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ABSTRACT

This paper presents a high-capacity method to embed in-
formation into the geometry of a 3D polygonal mesh. The
method extends a previously reported work, to which several
improvements have been brought. By construction, the new
embedding algorithm is robust against rotation, scaling and
translation attacks. Analysis of the proposed method on dif-
ferent meshes showed that its embedding capacity compares
to that of previous high-capacity works. Furthermore, the
new technique introduces only negligible amount of distor-
tions to the cover mesh.
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1. INTRODUCTION

Hiding information into images or sound files is a rela-
tively common operation. There are many applications of
such techniques, ranging from content annotation to the se-
cret transmission of critical data. Data hiding on digital
media is believed to have been used in both legal and il-
legal circumstances. An interesting uses has been shown
in relation to the DeCSS case (from the name of the al-
gorithm used to decrypt DVDs), offering a way to bypass
the DMCA (Digital Millennium Copyright Act, which made
the distribution of the DeCSS source code in a compilable
form illegal) by distributing the code hidden inside an im-
age [12]. Other applications have made use of cover data,
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ranging from physical media such as paper and wood, to
digital content in form of speech, audio, images and video.

Three dimensional models are good candidates to serve as
cover data. Despite the rapid evolution of dedicated hard-
ware and methods to display and process 3D models effi-
ciently, only a few data hiding methods have been proposed
so far. Among the existing methods, an adaptation of the
classic spread-spectrum watermarking technique has been
proposed [9], which is robust but involves a multi-resolution
decomposition of the model, which can be rather computa-
tionally expensive in some cases. Another approach is based
on a spectral decomposition of the model [8], but such a
method has a high complexity. In another work [3], the
information is hidden by modifying the mesh geometry to
create an unique path on the mesh. A more recent water-
marking approache [7] uses principal component analysis to
reorient the model. In another recently published work [5],
the message is hidden within the model topology.

2. BASIC DEFINITIONS

This section gives some basic definitions used in this pa-
per, such as the formal definition of the three-dimensional
meshes.

Let us formally define the support information, i.e. the
discrete surfaces. The 3D smooth surfaces is approximated
by a polygonal mesh that will be represented by a graph
with a coordinate associated to each vertices. To that end,
let a discrete surface M be defined by three sets: M =
(N,,C,P), the set of positive integers used to label each
of the n vertices, the edge set C = {e} composed of pairs
e ={i,j}, i #j € N,, indicating the existence of an edge
between the vertices ¢ and j, and finally, the point set P =
(pi)}_, associating a vector p; € R? to each vertex. The sets
N, and C define the model’s topology (through a graph),
while the set P describes its geometry. Let us further define
the 1-ring S; of a vertex i as

Si={jle=1{ij}ec}, (1)

The set S; contains all vertices directly connected to the
vertex 4. In the following, the topological part of the model
M will only be used through its 1-rings S;.

3. PROPOSED METHOD

The details of the embedding algorithm are presented in
this section. The method extends previous works [1, 13].
The first paper [13] proposed a method exhibiting several
limitations among which the most important one, for data
hiding, was its low capacity. In the second paper [1], the



method was extended to actually embed non-trivial infor-
mation into the model, increasing the embedding capacity.
The current paper proposes an extension that significantly
increases the embedding capacity and reduces the extraction
complexity. The increased capacity is achieved by adapt-
ing the embedding process to the sample distribution in the
similarity-transform invariant space. The complexity reduc-
tion of message extraction is produced by making use of a
similarity invariant space, while in [1] the transform was only
partially invariant to rotation. In addition, this paper de-
scribes the message embedding and extraction method from
a new perspective, which leads to a better theoretical un-
derstanding of its different aspects.

3.1 Message Embedding

This section provides a quick overview of the message em-
bedding method. It consists of a three-stage algorithm. In
the first stage, the model geometry is transformed into a
similarity-invariant space resulting in a non-uniformly sam-
pled function on the unit sphere. The second stage modifies
the resulting samples in order to embed the message. The fi-
nal stage computes the necessary modifications in the model
geometry. The next subsections explain in details the above
mentioned stages of the algorithm.

