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Abstract - In the current Internet, there are two main
types of intra-domain multicast routing protocols: dense
mode and sparse mode. Dense mode protocols construct
shortest path trees from the sender to the receivers. Sparse
mode protocols construct shared trees rooted at a certain
router, called core or rendezvous point (RP), which acts as a
meeting point between senders and receivers of the same
group. While solving important scalability problems in wide-
area networks, shared trees also bring some drawbacks, the
most known of which are traffic concentration and delay. In
order to minimize these kinds of drawbacks, a variant of
sparse mode using several cores per group emerged. Receiv-
ers are attached to the closest core and sources send packets
to all the cores with attached receivers of the corresponding
group. In this paper three clustering algorithms are pre-
sented and compared: max-cut, min-cut and min-concentra-
tion. They select the minimal set of cores in multiple core
trees that maximizes or minimizes a certain objective func-
tion while limiting the QoS degradation according to a cer-
tain parameter called clustering ratio. These core selection
algorithms are used to show the advantages of using several
cores per group over the classical method of using only one.

 I. INTRODUCTION
Dense-mode protocols, like DVRMP[1] and PIM-DM[2],

use a flood and prune algorithm to find where the receivers
are located and to construct the shortest path tree (SPT) from
the sender to each of the receivers. The state for each (Source,
Group) pair is maintained in all routers, independently of
whether they are placed or not along the SPT. It allows a new
receiver to join (graft) the SPT for a certain pair at any
time. Otherwise, MOSPF[3] avoids this flooding by maintain-
ing a complete map of where the receivers are in each router.
These protocols are suitable for single-sender groups where
the receivers are densely distributed along the domain. But
this protocol architecture presents serious scalability problems
with the number of senders and groups especially in WANs,
where the receivers are sparsely distributed along the domain.

In order to improve these scalability problems sparse mode

protocols[4][5] use the concept of rendezvous point. A RP is a
router that acts as a meeting point between all the senders and
receivers of the same group. One shared tree (ST) per group is
built from a certain RP to all the receivers, allocating group
state information only in the routers along the ST. All the
sources of the same group send the information to the same RP.
From this RP, the information reaches the receivers along the
ST.

While bringing advantages in scalability issues, sparse
mode protocols also have some drawbacks such as traffic con-
centration around RPs and longer delays than in dense
mode[8]. Two proposals arose to improve these drawbacks.
The first one constructs bi-directional shared trees (BSTs)[6].
The senders also join the groups, and packets are already dis-
tributed to the receivers while traveling towards the RP. The
second one uses several RPs per group in a PIM-SM
domain[7]. It improves the fault tolerance as it no longer has a
single point (RP) of failure. The resulting multicast trees are
called multiple core trees (MCTs)[8]. In this kind of tree all
RPs are used for all groups. Several algorithms have been pro-
posed to choose the RPs in STs[9][10]. However, we have not
found any algorithm in the literature to choose the set of cores
in MCTs. Moreover, all clustering algorithms in the litera-
ture[14][15][16][17][18] work with a pre-determined number
of clusters. In this paper we present three clustering algo-
rithms based on max-sum and min-sum vector partitioning[18]
and the minimal traffic concentration ratio. Traffic concentra-
tion is important because it can dramatically increase the
delay due to queuing[9][10]. These algorithms choose the
minimal number of clusters that accomplish the correspond-
ing objective function while limiting the QoS degradation
according to a certain clustering ratio. This degradation is due
to having the cores as intermediate routing points between
senders and receivers (triangular effect).

The rest of the paper is organized as follows: section II pre-
sents the mathematical basis used by the three algorithms pre-
sented in the section III. Section IV shows the advantages of
MCTs over STs and BSTs based on the core selection of the
algorithms. Section V presents some conclusions.
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II. DEFINITIONS
A The Laplacian matrix

A network can be represented as an undirected weighted
graph , where is the set of verti-

ces or nodes and is the set of edges or

links in the network. This graph can be entirely represented by
the edge-weight matrix , a symmetric matrix,

where is the weight or cost of the edge ;

if no edge exists[11][12]. The degree of a ver-

tex  is the sum of the weights of all its incident edges:

(II.A.1)

The degree matrix is the diagonal matrix where

.

Definition 1: the symmetric matrix is the
Laplacian matrix of .

