �� � (25)

Because of the orthogonal projector. Now, by substituting the lower bound on �IÆ9Çt6Á� in Eq 22, we get the
approximation error bound in Eq 24.
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The previous established bound holds only for a single iteration. When the same algorithm is run for any Ô
iterations to have an approximation with ( Õ Ã { atoms. In this case at each iteration,

i � atoms are selected
according to a threshold Ä O , which can be either identical for all iterations or adaptive. Then the approximation
error is bounded as follows,

Corollary 1: If in Ô iterations, the MTP algorithm returns an approximation with Ò�Ö with Õ atoms s.t, ÕM%×NØ� _ f i � . Then the approximation error is bounded as:

��6DCºÒHÖ�� �� K���6Á� �� ØÙ� _ f Í eRC
² � h e � hji �RC-e k Ä �O ke � Vgf®hji �RC-e k Î � (26)

By induction and using the results of theorem 1, one can prove the bound in corollary 1.
The formal description of the M-term Pursuit algorithm is given below.

Algorithm 1 The MTP Algorithm
INPUT:

The signal 6 and the number of iterations Ô
OUTPUT:

The approximation � Ø and residual Ú Ø 6
PROCEDURE

1. Initialize the residual signal Ú J 6y%Û6 and the approximation �5Jv%Ûx , the set of atoms 1 n %Ü� , and the
iteration number �|%(e .
2. For � %&e to {

Find ��Os% [@ÈXÉ Ê =@Ë Ì h �À1 4O Ú � » f 6Á��¤ k
IF

m ÝÏÞ�ß¥à � Y ¦ Ê Ì¬á m© Ë�â Þ ß¥à � Y ©äã Ã�Ä
Then 1 nvå 1 n¼æ ')��O�/

3. Determine the orthogonal projection Æ|Ç onto the span of 1 n
4. Compute the approximation and the residual:�G� å �S� » f � Æ Ç Ú � » f 6Ú � 6 å Ú � » f 63CºÆ Ç Ú � » f 6
5. Increment � , empty 1 n ( 1 n %�� ), and go to step 2 if �çKyÔ .

Remark 2: The Ä parameter can be regarded either as a thresholding operator or as a relaxation parameter,
depending on the context. For example, the case of Ä %"e corresponds to the pure matching pursuit algorithm,
since only one atom is selected. On the other extreme, when Ä %èx , it means that all the { atoms are selected.
Notice also that the afore-mentioned analysis does not include any indication of how to find a Ä which guarantees
the selection of

i
atoms. In practice however, two approaches can be used to tune Ä :u a top-down approach: starting from one ( ` 1 n ` %�e ), Ä is slowly decreased until ` 1 n ` reaches

i
,u or a bottom-up approach: starting from zero ( ` 1 n ` %y{ ) Ä is smoothly increased until ` 1 n ` reaches

i
.

V. APPROXIMATION PERFORMANCE

In this section, we discuss the implications of the error bound in theorem 1 and corollary 1 for sparse approx-
imation. The effect of the coherence

V~f
, the dictionary parameter

²
and the threshold Ä are also discussed along

with a comparison against the matching pursuit algorithm.

A. Comparison with MP

The error bound in equation 24 requires the knowledge of the cumulative coherence
VGf

, whose computational
complexity is much higher than that of

V
in any dictionary. Thus, by using the fact that

VSf®hji+k K ivV
, the

approximation error can be further bounded as:��6DCºÒ p � �� K Í eRC ² � h e � hji C-e k Ä � ke � hji C-e käV Î-��6Á� �� � (27)
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Let é f·hji � V � ² k be the decay factor in Eq. 27 defined byé f·hji � V � ² k % Í eRC ² � h e � hji C-e k Ä � ke � hji C-e käV Î � (28)

and similarly, assume é¢� hji � V � ² k is the decay factor of the iterative MTP with an identical Ä � equals to Ä for all
iterations, i.e. éc� hji � V � ² k % ØÙ� _ f Í eRC

² � h e � hji �RC-e k Ä � ke � hji �RC�e käV Îº� (29)

