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ABSTRACT
1 A sparse classifier is guaranteed to generalize better than
a denser one, given they perform identical on the train-
ing set. However, methods like Support Vector Machine,
even if they produce relatively sparse models, are known
to scale linearly as the number of training examples in-
creases. A recent proposed method, the Kernel Matching
Pursuit, presents a number of advantages over the SVM,
like sparser solutions and faster training. In this paper we
present an extension of the KMP in which we prove that
adapting the dictionary to the data results in improved per-
formances. We discuss different techniques for dictionary
adaptation and present some results on standard datasets.
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1 Introduction

Recently there was a revived interest in kernel–based clas-
sification methods. Even if the research in the field dates
back from seventies, it is only in the last decade that prac-
tical tools, like Support Vector Machines (SVM) [2, 18],
became available. The basic idea behind SVM is to find a
large margin separation boundary between classes in some
feature space generated by a Mercer kernel function. Even
if SVMs are quite successful in generating relatively sparse
solutions, both theoretical and practical reasons justify the
effort of searching for methods that produce even sparser
models.

From a theoretical point of view, it has been proven
[19] that the expected generalization error rate, for a bi-
nary classification, is less than2C log 2 − 2l−1 log η, with
probability 1 − η, wherel is the number of training ex-
amples andC is the compression rate. This means that a
sparser model has better generalization capabilities than a
denser model, given the same performance on the training
set. From a practical perspective, besides generalization
performances, having a sparser model means not only less
storage required to hold the model, but also faster classifi-
cation decisions.

A large number of techniques have been proposed

1Work performed with the financial support of the Swiss OFES and
with the support of the IM2–NNCR of the Swiss NFS.

to produce sparse non-linear classifiers. They range from
post-processing the models produced by an SVM, like in
[5], to different greedy approximations [15, 8, 17, 13, 6].
An interesting approach is pursued in [20] where the clas-
sical Matching Pursuit algorithm is extended and adapted
to classification framework.

In this paper we propose an adaptive version of it that
tries to improve the performances of Kernel Matching Pur-
suit (KMP) by tuning the dictionary to better fit data. To
this end we exploit the flexibility one has in choosing the
dictionary functions and we show how an adapted dictio-
nary can be built from a larger (possibly infinite) family of
functions. The structure of the paper is as follows: after a
brief overview of the problem and of KMP given in section
2, an adaptive approach to KMP is presented in section 3.
Finally, a number of experiments are reported in section 4
and conclusions are drawn in the last section.

2 Matching Pursuit for Pattern Classifica-
tion

2.1 Supervised Learning Problem

The problem of learning classification functions from ex-
amples can be formally stated as an estimation problem of
a functionf̂ : X ⊆ Rp → Y = {−1, 1} using the training
setZl = {zi = (xi, yi)|i = 1, . . . , l} ⊂ Z = X × Y gen-
erated by some unknown functionf , such thatf̂ will cor-
rectly classify unseen examplesz = (x, y), i.e. f̂(x) = y
for examplesz that are drawn from the same underlying
probability distributionP (Z) as the training data.

LetL : Y × Y → R be aloss function, i.e. a function
that measures the discrepancies between the true classyi

and the predicted clasŝf(xi) for a given set of examples
and a given/estimated classification functionf̂ . Without
any restrictions on the class of functionŝf can be chosen
from, even if the performances on the training set are good
(e.g. f̂(xi) = yi,∀i = 1, . . . , l) it does not mean̂f gen-
eralizes well to unseen examples. Hence, only minimizing
the training error (empirical risk)

Remp[f̂ ] =
1
l

l∑

i=1

L(yi, f̂(xi)) (1)

does not imply low test error (risk) averaged over the test
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examples drawn from the underlying distributionP (Z):

R[f̂ ] =
∫
L(y, f̂(x))dP (x, y). (2)

Common approaches for improving the generalization ca-
pabilities of the learned function include controlling the
capacity of the function class (as in Support Vector Ma-
chines), imposing some regularization constraints or as-
suming some functional form for̂f .

2.2 Matching Pursuit for Pattern Classifica-
tion

Let H be a Hilbert space of functions equipped with an
inner product〈·, ·〉 and a norm‖f‖ =

√
〈f, f〉. A subset

D ⊂ H is calleddictionary if for eachg ∈ D we have
‖g‖ = 1 and its linear span is dense inH.