Definition 2: an n-vector is an eigenvector of with
eigenvalue  if and only if .

The eigenvectors of are with corresponding

eigenvalues . The eigenvector matrix

has as columns the eigenvectors

with corresponding eigenvalues . The

eigenvalue matrix is a diagonal matrix with diago-

nal entries . We use for and for . The

eigenvectors form an orthogonal basis in n-dimensional
space[13]. We assume that the eigenvectors are normalized,

i.e., , .
Definition 3: the weighted eigenvector matrix is defined as:

(II.A.2)

Some interesting properties of this matrix are show in the
section C.

B The k-way Partitioning
Definition 4: a k-way partitioning of a vertex set of a

graph is a set of k-disjoint non-empty clusters
such that ,

which optimize a certain objective function [14].

Definition 5: the external degree or edge-cut weight of
a cluster is the sum of the weights of the edges connecting
vertices in  with vertices that do not belong to this cluster:

(II.B.3)

is the degree of the vertex that results from coarsening1

all the vertices in [15].
Definition 6: the Max-cut (Min-cut) k-way partitioning is

the clustering method that has as an objective the maximiza-
tion (minimization) of the function:

(II.B.4)

C The k-way vector partitioning
Definition 7: a k-way vector partitioning of a set of vectors

is a set of k-disjoint non-empty subsets
such that , which

optimize a certain objective function .
Definition 8: the Max-sum (Min-sum) k-way vector parti-

tioning is the vector clustering method that has as an objective
the maximization (minimization) of the function:

(II.C.1)

Property 1: if we take as a set of vectors the weighted eigen-
vector matrix , where is the row of this matrix and

, the max-cut (min-cut) graph partitioning and max-sum
(min-sum) vector partitioning objectives are identical [18]:

(II.C.2)

Property 2: Each row of is the projection of the ver-
tex  over the eigenvectors  of .

Property 3: as , when , given the row
 of the matrix ,

(II.C.3)

and the module of the sum of several vectors gives the exter-
nal weight or edge-cut weight (II.B.3) of the cluster formed by
the vertices represented by these vectors.

D Traffic concentration
A network is properly defined as an undirected graph

, which represents the physical network and a rout-
ing[19], which represents the unicast routing protocol.

Definition 9: The routing of a graph of order is
defined as the set of paths for all the pairs of
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vertices of :

(II.D.1)

Definition 10: given a network , the load of an edge
, , is defined as the number of paths

that contain the edge [20]. The edge-forwarding index
is the number of paths in going through the edge

 with the highest load[19]:

(II.D.2)

The load of an edge gives a quantitative idea about how

much traffic is natively2 concentrated in the link represented
in by the edge . The edge-forwarding index is then a

measure of the native traffic concentration in the “a priori”
most congested link in the network.

Definition 11: the traffic concentration vector of a network
with a certain distribution of multicast traffic and

groups, , represents the traffic traversing each link or
edge in :

(II.D.3)

where is the traffic load, in bytes, on the link

represented by in . The module of the this vector is then

a quantitative measure of the traffic concentration all around
the network for a certain scenario :

(II.D.4)

Dense mode protocols construct shortest path trees from the
senders to the receivers[1][2][3]. This type of multicast rout-
ing gives a “perfect” data distribution relative to the unicast

routing . Therefore, the comparison between sparse mode
and dense mode gives much more information about traffic
concentration than the absolute value of the traffic concentra-
tion vector.

Definition 12: the traffic concentration ratio of a network
for a certain distribution of multicast traffic and

groups , is the relation between the module of the corre-
sponding dense and sparse mode traffic concentration
vectors:

(II.D.5)

Definition 13: the intrinsic traffic concentration of a path
 between two nodes  is defined as:

(II.D.6)

This parameter gives a quantitative measure about how this
path is “natively” used by the underlying unicast routing pro-
tocol. The lenght of a path is its number of links. The goal for
a clustering algorithm called min-concentration is then the
maximization of the intrinsic traffic concentration of the paths
from each core to the members of its cluster in order to approx-
imate MCTs to the SPTs constructed by dense mode protocols
as much as possible. This approximation has as an objective to
minimize traffic concentration, reaching values as close to
dense mode as possible. The objective function to maximize is:

(II.D.7)