Recall that the matching pursuit algorithm [1] has an error bound of the m-term approximation given by��6DCêÒ p � �� KèëXeRC ² ��ìd��í p ��6Á� �� � (30)

and without the loss of generality, we assume that ì %îe (i.e. MP selects iteratively the best atom) and defineé p � hji � ² k as: é p � hji � ² k %ÐëXe¶C ² ��í p � (31)

In all the following graphs, the threshold Ä is chosen from the interval [0.4, 0.7]. Smaller values of Ä accounts
for some inefficiency in approximation performance. Whereas when Ä is close to one, the MTP tends to behave
like the MP, i.e. it takes a single atom per iteration. Another important assumption is the existence of

i
atoms for

the fixed threshold Ä , that must be satisfied by Eq. 15.
Some sample values for the parameter

²
have been chosen to characterize classes of dictionaries (e.g. 0.3, 0.4,

0.5, and 0.6). Different values are assigned to the coherence
ivï

in dictionaries (0.05, 0.02, 0.01 and e�xB»�ð ), these
values can indicate the global trend of the approximation error. With no surprise, one should expect that the smaller
is the coherence, the better must be the approximation in general.

B. The Behavior of é f and é p �
The error bounds for the MTP and MP have been plotted for different values of

²
and

V
versus

i
according

to the parameter setting described above. The graphs of é f and é p � are displayed in Figures. 1, 2, 3(a), with the
following observations:u In Fig.1, the error bound improves when the coherence

V
decreases. And it takes fewer atoms for the MTP to

achieve a comparable bound like that of MP when

²
is larger, (see the intersection point). For instance, when² %ñxò�ôó and

V %õxò�öx÷e the intersection occurs at
i

=15, whereas for the same
V

and

² %õxò�ôø it takes more
than 40 atoms.u We see also in Fig.2 that for a larger threshold Ä , the error bound decreases, which is also intuitive, however
the main issue lies in finding

i
atoms for that fixed threshold.u Fig.3(a) shows the effect of

²
parameter when holding

V
and Ä fixed. We see clearly that the decay rate of

the function é f is related to

²
. When

²
increases, the decay rate does so and vice versa.

C. The Behavior of é¢� and é p �
The error bound function é¢� of the algorithm described in 1 with up to Ô iterations is compared to that of MP

( é p � ). The graph in Figure. 3(b) is obtained for

² %yxò�ôù and Ä %yxò�ôó with a maximum number of atom selection
( ` 1 n ` %y{ ) equals to {Å%yú per iteration.

We see clearly jumps occurring between iterations. These discontinuities are due to the fact that é f has a fast
decay rate with few atoms then tends to saturate. Such saturations are prevented by going through iterations. So in
order to achieve a Õ -term approximation in any dictionary, a compromise should be found between the number of
iterations Ô and the size of 1 n in each iteration.

Remark 3: All the previous analysis on the error bound is performed on the theoretical worst-case scenario ofVgf�hji+k
, which would reach

Voi
. This is very rough bound on

V~f
. An accurate estimate of

Vtf
should improve the

error bound described in this section. In practice however, the performance of the algorithm is very interesting as
we will see in section VII.
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Fig. 2. Approximation error bounds comparison between � ¡ and � ��� for different û ’s and   ’s

VI. THE M-TERM PURSUIT IN HILBERT SPACES

The general issue is to expand a function 6 in the Hilbert space �½%y{ � h Ú k over a dictionary �õ%�'	
@� * �-,+�0/ ,
defined in � also. Interestingly, all the previously known concepts about dictionaries, dictionary partitioning,
coherence and functions are still valid in this analysis. Though, the inner product between two functions is now
defined in the Hilbert space � as 
¥6q��
ò� 
XWZY% ��� ¤» ¤ 6 h��Xk 
 h��Xk # � � (32)

where 
 h��>k is the complex conjugate of 
 h��Xk . An assumption is made on � , is that the dictionary is dense and
complete, i.e. it spans all the functions 6a,Â{ � h Ú k . The main results of the M-Term Pursuit algorithm still applies
to function expansion 6 ,Â{ � h Ú k over � .
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A. The Approximation Algorithm

