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Abstract— In many applications - such as compres-
sion, de-noising and source separation - a good and effi-
cient signal representation is characterized by sparsity.
This means that many coefficients are close to zero,
while only few ones have a non-negligible amplitude.

On the other hand, real-world signals - such as audio
or natural images - clearly present peculiar struc-
tures. In this paper we introduce a global optimization
framework that aims at respecting the sparsity crite-
rion while decomposing a signal over an overcomplete,
multi-component dictionary. We adopt a probabilistic
analysis which can lead to consider the signal internal
structure. As an example that fits this framework, we
propose the Weighted Basis Pursuit algorithm, based
on the solution of a convex, non-quadratic problem.
Results show that this method can provide sparse signal
representations and sparse m-terms approximations.
Moreover, Weighted Basis Pursuit provides a faster
convergence compared to Basis Pursuit.

I. INTRODUCTION

Over last years there has been a burst of alternatives to
traditional signal representations. Instead of representing
signals as a superimposition of sinusoids or wavelets, we
now have many available alternative dictionaries, most of
which are overcomplete. This means that some elements
of the dictionary can be described in terms of other ones,
therefore a signal decomposition is non-unique. If on one
hand this can increase the complexity of the signal analy-
sis, on the other it gives us the possibility of adaptation,
selecting among many possible representations the one
which (most) fits our purposes.

The dictionaries (D) we are interested in are large and
overcomplete and in particular they are built by the union
of d > 2 sub-dictionaries. Each of them is particularly
suitable for describing a certain feature of a structured
signal. We call a basis set with these characteristics a
Multi-Component Dictionaries (MCD):

D=|JD;, with1<i<d. (1)

Signal decompositions we are interested in have to be
sparse. The criterion of sparsity has been studied for a
long time and in the last few years has become popular in
the signal processing community [1], [2], [3]. Applications
can be found in analysis and compression of audio [4],

images [5] and video [6]. Sparsity criteria are also present
in deconvolution, signal modeling and de-noising, source
separation and classification.

The most common measure of sparsity of a vector c,
labeled with indexes in 2, is its Iy quasi-norm defined as
the number of elements different from zero. The smallest
is this norm, the sparsest is the vector. Unfortunately this
measure is not convex. We can define a p-norm for any
positive p:

1/p
llellp = (Z |Ci|”> : (2)
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It is well known that the smallest p for which Eqn. (2)
is convex is 1. For this reason the Basis Pursuit (BP)
principle proposed in [7] selects among all the possible
representations of a signal s € R™ the one with the

minimal /; norm. Formally, BP solves the problem:

min |c[|; s.t. Dec=s, (3)

where D is the dictionary of cardinality k, here expressed
as a matrix of size nxk. The columns of D are the functions
that compose the dictionary (also called atoms). Recently
it has been proved that, under certain conditions on the
signal and the dictionary, the solution of (3) coincides with
the one that minimizes the ly norm [1], [2].

It is now possible to introduce a signal decomposition

over a MCD: 4
s=Y > ¢ g (4)
i=1jeA;
where A; is a subset of the indexes of the basis functions
g in sub-dictionary D; and c; are the coefficients of the
functions g;. The vector ¢, composed by all the ¢; in (4)
is then the representation of s over D, i.e. s = Dc.
Signals we are interested in are structured, i.e. they
present peculiar features that, if taken into account, can
improve their representation and/or approximation. These
structures can be for example transients and stationary
parts in audio signals or edges, textures and smooth parts
in natural images. This explains our decision to work
with MCDs. The problem that we are addressing aims at
representing a signal with few and significant components.
While the meaning of the first requisite we are looking



for is well explained in terms of [y norm, for the second
one we have to point out that a component is considered
significant if it catches one of the basic features we have
pointed out.

II. PROPOSED FRAMEWORK

Here we introduce a decomposition framework which
considers together a sparsity criterion and a probabilistic
model. Let D be a dictionary with cardinality k& and
composed by unit norm functions, it is possible to define
a new vector d, such that

di = 27
Y2
In (5) the weights p; are computed after a probabilistic
analysis of the signal and indicate how much the i*"
function, with its parameters and its location, fits the
structure of the signal. The problem we propose to solve
now, instead of (3), is:

min ||d||y s.t. De=s. (6)
deR*

with i = 1, .., k. (5)

In the following we will denote this problem as Weighted
Basis Pursuit (WBP). Note that here the minimization
is made on d, but this vector is related to ¢ by Eqn.
(5). The following theorem proves that, although WBP
involves non-linear optimization, it can be equivalently
reformulated as a Linear Programming (LP) problem [8].

Theorem 1: The problem expressed by equations (5)
and (6) can be solved by Linear Programming techniques,
reducing it in the standard form:

min fTz st. Az =band z > 0. (7)

Proof: Let us begin this constructive proof by defining

a new nxk matrix ® such that ®;; = D;; - p;, with j =

1,...,n and ¢ = 1,...,k. The problem in equation (6) can
be now rewritten as:

in ||d 4. dd=s. 8
iy [d] s : ®)

The equivalence between this new problem and (7) is well
know (e.g. see [8]) and it is also the one that allows to
solve BP with LP.

|

It is important to highlight that the solution of the LP
problem will be the vector of the weighted coefficients d; to
go back to the coefficients with respect to the dictionary D
one just have to multiply each entry by the corresponding
probability, inverting Eqn. (5).