Matching Pursuit (MP) is a technique commonly used
in signal processing for obtaining sparse approximations
for given signals. Generally, MP is a greedy algorithm for
approximating a functionf with a n−term linear combi-
nation of somebasis functionsselected from a dictionary
D = {g1, g2, . . . , gN}:

f̂n =
n∑

k=1

αkgik
(3)

where indicesik ∈ {1, . . . , N}.
In the case of approximating a known functionf there

are some conditions that guarantee that a greedy algorithm
like MP will generate an optimal solution [16]. However,
in the case of pattern classification the optimality is given
by the generalization capabilities of the approximation, i.e.
we have to minimize a criterion like (2) when the only in-
formation available is the training setZl.

Let now Σn(D) be the set of all functions fromH
that can be expressed as a linear combination of at mostn
elements fromD. Thus,

∀h ∈ Σn(D) : h =
∑

k≤n

αkgik
, αi ∈ R (4)

The best achievable error by an−term approximation is

nR∗ ∆= inf
h∈Σn(D)

nR[h] (5)

= inf
h∈Σn(D)

∫
L(y,

∑

i∈I

αigi(x))dP (x, y). (6)

However, as the only information available is the training
data, one has to use the empirical counterpartnRemp[h] in-
stead, as the objective function.

In its basic form, MP builds a series of approxima-
tions {f̂n|f̂n ∈ Σn(D), n ≥ 1} by adding at each stepn
a termαngin to the current approximation, whereαn ∈ R
andgin

∈ D are chosen to minimize the empirical risk:

(αn, gin) = arg min
α∈R
g∈D

nRemp[f̂n−1 + αg] (7)

wheref̂n−1 is the current approximation. This amounts to
performing an optimization in the function space, so using
a steepest-descent approach we have

gin = arg min
g∈D
|〈g,−∇ (nRemp)〉| , (8)

in other words,gin is the function fromD that is most
collinear with the gradient of the error function.

Finally, αn can be chosen by a line-search minimiza-
tion procedure:

αn = arg min
α∈R

nRemp[f̂n−1 + αgin ]. (9)

This algorithm is termedbasic MPin [20], where two other
variants are presented, aimed at globally optimizing the co-
efficientsαn. Indeed, as one may notice, at stepn there is
only one coefficient that is optimized. The previously cho-
sen coefficientsα1, . . . , αn−1 are not optimal with respect
to the currently chosen functiongin . The first proposed
variant,MP with backfitting, re–adjusts all the coefficients
previously selected with respect to the current set of basis
functions. Noticing that with a proper decomposition of the
function space in two complementary subspaces, one may
efficiently optimize

(α(n)
1,...,n, gin) = arg min

α1,...,n∈Rn

g∈D

nRemp[f̂n−1 + αng], (10)

a second variant, calledMP with prefitting (MP-P) is
proposed in [20]. A modified version of MP-P will be
used throughout all the experiments reported here and a
schematic description of the algorithm is given in Appendix
A.

3 Adaptive Kernel Matching Pursuit

Let K : Rp × Rp → R be a function used to generate a
dictionaryD = {gi(·) = K(·,xi)|i = 1, . . . , l}. Then

Σn(D) =

{
h(x) =

n∑

k=1

αkK(x,xik
)|ik ∈ {1, . . . , l}

}

(11)
and this functional form closely resembles the one used in
kernel machines methods (e.g. Support Vector Machines),
hence the name ofKernel MP(KMP)[20]. Note however,
thatK is not necessarily a kernel function in Mercer sense,
but simply any function of the above form.

Another important observation is that the dictionary
D may contain a heterogeneous collection of functions, al-
lowing a larger class of approximation functions to be im-
plemented. However, one still has to control the capacity
of the dictionary in order to obtain classification functions
that generalize well.

Generally, in kernel machines algorithms the kernel
functions depend on a hyper–parameterθ (be it a scalar or
a vector, for example the degree of a polynomial kernel orγ
for a Gaussian kernel – see the experimental section) that is
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usually tuned by a validation procedure. Here we propose
a different approach, where we try to adapt the parameterθ
before starting the greedy procedure. We investigate three
different strategies and we will show in the experiments
section that they have the capability of generating sparser
models with lower error rates than KMP or SVM.