We define the dictionary partition z h � k in � , as previously, a collection of a finite { disjoint sub-dictionaries��O¶% '	
)� * �õ,-�GOä/ where �¶O0}õ� . The selection of the atoms in the collection 1 n is performed in a similar
manner to the algorithm described in 2. The orthogonal projection Æ�� of 6 on the span of 1 n is achieved by
solving a linear system of equations. And after a single iteration of

i
-term approximation Ò p , the residual error

is given by 6DCºÒ p %�63CºÆ��w6Â%�63C pr� _ f F���
)��� (33)

Since Æ��w6 minimizes the error ��6PC ×�p� _ f FÀ��
·���q� �� over all ( FÀ� ) for �.%�e ����� i , the calculation of the coefficients
( F�� ) requires to solve the following linear system. For any 
�����,+1 n ,
¥6q��
)���·�t% pr� _ f FÀ�o
�
·���ò��
)���®��� (34)

Denote the vectors 	�% h F � kIf! �  p and ""% h 
¥6q��
)� � � k f! Ö  p , and the Gram matrix ³�% h 
�
@� � ��
·� � � k f! Ö  p ¦ f! �  p .
Once the linear system is solved in Eq. 34, or ³P	�%#" , we can verify that the residual energy of the approximation
is ��6DCºÒ p � �� %ª��6Á� �� C�	 4 ""%ª��6Á� �� C$" 4 ³ » f " (35)

If the atoms 
@� � ,N1 n are linearly independent, then the quantity "Ó4�³�» f " is always positive and it is lower
bounded by

´ p O �d�%"-� �� . The minimum eigenvalue
´ p OÏ� of the inverse Gram matrix ³ » f is also lower bounded bye®­ h e � V f hji C-e k>k according to Eq. 12. Thus the energy extraction during each iteration is given by

" 4 ³ » f " Ã �%"M� ��e � Vgf®hji C-e k � (36)

The proof of the convergence of the MTP algorithm is identical to the proof of matching pursuit convergence [1],
with the assumption that there exists ì ( x ¿ ì KNe ), s.t,�IÒ p �I� Ã ì �'&Ò p �I�@� (37)

Where &Ò p is the best
i

-term approximation for 6 in the dictionary � .
Finally, the formal description of the algorithm is given in algorithm 2.
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Algorithm 2 The MTP Algorithm in Hilbert Spaces
INPUT:

The signal 6 and the number of iterations Ô
OUTPUT:

The approximation Ò Ø and residual Ú Ø 6
PROCEDURE

1. Initialize the residual signal Ú J 6�%"6 and the approximation Ò J %Üx , the set of atoms 1 n %"� , and the
iteration number �|%(e .
2. For � %&e to {

Find 
)� Ì % [@ÈXÉ)(%*,+ � =�-cÌ ` 
�Ú � » f 6q��
·�q� `
IF ` 
�Ú � » f 6q��
·� Ì � ` ÃÅÄ (%*,+ � =�- ` 
�Ú � »

f 6q��
)�q� `
Then 1 n å 1 n æ '	
 � Ì /

3. Determine the orthogonal projection Æ.� onto the span of 1 n
4. Compute the approximation and the residual:Ò � å Ò � » f � Æ � Ú � » f 6Ú � 6 å Ú � » f 63CºÆ��wÚ � » f 6
5. Increment � , empty 1 n ( 1 n %�� ), and go to step 2 if �çKyÔ .

B. The Computational Complexity

The computational complexity of the MTP algorithm is its main strength when compared to the matching pursuit
algorithm, though it is thoroughly dependent on the dictionary. In one iteration, the MTP performs  inner products
between each atom in / and the residual function Ú � 6 . Assuming that each inner product requires � operations,
the algorithm accumulates an order of 0 h  9� k operations. Once the

i
atoms are selected, it needs to solve the

linear system ³L	�%1" . By using a Conjugate Gradient [9] solver, it requires a complexity of 0 h � i+k , where � is a
constant. Finally, the MTP culminates an order of 0 h  l� � i � k operations for

i
-term approximation in comparison

to the 0 h  i � k complexity of the matching pursuit algorithm.