WBP principle, while leaving unchanged the con-
straints, modifies the vector whose norm has to be min-
imized. This can lead to respecting both sparsity and
meaningfulness of the representation. A signal is no longer
treated as a pure numerical array, but as an entity pro-
vided by an internal structure. This is true upon condition
that a good dictionary is used and the weights p; in (5)
are properly chosen (the latter choice depends also on the
former).

III. RESuULTS IN 1D

In this section we present some results obtained by
applying the WBP principle to 1D signals. The problem of
Eqn. (6) has been solved recurring to a Linear Program-
ming technique based on the interior-point method [9].
The dictionary used is the union of two sub-dictionaries:
the first one is a Cosine Packet dictionary, aimed at
representing the oscillating part of the signal. The second
dictionary is composed by all the possible translation of a
second derivative of a Gaussian: these functions are able
to efficiently represent sudden variations and transients.
The probabilities p; are computed on the basis of a simple
analysis of the finite difference of the input signal. This
method can highlight the regions where the signal presents
sudden variations and so can give an hint on the sub-
dictionary which has higher probability to be used at
that time. This way of computing the weights is only an
example and can be surely improved in the future.

The first signal we analyze is a part of “earthquake”, a
signal taken from the dataset provided in [10]. We have
n = 256 and k = |D| = 1792. In order to compare a
BP decomposition (cgp) with a WBP one (cwpp), we
first threshold coefficients having a very small amplitude
(< 0.001% of the maximum). BP guarantees to minimize
the I3 norm, but, in general, not the ly. So, as expected
llecep|li < |lewspl|1- But we can also observe that cw pp
is sparser than cpp and nevertheless the achieved error
is smaller. This result does not depend on the adopted
threshold, in fact it can be observed that the error given
by the m-terms approximations of the signal, (approxima-
tions computed considering only the m values of ¢ having
the biggest absolute value) is always smaller for the WBP
method. Note that neither BP nor WBP are approxima-
tion algorithms and the m-terms approximations we refer
to are obtained by thresholding from the representation
coeflicients. The problem of extending these algorithms
into an approximation framework will be faced in next
section.

Let suppose that a signal has an exact representation
c over a certain dictionary D having coherence u; it is
theoretically proved that if

lello < 5+ (=" +1), )

BP will recover all the optimal atoms and their correct
coefficients [2]. Our example is one of the many cases in
which this bound is not respected, having the dictionary
a high coherence. Therefore it is possible to find another
representation sparser than the one given by BP. This is
in practice done by our WBP method.

Further results are achieved decomposing synthetic sig-
nals generated by a superposition of waveforms belonging
to the dictionary. Here the two methods present the same



performances in terms of sparsity, but WBP turns out to
be faster, being its choice driven by the weights.

IV. EXTENSION TO 2D CASE

From its beginning the proposed framework has been
thought to be extended to the bi-dimensional case. Natural
images present different features that we want to represent
using different sub-dictionaries, following the MCD model.
Our 2D dictionary is composed by a sub-dictionary Degge
aimed at representing the edges and one Dgpootn for
representing the smooth parts. The first one is generated
by translating (b), anisotropically scaling( @ = (ag, , dg,) )
and rotating (6) a 2D mother function

gl(z1,22) = (422 — 2) - e~ (@i +oD) (10)

on the model of the dictionary presented in [5]. With
respect to this dictionary, for the sake of simplicity, the
number of rotations and scaling factor is reduced and the
bending avoided. Degge can be parametrized as follows:

(11)

The sub-dictionary Dgooth is composed by translated and
(isotropically) scaled versions of a bi-dimensional Gaussian
function (¢2) and can be expressed as follows:

Dedges = {91(6,9,5) ($17x2)}g,975 .

(12)

This multi-component dictionary is just a general proto-
type aimed at testing the WBP algorithm and the new
probability model in the case of natural images. Moreover
it can be enriched introducing a third sub-dictionary for
textures.

As previously said, the choice of the probability weights
p; of Eqn. (5) has a crucial importance. The algorithm
we adopt for computing them is based on the analysis
of the dual local autocovariance matrix [11]. Differences
in the eigenvalues of an autocovariance matrix indicate
directions at which the local Fourier power spectrum of
a function is slowly decreasing. It is therefore possible
to assign a certain degree of “edginess” to any location
in an image looking at the relationship between these
eigenvalues. Thanks to a slight variation of the method
described in [11] we define an edginess e(x1, z2) with values
in [0, 1] which tends to 1 when the point (z1,z2) has high
probability to be on an edge (see figure 2 t00):

2
e(zy,22) =1— ()\mm) .

