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Abstract

This paper tackles low delay adaptive video streaming
over error-prone networks. Our framework consists of an
encoding station, an edge server and a set of clients with
various access rates. The edge server is capable of per-
forming simple error concealment operations on the incom-
ing data before forwarding the adapted media to its clients.
We study two encoding scenarios: versions (multiple encod-
ings at various output rates) and layers. We develop a uni-
fied end-to-end distortion model, which we use to derive the
optimal coding strategy for both scenarios. Finally we an-
alyze the performance of MPEG-4 coded versions against
MPEG-4 FGS-coded layers in rate-constrained lossy envi-
ronments. Experiments show that versions perform better
than layers when the constraint on the aggregate rate is
somewhat relaxed, for low to medium packet loss ratios.

1 Introduction
A growing number of entreprises uselive streaming

video to convey news clips or corporate communications to
their employees or customers. Clearly, achieving efficient
streaming of live video to a wide heterogeneous user popu-
lation poses many technical challenges.

We consider the scenario illustrated by Figure 1. An en-
coding stationE compresses the input video signal andun-
reliably streams it (i.e., UDP, possibly multicast) to an edge
serverS located at the frontier between the entreprise net-
work (extranet) and the client population. The edge server
performs simple error concealment strategies beforereli-
ably streaming (i.e., TCP/HTTP for security reasons) the
appropriate bit rate to each of its clients.

We study and compare the following two situations: (i)
The encoding station produces layered-coded video (band-
width efficient but sensitive to packet loss). In this case
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Figure 1. Adaptive streaming of (a) video ver-
sions and (b) layered video.

(see Figure 1(a)), the edge server forwards the base layer
to all clients and a subset (possibly all) of the enhancement
layers to clients with adequate access rates. (ii) The encod-
ing station creates multiple versions (good error resilience
but bandwidth-greedy). The edge server replaces corrupted
video frames by the corresponding video frames from the
immediately lower version rate such that the rate constraint
is not violated and forwards the appropriate version to its
clients (see Figure 1(b)). Note that in the layered-coded
case there is no simple error concealment strategy the edge
server can implement.

Our work builds on prior research on benchmarking
versions- against layered-coded videos [2, 4], in which it
was shown that versions were usually the preferred adap-
tive coding and streaming strategy over layers for lossless



environments. We go a step further and study the im-
pact of packet loss for low-delay adaptive video stream-
ing. Our contribution is twofold. First, we introduce
a novel rate-distortion model. Our model encompasses
source coding and channel degradation for both versions-
and layered-coded video and is shown to adequately fit
real data. Second, we study the streaming performance of
versions- against layered-coded video for the scenario de-
scribed above. Versions-coded videos are shown to usually
perform better under realistic assumptions.

The paper is organized as follows: Section 2 formally
defines the problem as a dynamic programming problem.
Our unified rate-distortion model is described and validated
against real data in Section 3. The optimization problem is
solved and experimental results are analysed in Section 4.
Finally Section 5 provides final conclusions to this work.

2 Problem formulation
Let assume the heterogeneous clientsCi are sorted ac-

cording to their increasing access bandwidthBi on the last,
and lossless segment of the streaming path. LetDi de-
note the distortion perceived by the clientCi, and that it
depends on the streaming strategy and the loss process on
the Internet network. The first streaming policy (see Fig-
ure 1(a)),is based on a generic scalable encoding algorithm,
which generatesN layers and additive streams of ratesR1

to RN (i.e., the layern has a rate ofrn = Rn+1 − Rn).
The second streaming strategy, represented in Figure 1(b),
builds N different versions of the media information with
increasing ratesR1 to RN , and sends each version to a dif-
ferent client (or to a group of clients with similar access
rates). We assume that the number of versions, respectively
layers, is equal to the number of client clusters, that group
client with similar access bandwidth. Note that the cluster-
ing algorithm is not addressed here due to space constraints,
but related work may be found in [6] for interested readers.
In this context, the optimization problem, similar for both
streaming strategies, can be written as follows.

Problem formulation: Given (i) the access rates
B1, .., BN of N clients, (ii) the loss ratiop and (iii) the
available backbone bandwidthB, find the optimal stream-
ing strategy, (i.e., the average rates~R of layers, respectively
versions), such that the average distortionD? :

D? = min
~R

1
N

N∑

i=1

DN (~R), (1)

under the constraints that
∑N

i=1 Ri ≤ B, and thatRi ≤ Bi.

3 Performance in a lossy scenario
This section proposes an analytical model for the perfor-

mance of the streaming system, in the presence of packet
losses on the path between the origin server and the proxy.

Assume that the average distortioñD in the presence of
losses can be written as the weighted sum of the source rate
distortion D, and the average distortion due to losses,δ,
i.e., D̃ = D(1 − ε) + εδ, whereε represents the loss prob-
ability. This model is quite commonly accepted, and has
been shown to provide a reasonable approximation of the
distortion in a lossy scenario [3]. The loss degradationδ is
driven by the size of the area damaged by one loss (it corre-
sponds to one frame in our scenario, where each packet loss
induces the loss of a complete frame), and a temporal loss
propagation factorη, which depends on the content of the
video sequence.

Let Dn denote the source distortion of the stream en-
coded at rateRn. In the version case, it simply corresponds
to thenth stream, and in the layer case, this stream is the
sum of then lowest layers. The distortioñD1 experienced
by the clients with the lowest access bandwidth, and sub-
scribed to the stream of rateR1 (i.e., the base layer in the
scalable encoding), is thus simply written as :

D̃1 = D1 (1− ε1) + η0 D0 ε1 , (2)

whereD0 represents the average distortion when a com-
plete frame is missing, andη0 is the temporal error propa-
gation factor that can be estimated off-line or for the set of
sequences. Under the assumption of a independent packet
loss process of probabilityp, the frame loss probabilityεn

depends on the encoding rateRn (respectivelyrn in the lay-
ered encoding) and can be written asεn = 1 − (1 − p)

Rn
K S

(respectivelyεn = 1− (1− p)
rn

K S ), whereS is the average
packet size, andK is a constant given by the frame rate.