3.1.1 Similarity-Invariant Space

The embedding method should be resilient to non-malicious
transformations of the model. In the case of 3D surfaces,
such operations are mainly similarity transforms (rotation,
scaling, translation or any combinations of the latter). There-
fore, working in a space invariant to similarity transforms
will permit an embedding method intrinsically resilient to
such transforms.

This similarity-invariant space is built gradually. The dis-
crete normals set A is obtained from the geometry set P.
The set N is invariant to any translation of the model. The
set N is further modified to produce the relative normals
set R, which is in addition invariant to any scaling. Finally,
R is placed in a given orientation, to obtain the similarity
invariant set Z, whose elements are invariant to any trans-
lation, scaling and rotation.

Let us first define the discrete normals set A as

N = (n)", with n; = %' Si-p) (2

JES;

where S; is the 1-ring of vertex ¢ (Eq. 1), and p; € P.
Although the n; are called discrete normals, they are not
normals in the geometrical sense of the term because they
do not have unit length; moreover if p; and all p; € S;
lie on the same plane, then n; will also lie on this plane,
which contradicts basic properties of conventional normals.
However they have the interesting property to be invariant
to any translation of the model, that is, for all t € R?

P=P+t=N"=N

Moreover, it is possible to recover the geometry from this
set, as it will be explained in the subsection 3.1.2.

Let us add scaling invariance by defining the relative nor-
mals set R as

R = (ri)?:l with r; = ni/ﬁ (3)

where i = 23" n;, and n; € N. As stated before, the
relative normals are, additionally, invariant to any non-zero

scaling of the model, that is, for all t € R® and a € R*
P=a-P+tt=R =R

Moreover, a rotation around any arbitrary axis of the model
is a linear operation on the relative normals, that is, for all
rotation matrices R, for all t € R® and a € R*

P=a-R-P+t=R =R R

This last property will allow for the definition of a new set,
whose elements will be invariant to any similarity trans-
form applied to the model. To that end, let us define two
parameter vectors, fy and f;, of unit-length, non-zero, and
orthogonal to each other. These vectors will be used as pa-
rameters during the construction of the similarity invariant
space. Two characteristic vectors, of unit-length and orthog-
onal to each other, are formed from the set R. A new set 7
is then computed by rotating R, such that its characteristic
vectors are aligned with the parameter vectors.
The characteristic vectors, ¢o and €1, are defined by

¢o = co/||co|| where ¢co = Z r; (4)
€Ny,

N r, —(r;e éo . éo

& =e/ller] where o = 30 IS ()

1€Np

where r; € R. Additionally, a general rotation of the model
is a linear operation on them. That is, for all general rota-
tion matrices R, for all ¢ € R® and a € R*

P/:a-R-P+c:>66:R-éoandé'1:RAél.

Based on the above observations, a rotation matrix Rr_z
can be found such that when applied to the set R its char-
acteristic vectors will be aligned to the parameter vectors
fo and f;. The rotation matrix, Rr_z, is found by first
constructing two matrices, F and C. They are given by!

F = (fg f‘l f() X f‘l) (6)

C = (o€ xén) (7)

The rotation matrix Rr_z is then found by solving the

linear system F = Rgr_,z - C according to the following
equation

Rr_.r=F.C " (8)

The similarity-invariant space Z is then simply given by ro-
tating each element of the relative normals set R, that is

7= (i;)", withi; = Rr_z -1y, 9)

where r; € R. The above construction method is valid as
long that both characteristic vectors ¢ and c¢; are non-zero,
which can happen for highly symmetric meshes.

The set Z can be seen as the (non-uniformly) sampled
version of a function over an unit sphere, as shown by

5= ()" withif = (pi. 05, 61) (10)
=1

where each element i; = (x;,ys, 2;) of the set Z is converted
into its spherical coordinate system equivalent, and where
pi = ||i;]| denotes the radius, 6; = arccos(z;/p;) the angle to
the z-axis, and ¢; = arctan(y;/x;) the angle to the z-axis

!The vectors ¢ x ¢; and fo x f; are necessary to ensure that
there are enough equations for the linear system solution to
be unique.