VII. APPLICATIONS

Two main applications are inherent to the M-Term Pursuit algorithm, (i) signal representation and compression
and (ii) noise removal. The MTP algorithm is adaptive and greedy, at each iteration it searches for the

i
atoms that

are highly correlated to the signal structures in sub-dictionaries. Once they are selected, an orthogonal projection is
performed over these atoms to yield an

i
-term signal representation. Theoretical results in some worst case settings

showed that the iterative step minimizes the error residual significantly which motivates to trade-off the number of
iterations and the number of atoms selected during each iteration. Sparse signal representation is often associated
with compression, so a step forward will be to apply the MTP algorithm to coding, hoping that the few selected

i
atoms will produce an efficient coding gain. An interesting class of compression is the progressive refinement coding,
i.e. the quality of the reconstructed signal improves when more coded data arrives. It is very related to the MTP
nature. At each iteration, the selected atoms and their coefficients are encapsulated and transmitted independently
of the ulteriorly selected atoms. On the decoder side, upon reception of the bit-stream it continuously refines the
reconstructed signal.

An application of the algorithm to image and video compression over some tuned visual dictionaries (aka
spatio-temporal dictionaries) is described in the next sections along with comparison against other state-of-the-
art approaches.

The other direction, which denoising or noise removal is entirely defined by the choice of the dictionary and the
invariance measure of the algorithm map. However, it is not treated in the paper.

VIII. IMAGE REPRESENTATION AND COMPRESSION

Image coding and representation plays a crucial role in our daily life applications. For instance, multimedia
compression and transmission over the Internet and mobile communication systems, searching and browsing in large
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databases, detection in security-based systems, etc. All such tasks require a given decomposition or representation
methodology, in our case the MTP algorithm, and a collection of image primitives or features which build up the
dictionary � . Once an image representation is obtained, all the previous tasks can be easily solved by applying
a specific operator on this representation. In this section, we focus on scalable and progressive compression for
images.

A. Image Dictionaries

Many approaches have been proposed to improve image representation (e.g. curvelets [10], bandelets [11],
contourlets [12]) and all underline that an efficient image representation should have the following properties: (i)
multi-resolution, (ii) localization: the basis functions should be localized in space and frequency (iii) directionality:
the basis functions should be oriented at different directions (iv) anisotropic scaling: the basis functions should
have a variety of elongated shapes with different aspect ratios.

For the spatial dictionary, we use the same construction as proposed in [13], that we sketch here for completeness.
Two spatial mother atoms have been proposed, satisfying the localization property, a 2-D Gaussian and its

± � 
 partial
derivative, 
 f·h �d�!2 k % e3 465 »87 ¨�9 �;: 9�< � (38)


@� h �d�!2 k % ±
3 ø 4 h�= � � C ±�k 5 »87 ¨�9 �;: 9�< � (39)

The 2-D Gaussian is used in order to extract the low frequency components and to generate a coarse approxima-
tion. Whereas the motivation behind using the

± � 
 partial derivative of Gaussian, besides the localization property,
is the need to have a function that efficiently captures image singularities like edges and contours.

The over-complete spatial dictionary is spanned by shifting, orienting, and scaling the spatial mother atoms using
the following unitary operators :u Shift: >

7 ¨�? ¦ : ?@< 
¼%A
 h>h �vCê�qJ k � h 2|CB2�J k>k � (40)u Orientation: >.C 
@�T%1
@� h�D » C h �d�!2 k>k � (41)u Scaling: >�E 
 f % eÒ 
 f·h � Ò � 2 Ò k � (42)>
7
E � ¦ E 9 < 
@�T% e3 Ò f Ò°� 
@� h �Ò f � 2Ò°� k � (43)

For implementation issues, spatial position
h � J �!2 J k sweeps the whole image and orientation may take 32 valuesF % OHGI � , where � %"xò�������·�Iøòe . The scaling factor Ò�� , ��% e@� ± , is logarithmically distributed as Ò��a% ± Ì9 , with� %yxò�������·� ±KJ�LNM É h	O ONP WQ k@R .