>\mam

Dsmooth = {92(3@) (.1'1,372)}5’(1 :

(13)

Amin and Ap,.. are respectively the minimum and max-
imum eigenvalue of the dual local autocovariance matrix
centered in (z1,x2).

Being our dictionary composed by functions well located
in the space we can assign e(x1,x2) as weight to the
functions of Degge centered in (x1,x2). Consequently the
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Fig. 1. Two 16x16 images of the test set. On the left an artificial
image, on the right a crop from cameraman

4K

Edginess of the previous images. White: e = 1; Black: e =0

Fig. 2.

corresponding functions in Dgperr, Will be weighted by
1 —e(x1,z2).

In many cases we are not interested in exact representa-
tions of images but on approximations that can allow a cer-
tain error. Very recently ( e.g. see again [3]) first theoretical
attempts are made to study the approximation properties
of the convex relaxed problem with error constraints. Here
we try to approximate an image using the WBP principle,
extending it by considering a trade-off between the error
and the I3 norm of the weighted coefficients. Using the
same notations as in Eqns. (5) and (6) we formulate the
new problem in the following way:

min ([|d][x + Alls = Defl, ). (14)

In this new problem A\ weights the error in the minimiza-
tion process and so controls the trade-off.

Following the model of the proof of theorem 1 we can
also show that, setting p = 1, it is possible to solve this
problem by Linear Programming methods. Of course, one
can prefer the use of I3 norm for measuring the error, but
in this case the solution of (14) requires more complex
quadratic programming techniques.

We now briefly show some results obtained computing
approximations of 16x16 images using the WBP method
with the error penalization of equation (14). As can be ob-
served in figure 1 these images present strong geometrical
characteristics and are quite adapted to be represented by
the MCD previously illustrated. However more complex
behavior can be caught by bigger and more complete
and elaborate dictionaries [5]. The approximations are
computed considering only the m terms of ¢ having the
biggest absolute value. As can be seen in table I the error
achieved by WBP is smaller than the one of BP.



TABLE 1
Ratio between the errors obtained by m-terms approximations
computed with WBP and BP

ratio between error(WBP) and error(BP) |

m Image 1 Image 2

200 7-1073 3.1073
150 7-1072 3-1072
100 0.40 0.22

V. DISCUSSION

In this work we present a new framework for signal
approximation over a multi-component dictionary, based
on a probabilistic analysis of the input signal. Since natural
signals usually offer a mixture of different features we think
that MCD represent a suitable tool for exploiting this
diversity. Moreover the proposed probabilistic approach
drive the subset selection. Proper weights help in choosing
functions in the “correct” sub-dictionary and speed up the
search procedure, avoiding the algorithm to search within
the basis functions having no probability to be selected.

WBP method has been extended in section IV to the
case where the function to minimize includes an error
penalty term. In order to measure the error, in the re-
ported results we made use of the [; norm, much less
sensible to “wild” pixels in the image. This choice has been
taken mainly for a question of simplicity. However, the
convexity of the problem in (14) is assured for any p > 1.
If the sub-dictionaries are orthogonal the function can be
minimized also avoiding LP. In fact, just not considering
the weights, Eqn.(14) turns out to be equivalent to the
problem faced in [12] recurring to the faster Block Coordi-
nate Relaxation (BCR) method [13]. Weights coming from
the probabilistic analysis can therefore also be seen as a
way to improve the sub-problem of the function selection
inside an orthogonal block in the BCR algorithm. Even
if BCR (without any weights) is proved to converge only
when the blocks (the sub-dictionaries, in our case) are
orthogonal, it worths mentioning that this algorithm has
been recently used removing the orthogonality constraint
and nevertheless it still gives empirical promising results
[14].

The framework we introduce is composed by three main
points: the MCD design, the probabilistic analysis and
the function selection procedure. Concerning the last task
here we take inspiration from the Basis Pursuit principle.
It can be interesting to study the performances of such
approach adopting a different approximation method. The
Matching Pursuit algorithm already proved to possess
good approximation properties [5] and recently new in-
teresting theoretical results about its convergence were
proved [2], [3], [15]. It so can be an appropriate candidate
for substituting BP in the proposed framework.

Concerning the probabilistic analysis of an image we

can make a step further. The dual local autocovariance
matrix we used to determine the edginess through Eqn.
(13) can give also information about the orientation of
the edge. Tt is in fact proved (again in [11]) that the
eigenvector of the larger eigenvalue will be normal to the
edge (of course when such a normal exists). We can then
imagine a more general way to assign probability weights
to the basis functions that compose a dictionary (or a sub-
dictionary) on the model of (11) and (12). So if we have a
sub-dictionary parametrized as follows

D; = {atom(z?,a,a,...)(mlvxZ)}E,a,a,... ; (15)
we can also consider the probability weights as:
P=P(b,90,d,..). (16)

In this case the probabilities do not only depend on the
location of the atoms but potentially on all its parame-
ters. This model can certainly expand the horizon of the
framework and improve the power of the WBP approach.
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