(on the zy-plane), and with the conventions 6 € [0, 27) and
¢ € [0, 7]. The pairs (0;, ¢;) can be used as the coordinates
of the samples on the unit sphere and the p; as their values.

3.1.2 Inverse Transform

This section describes how to recover the geometric in-
formation from the similarity-invariant space. The inverse
transform is the last step of the embedding algorithm and
therefore applies to a modified version of set Z, denoted by
Z. The modified geometry set P is computed from the set
Z. To this end, the sequence of operations follows a reverse
order to that in Sec. 3.1.1 (i.e. Z - R — N — P).

The sequence Z — R — N is quite easy to obtain because
the rotation matrix Rr—_z and the mean normal length n
were already computed during the transform step. More-
over, since Rr_,7 is a rotation matrix, its inverse is simply
given by transposition, i.e. R%LI = R%_.;. The relative
normals set R is simply obtained by applying R%LI to all
elements of Z. The discrete normals set N is computed by
multiplying the elements of R by n, that is

N = ()", withh; =7 -Ri_7 -1, (11)

where i; € Z. Finding the geometry set P from the discrete
normals set N is not possible because there are infinitely
many geometry sets producing the same discrete normals.
However, it is possible to compute a unique solution for P
by constraining one, or more, of its elements to have certain
a priori values. More precisely, given a non-empty subset
& C N,,, define the following linear system

{fu = m7 Yjes By —B) forieNA\E
pi = Pi forie &
where i; € N and p; € P. This system is solved to find
a unique solution P = (f1;);_,. The elements of the set £
need to be carefully chosen, so as not to interfere with the
embedding process. In fact, constraints on some points on
the model may remove changes induced by the embedding
process to their corresponding normals. Further information
for the choice of the set £ will be given in the next section.

Let us further analyze the linear system to solve. It can be
written in three equations systems n, = A-p,, n, = A-py
and n, = A - p., where the matrix A has size n x n, and
is often sparse because the 1-ring of a vertex generally con-
tains only a small number of elements. In our implementa-
tion, this sparsity is taken into account to resolve the linear
system. The matrix A is decomposed, using an adapted
QR-method [10], and the obtained decomposition is used
to easily resolve the system to find the solutions p., p, and
P:. The inverse transform is computationally more complex
than the direct transform because there is no linear system
to resolve in the latter.

3.1.3 Bitstream Embedding

This subsection details the information embedding pro-
cess. To embed a message into a model, its similarity-
invariant set Z° is modified in order to produce a new set 7°
containing the embedded message. The embedded message
is represented as a bitstream given by B = (wi)ﬁil, where
the w; are N binary words of W bits each. An ordering on
the similarity-invariant set Z° is defined, to link each word
w; to a number of elements in the set 7°. The modification

is performed by incorporating the word w; in the binary
representations of those linked elements.

The ordering of the elements of Z° is defined as follows.
To this end, a curve c(t) on the unit sphere going from the
‘north’ pole and ending at the ‘south’ pole of the sphere,
circling around the z-axis, is defined. In the f¢-plane, the
curve is given by

c(t) = (0(1), 6(1)) = (t(mod 27), %) ,

where ¢ € [0,2mm] and m € N is the number of revolutions
around the z-axis. Elements i of Z° are projected on the
curve c(t), and a corresponding ¢; on c(t;) is assigned. An
example of such a curve is given in Fig. 1. The set Z° is
then scanned following an ordered list (¢;);_.

z

Figure 1: Example of a projection curve c(t) with
m = 6.

More precisely, the ordering of the elements of the set Z°
is defined as a permutation vector II, given by

= ()], (13)
with the following constraints

oi € Nn,oi#0;,Vi#]
(00, ¢00;) < 00,415 Do;4a)

for all (pi,0;,¢:) € Z° The scanning function t(6,¢) is
derived from c(¢) and can be defined as

_|gm 16
t(0,¢) = { - + 3 " on 27 40, (14)
where m € N is a parameter of the embedding algorithm,
which defines the density of the scanning function t(0, ¢).
An ordered sequence O of integers is defined as

O = (lpo; ~t))izy (15)

where o; € II, and (p;,6;,¢;) € Z° and v € N is a pa-
rameter of the embedding algorithm. The parameter v is
a scaling factor, which controls the precision of the binary
representation of the radii.