Let now consider a slightly different form of the ker-
nel function, namely

gi(x; θi)
∆= K(x,xi; θi) (12)

whereθi is an element of some parameter space. In contrast
with previous KMP approach we let each function have its
own parameterθi. Depending on the nature of the param-
eter space, we may obtain a potentially infinite dictionary,
and allowing each basis function to have its own parameter
increases the flexibility of the dictionary. However, only
some of these functions are relevant for a given classifica-
tion task. The problem is how to select an appropriateθi

for eachgi. Naturally, we would like to have such aθi that
will better support the building of approximation function
f̂n. Let us consider the case whenn = 1, so only one basis
function is selected in the approximation and let this func-
tion begi. Then, we would like to maximize the correct
classification with respect to this particular choice, i.e. we
would like to minimize the loss function:

θi = arg min
θ

j∈Ji

L(yj , gi(xj ; θ)) (13)

= arg min
θ

j∈Ji

L(yj ,K(xj ,xi; θ)). (14)

The set of indicesJi defines a neighborhood for eachxi

and different choices of this neighborhood lead to differ-
ent strategies for optimizingθi and consequently different
Adaptive KMP) algorithms:

• global optimization (AKMP-PG): we let Ji =
{1, . . . , l}\{i} and solve (14) for alli = 1, . . . , l. This
means that for each point in the training set we per-
form a global optimization of the parameterθ. How-
ever, such a global approach may be too costly for
some problems (especially ifθ is a vector) and may
lead to overfitting, as the dictionary obtained will be
too specialized.

• local optimization (AKMP-PL): Let Ji =
{j|d(xi,xj) ≤ T}, so Ji will contain the in-
dices of those points that are closer thatT to xi,
according to some metricd. This is the opposite
strategy of the one above, and tries to avoid a possible
overfitting by limiting the optimization only to a
neighborhood of each point. In practice however,
it may happen that a neighborhood of an example
contain only examples from the same class, making
the optimization pointless. In such cases we just set
the corresponding parameter to a predefined value.

• stochastic optimization(AKMP-PS): For every point
xi we generate a series of random setsJb

i ⊂

{1, . . . , l}, b = 1, . . . , B by sampling without replace-
ment from{1, . . . , l}. Then we solveB times the op-
timization (14) for each pointxi, obtainingθb

i . The
final value for the parameter is taken as the sample
mean:

θi =
1
B

B∑

b=1

θb
i . (15)

We have tried also to use the median of{θb
i}, but the

results did not change significantly. While this proce-
dure may be more computationally intensive, it also
avoids overfitting the training set. In practice we no-
ticed that a number of 20–30 samples, each contain-
ing 10%–25% of whole training data is sufficient for
a good adaptation of the dictionary.

4 Experiments

In this section we will describe a number of experiments
that have been performed in order to assess the perfor-
mance of the algorithms presented and to study their be-
havior on various datasets.

In all experiments we have used a square loss function

Lse(y, f̂(x)) =
(
y − f̂(x)

)2

(16)

and the dictionary was based on Radial Basis Functions
family:

gi(x) = K(x,xi) = exp
(−γi‖x− xi‖2

)
(17)

Besides the AKMP algorithm, we used for compari-
son the Relevance Vector Machine (RVM) [17], a Support
Vector Machine (SVM) [2, 18], and the KMP with prefit-
ting. Some datasets were already splitted into training and
testing part (e.g. Ripley’s synthetic data) while others were
not. In the first case we used the training set both for train-
ing and validation (by splitting it in two independent sub-
sets) while in the latter we split the full sets in three parts.
All experiments have been repeated 50 times and the aver-
age classification error is reported.

The first experiment tested AKMP method on Rip-
ley’s synthetic data [14]. This set consists of 250 training
patterns and 1000 testing examples, generated from a Gaus-
sian mixture, and for which the Bayes error rate is about
8%. The best performer was AKMP-PS (8.3% error rate),
the KMP with stochastically optimized dictionary, that out-
performed all the other methods, while providing a very
sparse solution (6 support vectors against 7 for RVM or 73
for SVM). 2

The second set of tests was carried out on a number
of datasets from UCI repository [1]. On the Pima and Iono-
sphere datasets we used a similar testing procedure as the
one in [20] and the results obtained there are given in the ta-
ble 1, and for the Titanic dataset we used the same settings
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(a) AKMP-PG(8.8%)
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(b) AKMP-PL (8.7%)
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(c) AKMP-PS(8.3%)
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(d) KMP-P(9.4%)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(e) SVM (9.7%)
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(f) RVM (9.9%)

Figure 1. Different classification boundaries obtained with
AKMP (Fig. 1(a)–1(c)) and with KMP (1(d)), SVM (1(e))
and RVM (1(f)), respectively. All methods, except SVM
generated very sparse solutions. Note, however, the ten-
dency to overfitting of the AKMP method with global op-
timization of the dictionary. For each classifier, its average
error rate on the testing set is indicated between parenthe-
ses.

