Action Filename Description Size Access License Resource Version
Show more files...


We study the effect of a violation of the strong equivalence principle (SEP) on the cosmic microwave background (CMB). Such a violation would modify the weight of baryons in the primordial gravitational potentials and hence their impact in the establishment of the photon-baryon plasma acoustic oscillations before recombination. This cosmological Nordtvedt effect alters the odd peaks height of the CMB temperature anisotropy power spectrum. A gravitational baryonic mass density of the universe may already be inferred at the first peak scale from the analysis of Wilkinson microwave anisotropy probe (WMAP) data. Experimental constraints on a primordial SEP violation are derived from a comparison with the universe's inertial baryonic mass density measured either in a full analysis of the CMB, or in the framework of the standard big bang nucleosynthesis (BBN).