The embedding algorithm requires a mapping function,
which will put into correspondence each elements of w; from
B to elements from ©. To map B onto Z°, a redundancy
parameter r is first computed. This parameters provides



the number of elements of O affected to the same w;, and is
given by

r= {%J (16)

where n is the number of vertices and N the number of words
in the message. Let W, denote the set of the indices of the
elements from O that are put into correspondence with the
word w;

Wi ={j|j€N,and 2ir —2r < j <2ir—r}. (17

The vertices in the model have not been all used for embed-
ding. All remaining ones are included in the set £ (cf. Eq.
12), that is

£ =M\ (fj WZ.) | s

If the number of vertices is a multiple of 2r then | |J;*, W;| =
|€] = n/2, and if not, then |E] =n —rN > n/2.

The construction of the modified sequence O is straight-
forward. W contiguous bits of the binary representation of
p;j € O are replaced by the binary representation of w; to
obtain p; € O. This replacement is performed is such a way
that the least significant bit of the w; replaces the b*" least
significant bit of p;, b € N. The latter, b defines another
embedding algorithm parameter, which affects its strength.
Finally, the modified similarity-invariant set 7% is given by

1° = (Izs)n | with i7 = (B0, 05, 60), (19)
where p;;) € O and j(i) is such that o; = i,0; € IL

The coding by repetitions, explained above, may seem
inefficient as shown by Shannon in his original paper [11].
However, in this particular framework, we will show (in
Sec. 3.2) that this approach has its own advantages.

Since the average normal length 7 (computed during the
direct transform, cf. Sec. 3.1.1) might change during the
embedding process, a rescaling parameter t must be sent to
the extraction algorithm, given by

=<2, )

where 7 is the average normal length computed after the
inverse transform has been performed. In some applications,
transmitting the parameter T might not be desirable since
it depends on the model. However, knowing the parameter
t is sufficient to recover the hidden message, at the cost of
several decoding rounds. Indeed, t is close to t because the
perturbations are usually small. The decoder can simply
‘try” different values for t into the interval [v — 2" F°~1 v 4
2W+b71]7 an chose the extracted message bearing the less
variance.

3.2 Message Extraction

In this section, the algorithm used to extract a message
B from a model /\/l is explained. To be able to extract the
message from the model, the message extractor will need to
know the message length N and the rescaling parameter t.
In addition, the message extractor needs to use the same
parameters used during the embedding process, namely, the
number of bits W in each word, the position b of the mod-
ified bits, the two parameter vectors fy and fi, and finally

the positive integer m defining the density of the scanning
function.

The first part of the message extraction follows exactly
the operations during the embedding. The model M is first
transformed into a similarity-invariant space 7% as explained
in subsection 3.1.1. The permutation vector II is then re-
constructed, and used to produce the integer sequence O as
defined in subsection 3.1.3.

The uncoded message U is extracted using a simple mask-
ing technique on O, to produce

u:(u17u27"'7u”), (21)

where n is the number of vertices in the model, and u; €
[0,2Y —1]. Ideally, U would have the following structure

u = ( Wi,y ...,W1, E1,...,§T7 w2, ...,W2, £T+1,...,£27~7
r r r r
..y WN,y...,WN, €<N71)7‘+17...’£N7*),
T T

where the w; are part of the message, and the £; denote
elements without message (i.e. the & are random vari-
ables without any correlation with the hidden message).
Finally, the hidden message B = (wiws...wx) is recon-
structed making use of a simple histogram approach [1].

The extraction of the hidden message, as explain in the
previous paragraph, needs to become more robust in real
applications. In fact, several factors can corrupt the ideal
U. The choice of the constrained points, in the embedding
algorithm, could affect the normal values n;. In addition,
the model M can undergo several modifications between
the embedding and extraction steps. Such factors would re-
sult in an undecoded message U which could be shifted or
even locally corrupted. It is therefore important that em-
bedding and extraction algorithms exhibit a certain degree
of resiliency to such modifications. The choice of coding by
repetition, rather than conventional error correcting codes,
seems adequate for a first approach.