E The Clustering ratio
Definition 14: the edge-load matrix is an edge-weight

matrix where edges are weighted with its load:

(II.1)

Definition 15: the edge-forwarding distance between two
nodes is the sum of the load of the edges along
the path :

(II.E.1)

The load of the only edge of a leaf router is [19],
where is the number of nodes of . We can then normalize
the edge-forwarding distance with this value:

(II.E.2)

Definition 16: the clustering ratio may be defined as the
upper limit to the normalized edge-forwarding distance
between the head of a cluster and the members of its cluster.
In our algorithms (section III), all clusters  must fulfill:

(II.E.3)

We want our clustering algorithms to fulfill two main con-
ditions: (a) have more than one cluster and (b) attach leaf
nodes to some cluster. These two conditions are reached by
bounding the clustering ratio:

2. Traffic concentration due to the underlying unicast routing protocol.
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(II.E.4)

where is the maximal normalized edge-forwarding
distance of any path  in the network .

The clustering ratio may also be given in terms of the num-
ber of links, the link cost or the propagation delay between
cores and the members of their clusters.

III. THE ALGORITHMS
The algorithms have as an input a network and a

clustering ratio that verifies (II.E.4). The result is the mini-

mal set of clusters and their corre-

sponding heads  that
(A) maximize the edge-cut weight of clusters (II.B.4)
(B) minimize the edge-cut weight of clusters (II.B.4)
(C) maximize the intrinsic traffic concentration between

each head and its cluster members (II.D.7)
and accomplish the clustering ratio condition (II.E.3). The
algorithms work as follows:

1.Compute .

2.Compute using as the edge-weight matrix

. Each vector  corresponds to .

3.Extract of vertices with minimal module. This is

the set of vertices with minimal degree (II.C.3).

4.Initialize to clusters . Add to each cluster a

vertex  and remove  from .

5.For each  find the  that

 (A/B) max-/minimizes the edge-cut weight of  (II.B.3).

(C) maximizes the intrinsic traffic concentration with the
head of the cluster (II.D.6).

6.For each  take the  computed in 5

If accomplishes the clustering ratio3 condition (II.E.3)

and it is adjacent to some and

(A/B) gives the max-/minimal increase in the edge-cut
weight in this cluster then

(C) gives the maximal intrinsic traffic concentration with
the head in this cluster then

 6.1.Add  to  and remove  from .

6.2.If then is the new head of

the cluster .

7.Find the that does not accomplish the clustering

ratio condition (II.E.3) with any cluster and
(A/B) min-/maximizes the average edge-cut weight (II.B.4)

with all the existing clusters.
(C) minimizes the average intrinsic traffic concentration

with the heads of all the existing clusters.

Create a new cluster with this and remove from

 (  is the head  of the new cluster ).

8.Merge the maximum number of clusters that accomplish the
clustering ratio condition (II.E.3) and give the best objec-
tive function value.

8.1.Check if the nodes of the merged clusters can
migrate to another cluster, improving the objective
function.

9.If then go back to step 5.

The algorithms are initialized with clusters containing the
nodes with less connectivity. Vertices giving the best objec-
tive function value are progressively added to clusters. New
clusters can be generated when it is no longer possible to ful-
fill the clustering ratio with the existing clusters. Clusters
“expand” and some of them can be merged when they make
contact. Step 8 assures that the solution giving the best objec-
tive function value for the minimal number of clusters is
found. The head or core of each cluster is the vertex with the
maximal degree or connectivity in the cluster (II.C.3). As
multicast traffic is transferred from sources to cores and from
cores to group members, this election minimizes the traffic
concentration in the incident edges of the core.

IV. RESULTS
As an example, we have generated a graph of 15 nodes

(Fig. 1). Each edge is numbered with its load .

MCTs have several cores to which some nodes are attached.
The core and their corresponding nodes form a cluster. The
clustering results of applying the three methods explained in
this paper are presented in table I. The number in bold is the
core or head of the cluster while the subsequent numbers are
the nodes belonging to this cluster. We applied three cluster-
ing ratios ( )(II.E.3). The result for all the
algorithms is four, three and two clusters respectively. For
simplicity, we chose as an example a small graph. So, it is not
surprising that the algorithms give similar results. Further-
more, the constraint on the “radius” of the clusters and the
election of the “most connected” vertex in the cluster as a core
limit the divergence of the results between the different clus-
tering methods.