In the version streaming scenario, the proxy replaces the
lost frames by the corresponding frame taken from a stream
at a lower rate. It chooses the closest inferior resolution
where the encoded frame is available. If all the versions of
a given frame are missing, it cannot be replaced, and the
client freezes the previous frame. In general, the distortion
D̃n, experienced by the clients subscribed to the stream of
rateRn, is written as :

D̃n = Dn (1− εn) + η0 D0

n∏

i=1

εi

+
n−1∑

j=1

ηj Dj (1− εj)




n∏

i=j+1

εi


 . (3)

In the layered encoding scenario, the data from a given
layer can only be decoded if all the lower layers are also
correctly received. In case of loss, the proxy does not re-
place the lost information, and does not even transmit the
upper layers since they are useless for the receivers. In the
general case, the distortioñDn as seen by the clients that
subscribed to the firstn layers (i.e., a stream of rateRn) is
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Figure 2. Source rate-distortion characteris-
tics, for the CIF Foreman sequence.

given by :

D̃n = Dn

 
nY

i=1

(1− εi)

!
+ η0 D0

nY
i=1

εi (4)

+

n−1X
j=1

ηj Dj

 
jY

i=1

(1− εi)

! 
nY

i=j+1

εi

!
.

4 Optimized streaming strategies

4.1 Example: MPEG-4 video

In order to compare version and layer streaming strate-
gies, we now consider the particular case of MPEG-4 FGS
video streaming to two clients. We use the Microsoft im-
plementation of the MPEG-4 FGS video coder. Similarly to
most coding algorithms, the average source distortionDn

of a single stream encoded with a rateRn can be written
as [3]:

Dn = χ Rξ
n, (5)

whereχ andξ are directly related to the encoding scheme
and the video sequence content. The average distortion for
a layered stream encoded with MPEG-4 FGS can be mod-
elled as :

Dn = χ(rB)ξ 2γ1 rE+γ2
√

rE , (6)

where (χ, ξ) and (γ1, γ2) are driven by the scene con-
tent. The model proposed in (6) is based on the study
proposed in [1], where the influence of the base layer en-
coding has been factored in through the multiplicative term
χrξ

B .Figure 2 shows the validity of the source rate-distortion
characteristics for MPEG-4 video scheme for medium base
layer rates. It is worth noting here that FGS is in general
penalized in terms of compression performance compared
to a single stream encoding. This has been reported by nu-
merous studies, and also verified for other types of scalable
coders [5], In case of loss, the decoder simply freezes the
last correctly received frame, as it is the case in most cur-
rent decoders. The Figure 3 validates the distortion model
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Figure 3. Total distortion for lossy streaming
to two clients, and frame substitution at the
proxy (CIF Foreman sequence).

proposed in the previous section in the lossy streaming sce-
nario. It can be seen that switching among streams gener-
ates quite acceptable degradations, as long as the loss ratio
stays small. Also, it can be seen that, even if the version
policy performs better at low loss ratio, the increase of the
distortion with the loss probability is much faster than in the
layered scenario.

4.2 Experimental Results

Versions Layers
B Ropt

1 Ropt
2 Ropt

1 Ropt
2

0.4 0.2 0.2 0.4 0
0.6 0.29 0.31 0.5 0.1
0.75 0.36 0.39 0.5 0.25

1 0.5 0.5 0.5 0.25
1.25 0.5 0.75 0.5 0.25

Table 1. Optimal streaming rates [Mbps] in
function of B, for p = 10−4 and (B1, B2) =
(500kbps, 750kbps).

The optimal streaming strategies for version and layer
policies, as given in solving the optimization problem of
Eq. (1), are now compared in different scenarios. Table 4.2
first compares the optimal encoding rates as a function of
the constraint on the total rate. It can be seen that the version
strategy generally tends to evenly distribute the total rate
between both clients, while the layer policy generally allo-
cates the maximal possible bandwidth to the base layer. Fig-
ure 4 represents the minimal average distortion, as a func-
tion of the total rate constraint. When the rate constraint is
restrictive, layer streaming performs better, since it clearly
presents less redundancy. However, when the available rate
is larger, version streaming performs better thanks to a bet-
ter error resilience. Interestingly, when the error rate is very
high (e.g.,5 ·10−2), the version policy is always worse than
the layer strategy, even for large available bandwidths (ex-
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Figure 4. Minimal distortion, as a function of
the total rate constraint.

cept when we have the saturation effect in layer case that
comes from bandwidth constraint, see Figure 4(a). In this
situation, the version streaming policy tries to strictly limit
the rate of both versions in order to lower the probability of
losing frames. Figure 5 finally compares the performance
of the optimal streaming strategies as a function of the loss
probability. The version policy performs better when the
rate constraint is relaxed, and the access rates are similar.
When these access rates are very different, the layer strategy
performs better for high loss ratios, as it has been previously
observed.

5 Conclusions

This paper presented an optimal streaming strategy for
both versions- and layers-coded video for transmission over
lossy, possibly rate-constrained networks. It is shown that
the optimal version policy shall be preferred over the opti-
mal layer streaming strategy, especially at low-to-medium
PLRs and large available backbone rates. In future work,
we will analyze the impact of adding optimal FEC to our
framework. Conclusions drawn from this work should intu-
itively hold.
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Figure 5. Minimal distortion, as a function of
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