B. Dictionary Partitioning
The dictionary � is partitioned into { sub-dictionaries �UO . Each sub-dictionary �LO consists of all functions 
 ’s

whose center,
h � J �!2 J k defined in in equation 40, belongs to a region �TO . In our analysis, an image of size

h "+�%S k is
divided into non-overlapping rectangular blocks of size

h " - �%S - k , where each block is associated to a region �TO and
thus to a sub-dictionary � O . This class of partitioning, also called space-partitioning and denoted by zUT p W@V E h � k ,
insures that the coherence between atoms in different regions must be small, except for atoms lying near the border
of the regions �¶O ’s. The atoms lying near the border of a given region �TO generally have a support extending to
other regions, though they are regarded to belong to ��O .

In order to guarantee that all selected atoms by the MTP algorithm possess small coherence, we defined a
coherence threshold

V O
, such that no selected atom in 1 n has a coherence

Vtf®hji+k ­ i exceeding
V O

with the other
atoms in 1 n . In other words, every selected atom ��,E1 n must satisfy the necessary condition of the coherenceVgf�hji+k ­ i K V O in addition to the threshold condition, i.e. Ä in equation 13.

Other dictionary partitioning based on either scales or orientations are still possible, and should be investigated
as future directions.
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C. Approximation Performance

The MTP algorithm has been applied on the dictionary � with the partition z - h � k as described in the previous
subsection. Since the dictionary is invariant under translation, a fast implementation based on performing all the
inner product between the image and the atoms in Fourier domain has a complexity of 0 h � LWM É � k , where � is the
image size. The threshold Ä is varied over '®xò�ôø°�Xxò�ôó°�Xxò�YX�/ and the coherence threshold

V[Z
is assigned also values

from the set '®xò�öx÷e@�Xxò�öx�ó°�Xxò�;e)/ . In all our experiments the dictionary � is divided into {�%�ù = sub-dictionaries � O .
Figure 4 shows the behavior of the error of MTP, measured in terms of the PSNR, versus the number of iterations

compared against the matching pursuit algorithm for different Ä ’s and
V O

’s. It is clear that the gap between the two
algorithms decreases with smaller

V O
and larger Ä . With Ä %yxò�YX and

V O %yxò�öx÷e the MTP performs almost as well
as the MP.
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Fig. 4. Approximation performance comparison between MP and MTP (   , � ) for Lena image (256x256)

An interesting relationship between the cardinality of 1 n at each iteration and the values of the Ä and
V O

for the
Lena image is displayed in Figure 5. The number of selected atoms increases with the iterations, this is due to the
fact that during the first iterations, most of the selected atoms correspond to the smooth regions present in the image,
or the low-frequency part of the signal, which tend to have a support reaching over different regions ��O . Hence,
these atoms with overlapping supports are characterized by somehow a large coherence. And by imposing a small
coherence threshold

V O
on the atoms of 1 n tends to reduce its cardinality. On the other hand, when iterations run

on, the number of selected atoms per iteration stabilizes mainly because these atoms are chosen to represent edges,
which are localized, and thus these atoms are almost uncorrelated. So their selection restriction comes principally
from the fixed threshold Ä .

A straightforward consequence of this observation is that the complexity gain of the MTP over MP, which is
defined by the cardinality of 1 n 14, becomes significant after few iterations.

D. Progressive Coding

The embedded quantization and coding is performed by using the subset approach introduced in [14], where the
selected atoms (indexes and coefficients) are initially divided into ^ disjoint subsets

Z O . Each subset contains � O
elements as shown in Figure 6. These subsets can be seen as energy sub-bands. Their number is dictated by scalability
requirements (i.e., the number of target decoding rates), and represents a trade-off between stream flexibility, and
coding efficiency, that respectively increases and decreases with ^ . In each subset, atoms are sorted according
to their spatial positions, that are further run-length encoded. Other index parameters and quantized coefficients
are encoded with an adaptive arithmetic encoder [15]. The resulting bit-stream is now piecewise progressive, and
optimal truncation points can be set at subset limits. The rate control problem belongs to a general class of bit
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Fig. 5. The effect of   and � on the number of atoms selected per iteration for Lena image (256x256)

allocation problems under multiple rate constraints, and is discussed in more details in the MP3D scheme [14].
Moreover, the embedded bit-stream allows for non-octave spatial scaling, due to the structured dictionary, without
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Fig. 6. The series of atoms is divided into energy subsets, as a compromise between coding efficiency and flexibility.

resorting to complex transcoding operations [14].