As well as comparing the MCTs built by the different clus-
tering methods, it is also very important to compare MCTs

3. If  is the new head of the cluster it has to accomplish the clustering

ratio condition with all the members of this cluster.
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with STs, BSTs and SPTs. STs are build by CBT[4] and PIM-
SM[5] protocols, BSTs are build by BiDir-PIM[6] and SPTs
are built by dense mode protocols[1][2][3]. The results for
SPTs are presented as the optimal reference for the other trees.
However, dense mode protocols are not feasible in WANs due
to their scalability problems. We implemented MCTs and we
ran all the simulations in Network Simulator[22]. As a sce-
nario we generated 23 random groups having between 1
and 3 senders and 2 and 5 receivers. All the sources send two
packets of 210 bytes and links have an end-to-end delay of 10
ms. The set of RPs used for STs and BSTs is {2, 3, 8, 11},
which is the set of RPs minimizing the traffic concentration in
this kind of trees[10]. In Fig. 2 are marked the levels reached
by SPTs, BSTs and STs for two important parameters: the
traffic concentration and the average delay. As well as the
traffic concentration ratio (II.D.5), the maximal traffic con-
centration in any link in the network is also shown. For the
same number of RPs ( ) MCTs always give much bet-
ter results than STs and BSTs, and are really close to SPTs.
For , MCTs are still better than BSTs and for
the results are similar to BSTs and only worse in the traffic
concentration ratio. In all cases MCTs fare better than STs. In
general, it is observed that MCTs have very good results in
terms of delay and maximal traffic concentration.

The results for MCTs are similar for the different clustering
algorithms. This is mainly due to the small number of nodes in
the example. However, in this and other larger examples, the
min-concentration algorithm reaches better results than the
min-cut and max-cut. This is especially true in the traffic con-
centration ratio, because the algorithm was designed to mini-

Clustering
ratio

Max-cut Min-cut
Min-

concentration

1.0
2  |0, 1
3  |4, 5 ,6
8  |7, 9
11|10, 12, 13, 14

2  |0, 1
3  |4, 5
8  |6, 7, 9
11|10, 12, 13, 14

2  |0, 1
3  |4, 5
8  |6, 7, 9, 10
11|12, 13, 14

2.0
2  |0, 1
3  |4, 5, 6
8  |7, 9, 10, 11, 12

13, 14

2  |0, 1
3  |4, 5
8  |6, 7, 9, 10, 11,

12, 13, 14

2  |0, 1
3  |4, 5
8  |6, 7, 9, 10, 11,

12, 13, 14

3.0
2  |0, 1, 11, 13, 14
3  |4, 5, 6, 7, 8, 9,

10, 12

2 |0, 1, 10, 11, 12,
13, 14

3  |4, 5 ,6, 7, 8, 9

2  |0, 1, 11, 13, 14
3  |4, 5, 6, 7, 8, 9,

10, 12

Table I: Clustering results for the min-cut, max-cut and min-
concentration algorithms.
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Fig. 1. A graph with its corresponding edge-loads and the
clustering result applying the min-concentration algorithm
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Fig. 2. Traffic concentration ratio, maximal traffic concen-
tration and average delay in SPTs, BSTs, STs and MCTs .



mize it. Otherwise, min-cut is better than max-cut when the
number of cores is well adapted to the size of the graph. For a
small number of cores, the max-cut algorithm shows a better
behavior.

V. CONCLUSIONS
This paper presents three clustering algorithms choosing

the minimal set of cores in MCTs that optimize a certain
objective function while keeping the clustering ratio condition
(II.E.3). The clustering ratio is related to the QoS degradation
relative to the SPTs built by dense mode protocols. This deg-
radation is due to the triangular effect produced by having the
cores as intermediate routers between senders and receivers.
The clustering results of these algorithms are used to show the
advantages of MCTs over STs and BSTs in terms of traffic
concentration and delay. In addition, these parameters are
close to the values reached in SPTs when the number of cores
is equal to those used in STs and BSTs to minimize the traffic
concentration[10]. The min-concentration algorithm gives the
best results. Furthermore, as MCTs re-use all the cores for all
the groups, they are robust to core failures while STs and
BSTs suffer from a single point (RP) of failure.
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