3.2.1 Synchronized Decoding

In this section, a more robust technique for message de-
coding is presented, when compared to histogram approach.
The proposed technique takes advantage of the particular
structure of an ideal undecoded message U.

As shown before, the ideal undecoded message U alter-
nates 7 equal symbols (the w;) with r random ones (the &;).
The goal of this approach is to find N distinct subsequences
in the undecoded message U, such that the elements of each
subsequence bear the largest number of equal elements. To
extract the decoded message B, the most frequent symbol
in each subsequence is chosen.

In the following, the undecoded sequence U is converted
in W binary sequences U, Let the u; € U be defined by
its binary representation, that is u; = Z;‘;gl 2ju§]). Fur-
thermore, let 249 denotes the sequence of the j" bit of each
element in U, that is

Z/l(j):(u;ﬂ,uéj),...,ug)). (22)

To determine the N subsequences bearing the highest
number of equal bits, local average sequences AY for each



of the U9 is obtained according to the following

i+r
<j>::( o»)" ith o@ = L @ _1 923
A a;”)  witha; T}: u =g (23)

=1
J=

where uij) =0 if ¢ > n, and the a; € [—0.5,0.5].

First, let us consider the ideal case where the index ¢ co-
incides with the first element wjy of a sequence of r equal
symbols. It is easy to see that a’) € {—0.5,0.5}, and
al(-j) +1/2 = w,ij). Second, let us consider the ideal case
where the index i coincides with the first elements & of a
sequence of r random symbols. Under the assumptions that
the &, are independent from each other and distributed ac-
cording a symmetrical PDF, one can state that E [aﬁj)} =0.

Based on the above ideal cases, the proposed decoding
technique can be derived as follows. Let (my)n_, gives the
first indices of subsequences bearing the highest number of
equal bits. The my are computed recursively, starting with

mi
w-1
_ (4
my = arg; (1212)(% Z a; ) , (24)
Sis3 |5
and then
w-1
(4)
my = arg; max a; , (25
v (mk1+r+g<i<mk1+3r—g j;) ) (25)

for k = 2,...,N. It could be that there are more than
one local maxima found. In this case, the maximum corre-
sponding to the index ¢ that is closest to the expected index
te = Mk—1 + 2r is retained.

The decoded message is finally given by

Ww-—1

_ : N1

B = (i ... wn) with iy =y 27 W)k + EJ . (26)
j=0

where La%l + %J represent the most frequent binary values

(at position j) in the subsequences.

4. RESULTS

This section presents the results obtained with the algo-
rithm proposed in this paper. Section 4.1, will introduce
the parameters and models used during the experiments.
Section 4.2 will report the result of study for embedding ca-
pacity. Embedding and extracting computational complex-
ities are discussed in Sec. 4.3. Section 4.4 will analyze the
amount of distortion created by message embedding. Com-
ments concerning the robustness of the proposed method are
discussed in Sec. 4.5.

4.1 Choicesof Parametersand 3D Models

Some parameters of the proposed algorithm will be kept
constant throughout the experiments. These parameters
and their values are listed below. The parameter vectors
used during the construction of the similarity-invariant space
(cf. subsection 3.1.1) are kept constant, i.e.fy = (0,0,1)
and f; = (0,1,0). The other constant parameters are those
used during the embedding (cf.subsection 3.1.3), namely
the number of bits in the message words W = 8, the po-
sition of the least significant bit b = 15, and the integer
t = 2-10% The density scanning parameter was chosen to

be m = {\/ N J, since it gave good results during the exper-

iments. The only parameter that will vary is the message
length N. The message extractor needs the following three
entities: the model M, the message length N and the rescal-
ing parameter t.

To compare the results obtained to those in [1], the rele-
vant parameters were chosen to be, (1,1,1) for cover direc-
tion, ¢ = 2 - 10®, each word was represented by b = 8 bits,
and the position of the least significant bit was d = 15.