E. Rate-Distortion Results

In this subsection, we evaluate the rate-distortion performances of the MTP based image compression scheme
and compare it against the state-of-the-art image compression standard JPEG-2000. The standard Lena image is
used for comparison in our experiment. It can be seen on Figure 7 that the PSNR of MTP image codec is higher
than that of JPEG-2000 by about 0.6 db over the range of low and medium bit rates, i.e. up to 0.4 bpp.

Figure 8 show the visual quality of the MTP-based codec when applied upon the Lena image. When decoded
at a target bit rate is 0.41 bpp, it has a PSNR of 32.73. And one can see that almost all the edges and contours
present in the image have been captured, which imparts some smoothness to the reconstructed image.

IX. VIDEO REPRESENTATION AND COMPRESSION

Another important application prevalent in almost all multimedia-based services is video compression and delivery
over the Internet and wireless networks, remote browsing in movie databases for video on demand services, etc.

Video representation is the first operation block used in any compression algorithm or video processing technique.
Representing the video sequence as a linear combination of spatio-temporal waveforms, or atoms aligned along
motion trajectories, requires (i) a decomposition algorithm, and (ii) a dictionary � of motion-adaptive spatio-
temporal atoms.
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Fig. 8. The Lena image decoded using the MTP-based codec at 0.41bpp, the PSNR = 32.73

The MTP algorithm is used as a decomposition algorithm, and the dictionary � consists of spatio-temporal atoms
mapped along motion trajectories, having spatial component as described in subsection VIII-A and a temporal
component able to capture the temporal signal evolution.

A forward step for video representation is progressive compression, which has gained more focus recently, for
ubiquitous applications. The aim of progressive coding is to generate a single embedded bit-stream able to be
decoded and reconstructed efficiently over a given range of bit-rate and at various display formats.

The MTP is an iterative algorithm, where at each iteration an approximation to the residual signal is generated. So,
the MTP progressively refines the approximation by going through more iterations and by adding more representative
atoms. Now, the nature of the MTP and the use of the subsets-based embedded quantization and coding yields a
highly flexible bit-stream well suited for scalable compression applications.

In this section, an overview of the dictionary is given subsection IX-A, the dictionary partitioning is described
in subsection IX-B. The motion-adaptive MTP-based transform is presented in Subsection IX-C. The algorithm
comprises two steps which are: (i) the motion trajectory prediction and (ii) MTP decomposition. A comparison
against the MP based decomposition in terms of PSNR versus number of atoms is given in subsection IX-D for
the sake of validation. A brief reminder of the embedded quantization and coding is presented in subsection IX-
E. Experiments carried out on standard test sequences illustrate its coding efficiency in subsection IX-F. At low
and medium bit rates, (i.e. less than 500 kbps), the obtained results are very comparable to the state-of-the-art
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non-scalable coders H.264 and MPEG-4, and to our previous scalable MP3D scheme [14].

A. Spatio-temporal Dictionaries

The spatio-temporal dictionary, which consist of separable spatial and temporal components, has a structure able
to efficiently represent the spatial image content according to subsection VIII-A, as well as temporal evolution
along motion trajectories.

The temporal functions on the other hand should satisfy the following objectives. They should capture most of
the signal energy in the low-pass temporal frequencies with few elements, as this will reduce the ghosting artifacts
at low bit rates. They should satisfy multi-resolution and localization properties in order to encompass the wide
range of temporal behavior observed in natural scenes. These properties are achieved by selecting a

²
-spline

² � h��>k
function [16]. Trading-off between temporal and frequency decay, the order of

² � h��Xk should be � Ã ±
. While

testing � , the ø�_Z
 order

²
-spline

² I h��>k
resulted in good performance for a GOP size of 16. The temporal part of

the dictionary is thus generated by shifting and scaling the

²
-spline`ba ? ¦ O ² I % ² I h h�� C � J kZ k � (44)

The atom center
� J sweeps the entire GOP size and the scale

Z % ± O varies according to � %yxò�������·� J�LNM É h ³c0�Æ k@R .
It is noteworthy that in the temporal scale

Z % ± O , � refers to the resolution or the number of frames that are
processed in the signal. When � %õx , only e frame is processed, which can be interpreted as the existence of an
abrupt motion, a scene change or an isolated feature. Whereas for � %�e , the support size is of ø frames. It means
that there is a smooth temporal evolution in the direction of motion localized in ø frames. More generally, the
larger the support size, the longer the motion trajectory.

To summarize, the redundant spatio-temporal dictionary is built from applying the coupled operators
>

and
`

on the 3-D mother atoms, along motion trajectories, in order to take advantage of the nature of the video signal.

B. Spatio-temporal Dictionary Partitioning

The spatio-temporal dictionary � is partitioned based on its spatial component into { sub-dictionaries �¼O ,
according to the method described in the previous section VIII-B (by using space-based partition) but with a
slight modification. Let d h �d�!2¢� � J k be the

� J ’th frame in the GOP, denoted as a reference frame. We define a
dictionary partition z - 7 a ?!< h � k as the set of { sub-dictionaries �LO . Each �PO contains the spatio-temporal atomse h 
gf h �¢J@�!2�J@� � J k>k centered at the reference frame and such that

h �oJ@�!2�J k belongs to a region in the reference frame� J (or
h � J �!2 J k ,+�GO h�� J k ).

Similarly to the spatial dictionary partition in section VIII-B, the reference frame
� J of size

h ".�%S k is divided
into non-overlapping rectangular blocks of size

h " - �%S - k , where each block is associated to a region �TO h�� J k . And
to insure that all selected atoms by the MTP algorithm possess small coherence, we defined a coherence thresholdV O

, such that no selected atom in 1 n has a coherence
Vtf®hji+k ­ i exceeding

V O
with the other atoms in 1 n .

C. The MTP Video Decomposition

The MTP algorithm decomposes the video signal in a finite number of spatio-temporal atoms along motion
trajectories and it is described by Algorithm 3. The iterative algorithm first selects the frame with the highest
energy, in the GOP d � h �s�!2q� � k , where d J h �s�!2q� � k represents the original signal.

It then computes the motion mapping
e

using the estimated motion fields through the optical flow algorithm as
described in [14], and a dictionary partition z - 7 a ?�< h � k consisting of { ( {�%�ù = ) sub-dictionaries. Then the M-Term
Pursuit algorithm is iteratively applied on the signal d h �s�!2q� �Xk to find a � -term approximation of d h �s�!2q� �Xk in �
spatio-temporal atoms mapped on motion trajectory, denoted as

e h 
 f h � J �!2 J � � J k>k , by fixing the threshold Ä %�xò�ôóand a cumulative coherence not exceeding
V O %�xò�öx÷e , or

hjVgf·hji+k ­ i+k K V O .
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Algorithm 3 The MTP-based Decomposition Algorithm.
1: Let d h �d�!2¢� �Xk � � %�e@���ö ih8T8j be a block of frames, fix Ä and

V O
.

2: Select a reference frame
� J with the largest energy.

3: Find a dictionary partition z - 7 a ? < h � k with { sub-dictionaries.
4: Compute the motion mapping

e
.

5: Find the collection of atoms 1 n for a given Ä using condition in Eq. 14
6: Discard �a,+1 n from 1 n if its coherence

hjVwf�hji+k ­ i+k6k�V O in 1 n .
7: Find the orthogonal projection of d h �s�!2q� �>k on the updated 1 n , i.e. zLÇË,l h d h �s�!2q� �>k>k .
8: Update the residual signal and start over from step 2.