During the different experiments, four different models
were used, namely, body, pieta, david and venus. In order to
speed up the simulation time coarser versions of the mod-
els have been created using M. Garland’s QSLIM [6] soft-
ware. The characteristics of the coarser models are shown
in Tab. 1. All experiments were conducted with a numerical
precision of 7 digits on the vertices coordinates.

Table 1: Characteristics of the models used during
the experiments.
| Models | Number of vertices n | Number of triangles |

body 711 1396
pieta 3476 6976
david 24085 47753
venus 50002 100000

4.2 Embedding Capacity

For data hiding applications, one of the most important
criteria (together with distortion) is the embedding capac-
ity. In this section, the embedding capacity limits of the
proposed algorithm are measured.

Random messages B were embedded in a given model M
to measure the embedding capacity. Extracted messages BB
were examined in terms of the ratio between the number of
binary errors, at extraction, and the total number of bits
in the message as a function of the message length N. The
experiments were ran several times for each length (each
time for a different random message). Finally, by taking the
median and average values of the different ratios at a given
length, one was able to give two estimates of the probability
of error when embedding a message of a given length in a
given model.

For the models body (pieta), the results are shown in
Fig. 2(a) and (Fig. 2(b)). The experiments were run 25
times for each length. There was no extraction error for
messages of lengths up to 60 (200) when using the proposed
method, and up to 20 (75) when using the method in [1]. It
should be noted that it is not possible to embed a message
of length exceeding 35 (175) using the method [1] due to the
fixed division of the unit-sphere used therein.

Based on these above results, one can state that the pro-
posed method has an embedding capacity of about three
times that of the previous algorithm [1].

Similar experiments were run using the proposed algo-
rithm for larger models, i.e.david and venus. The experi-
ments were run 25 times for each length. The results, to-
gether with those of body and pieta, are shown on Fig. 3.
Simulation results showed that the embedding capacity of
the proposed technique is about 0.5 bit/vertex for an error-
free extraction. It was further observed that the error-free
extraction capacity per vertex tends to reduce as the mod-
els became larger, a plausible explanation could be that the



“1 BER —a—--=- proposed method

—4— - previous method

0 50 100 150 200 250 300 350 400 450 500

(b) pieta

Figure 2: Embedding capacity of the proposed
method (squares) compared with a previous work
(triangles) on two models. A dashed curve denotes
a median estimate, while a continuous one denotes
an average estimate. The z-axis denotes the length
N of the embedded message, and an estimation of
probability of binary error is represented on the y-
axis.

larger the model the higher probability of corruption of a
decoded symbol, and the higher probability of skipping or
adding symbols. This effect could be reduced be making use
of error correcting codes inside embedded messages.

In conclusion, the proposed method significantly improves
the embedding capacity when compared to the previous
method [1]. The embedding capacity is also comparable to
that of [5] and [3], where it was about 0.4 to 0.8 and 0.1 to
0.3 bit/vertex, respectively.

4.3 Complexity

In many applications computation time is an important
factor. Most applications require an as fast as possible mes-
sage extraction technique. Some others could have a further
requirement on the speed of the embedding stage.

As seen in Sec. 3, there is a complexity asymmetry be-
tween message embedding and message extraction steps.
In [1], it was experimentally found that the embedding com-
plexity was around O(n?), where n is the number of vertices
in the model.

To estimate the complexity, several messages of fixed length
were embedded in a given model, and the computation time
for embedding and extraction steps were measured. In Tab. 2
typical embedding and extraction times, both for the pre-
vious algorithm [1] and the proposed method, are reported.
Because the proposed embedding method is computation-
ally close to the previous technique, it is expected that they
also compare in terms of embedding complexity. Concerning

body
_pieta david.

0.5 BER
. venus

10 100 1000 10000

Figure 3: This graph compares the embedding ca-
pacity of the proposed method on different models.
A dashed curve denotes a median estimate, while a
continuous one denotes an average estimate. The z-
axis denotes the length N of the embedded message,
and an estimation of probability of binary error is
represented on the y-axis.

the computational complexity of extraction, one would ex-
pect to achieve considerable improvements when compared
to the previous algorithm. Indeed, in the previous method
the message was embedded in a partially rotation-invariant
space, and during extraction it was thus necessary to extract
messages at different orientations around a particular axis
and finally pick the one with the smallest variance. Based on
these results, one can conclude that the proposed method,
when compared to the previous one, brings a reduction in
computational complexity up to 80% during extraction and
does not influence significantly the embedding complexity.