D. Approximation Performance

The MTP algorithm has been applied on the spatio-temporal dictionary � with the partition z - h � k as described
in the subsection VIII-B. The threshold Ä %yxò�ôó and the coherence threshold

V[Z
is fixed to be

V O %yxò�öx÷e . In all our
experiments the dictionary � is divided into {�%Nù = sub-dictionaries � O as in section VIII-B. Figure 9 shows the
evolution of the error of MTP, measured in terms of the PSNR, versus the number of iterations compared against
the matching pursuit algorithm for the video sequences football and foreman in CIF format, and with a group of
frames (GOP = 16).
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Fig. 9. Approximation comparison between MP and MTP (   , � ) for Football and Foreman sequences

E. Progressive Coding

An embedded quantization and coding of the atoms and their coefficients based on the subset approach [14] has
been applied whereas for the motion vectors, they are coded using a DPCM and an adaptive arithmetic coding.

F. Experimental Results

In this subsection, we evaluate the rate-distortion performances of the MTP-based compression scheme with the
state-of-the-art video compression standards H.264 [17] and MPEG-4 [18] and our previous pure MP-based codec
(the MP3D scheme), for the standard test sequences Football (SIF format) and Foreman (CIF format). It can be
seen on Figure 10 that the PSNR of MTP-based codec is higher than that of MPEG-4 over all the range of low
and medium bit rates for both sequences. However, it is less than that of H.264 by about 1db over the entire range
under study. And finally, it is noteworthy that it performs slightly lower than the MP3D scheme, howver it has the
advantage of a reduced computational complexity by an order of magnitude.
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Fig. 10. Rate distortion comparison between MTP-based codec MP3D, H.264 and MPEG-4 for Football and Foreman sequences

(a) Original Frame (b) MTP-based Codec

Fig. 11. Visual quality of the frame 1 of the Foreman CIF decoded at 580kbps, PSNR=35.76

X. DISCUSSIONS AND CONCLUSIONS

We have presented an adaptive approximation algorithm, the M-Term Pursuit, able to provide a sparse representa-
tions for signals in any dictionary. The approximation efficiency and the convergence of the algorithm is compared
against the matching pursuit algorithm both in theory and practice. Its main strength is its improved computational
complexity. In fact, the computational complexity of the MTP algorithm is reduced by at least an order of magnitude
than that of MP, depending on the dictionary partitioning, the coherence, and the thresholding parameter. Once a
signal decomposition is obtained, the properties of the signal components can be analyzed and processed through
the structure of the selected atoms.

Two applications have been presented to demonstrate the capabilities of the MTP algorithm in compact repre-
sentation and progressive coding in the field of multimedia compression and transmission: (i) image coding and (ii)
video coding. The image coding scheme uses the MTP as a decomposition method in redundant visual dictionaries,
or a rich collection of visual primitives able to capture image features. Once the image representation is obtained
in terms of a finite sum of visual atoms, they are further quantized and coded in a progressive fashion based on
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our subset approach. The performances of this scheme are favorably compared to the state-of-the-art image coders
such as JPEG-2000 in terms of rate-distortion. Moreover, it provides a very flexible bit-stream able to be decoded
at different spatial resolutions intrinsically.

The second application is the construction of a progressive video compression scheme. A redundant spatio-
temporal dictionary is used in combination with the MTP algorithm to find an adaptive video representation in a
small number of atoms compared to the size of the signal. Then, these atoms are progressively coded and transmitted
using an embedded quantization and coding scheme along with the motion information. The rate-distortion behavior
of the MTP-based codec is comparable to the state-of-the-art video coders such as H.264, MPEG-4 or our previously
introduced MP3D scheme.

Though in our analysis no a priori information is used about the signal space, a future direction would be to
assume a given model associated with a class of signals, and to adapt the dictionary to classes of signals. Another
horizon will be to investigate other types of dictionary partitioning, rather than the one used in this paper which
is (space or region)-based partitioning, such as scale-based or phase-based partitioning. A more compelling issue
will be to partition the dictionary according classes of signals.
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