Table 2: Typical embedding and extraction times
for the proposed (previous) method. We embed-
ded several random messages in different models.
The performance were measured on a Pentium-M
at 1.6GHz and with 512Mb of memory.

[ models [ N | embedding time, s | extraction time, s |

body 20 0.12 (0.13) 0.01 (0.02)

pieta 75 0.45 (0.4) 0.02 (0.04)

david 200 16.2 (15.3) 0.11 (0.43)

venus 500 38 (37) 0.4 (2.5)
4.4 Distortion

An important characteristic of a data hiding algorithm is
the distortion that is added to the cover model. The ideal
algorithm would maximize the information embedded into
the cover model while minimizing the distortion induced. In
the case of algorithms using images as cover information, the
distortion can be measured using the RMSE or an equivalent
pixel-based method, or using more sophisticated perception-
driven measurements. In the case of discrete triangulated
surfaces, a distortion measurement similar to the RMSE can
be constructed using an approximation of the symmetrical
Hausdorff distance. All measurements have been performed
using the MESH (2] software, which is publicly available.

Comparative results of the measured mean symmetrical
Hausdorff distance, in percentage of the bounding box, us-
ing the proposed (previous) methods are shown in Tab. 3



for the models body, pieta, david and venus. It can be seen
that the mean symmetrical Hausdorff distances between the
embedded models and the originals are of the same order
of magnitude for the proposed and previous methods. It is
interesting to note that when using the proposed method,
the mean symmetrical Hausdorff distance between embed-
ded and original models are quasi constant even when em-
bedding larger messages. This constant distortion behavior
arises because the number of unchanged vertices is constant
for any message lengths (cf. section 3.1.3).

Table 3: Distortions using the proposed (previous)
method for different models and message lengths
N, measured using mean symmetrical Hausdorff dis-
tances, and given in percentage of the bounding box.

body N=1 N =15 N =30

Distortions-10~° | 0.3 (0.2) | 0.24 (0.3) | 0.25 (0.6)
pieta N =75 N =150 N =175
Distortions-10~° | 0.08 (0.11) | 0.08 (0.15) | 0.07 (0.17)
david N =100 | N =200 N =500
Distortions-107° | 0.97 (1.1) | 0.98 (1.2) | 0.98 (1.3)
venus N=100 [ N=500 | N =1000
Distortions-10~° | 0.21 (0.21) | 0.22 (0.22) | 0.22 (0.24)
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While the message can be extracted after basic geomet-
ric transformations such as translation, isotropic scaling, an
rotations, it does not resist more invasive techniques such
as surface subdivision, simplification and compression. This
relative sensitivity is due to the fact that the embedding
technique slightly modifies the length of the normals by
moving its surrounding vertices. Section 4.4 showed that
these displacements had a small amplitude. Thus, perform-
ing simplification, compression or any other techniques that
disturb such displacements with an amplitude larger than
that introduced by the embedding algorithm will virtually
“erase” the stego-information.

5. CONCLUSIONSAND FUTURE WORK

This paper presented an efficient data hiding tool to em-
bed messages in 3D polygonal meshes. Its embedding capac-
ity was comparable with that of other high-capacity tech-
niques [3, 5], and provided a three-fold improvement com-
pared to its predecessor [1]. Few distortions were intro-
duced to the cover mesh by the embedding, furthermore
the amount of distortions was independent of the message
length. The message extraction complexity was reduced by a
factor four, which could be of interest in applications where
a real time message extraction is required. The proposed
technique is thus well suited for content annotation appli-
cations, for which high-capacity and low distortions are the
key requirements. In addition, the method could be used
for secret communication applications.

The imperceptibility of the hidden messages is one of the
key requirements in steganography. One direction of re-
search is thus to prove, or at least assess, the hidden message
imperceptibility. Another direction of work would be to test
the embedding robustness by using the evaluation method-
ology proposed in [4].
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