Ionosphere Pima Titanic
AKMP-PG 6.16% (17) 26.01% (15) 22.38% (19)
AKMP-PL 5.95% (25) 25.07% (18) 22.51% (25)
AKMP-PS 5.87% (25) 23.52% (17) 22.37% (21)
KMP [20] 6.87% (50) 23.9% (7) N/A

SVM [20, 17] 6.51% (68) 24.1% (146) 22.1% (94)
RVM [17] N/A 19.6% (4) 23.0% (65)

Table 1. Comparative results on different datasets. Be-
tween parentheses is indicated the number of dictionary
functions/support vectors used.

as in [17]. As can be noted from table 1, generally AKMP
family of methods produces sparser models while improv-
ing also the classification rates. The only exception is the
Pima dataset on which the model contains more functions
than in the original KMP.

Another interesting observation is that, unlike SVM
and like RVM, all KMP-based algorithms choose as ”sup-
port vectors” points that do not necessarily lie close to the
classification boundary.

5 Conclusions

In this paper we have presented an extension of Kernel
Matching Pursuit method that has the potential of produc-
ing even sparser models than the original KMP at compa-
rable or better classification rates. Relying on the fact that
the dictionary functions do not have to obey very strict rules
(like the Mercer kernels in SVM) one can adapt the param-
eters of each function individually, in such a way that it
better fits the problem at hand. We have discussed three
alternative techniques that adapt the dictionary using either
the full training set or a subset of it and we have empiri-
cally analyzed their properties. Among them, the stochas-
tic approach provided the most reliable results and it also
avoided the overfitting in all our experiments. On the other
hand it required more computational effort than the other
two approaches.

The study presented here opens interesting perspec-
tives on finding problem-dependent (or data-driven) dic-
tionaries that would generate sparse models. It should be
noted that the dictionary adaptation has been done in a
rather agnostic manner: the same method has been used for
data comming from various sources and we didn’t incor-
porate any a priori knowledge. Currently, we study other
means of adapting the dictionary by, for example, adapting
the distance used in radial basis functions of the dictionary
to incorporate different invariant properties that are more
related to a specific problem.

Adaptive KMP with pre-fitting algorithm

In this section we will briefly present the algorithm for
AKMP-Px that has been used throughout all the experi-
ments reported here. This algorithm is an adaptation of
the algorithm described in [20] and represents an efficient
means for directly optimizing

(
α

(n)
1,...,n, gin

)
= arg min

α1,...,n∈Rn

g∈D

nRemp[f̂n−1 + αng].

(18)
Hereα

(n)
1,...,n is then–dimensional vector of coefficientsαi

obtained at iterationn. Note that in the optimization prob-
lem above, the firstn − 1 α’s are absorbed in̂fn−1. Basi-

2The results for RVM are slightly different from those in [17] as we
have trained it on the full set of 250 points and not only on a subset of 100
points as in [17].
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cally, equation (18) states that we are searching for a func-
tion g ∈ D anda setof coefficientsαi such that they min-
imize the empirical loss. The method described in [20] re-
lies on maintaining a decomposition of the dictionary func-
tions as well as the target on two orthogonal components,
given by the projections onto the space generated by the
currently selected functions and its complement with re-
spect to the full dictionary. Before starting we introduce
some notations: letD = [D(i, j)] be the dictionary matrix,
i.e. D(i, j) = gj(xi), ∀gj ∈ D, i = 1, . . . , l. By D(:, j)
we will denoteD’s j–th column, i.e. thel-dimensional
vector obtained by applying the functiongj to all points of
the training set. Finally,I will be the vector of indices of
functions selected so far, andDI andDC will denote the
projection on the space of selected functions and its com-
plement, respectively.

Algorithm 1 Adaptive KMP with pre-fitting in the case
L(yi, f̂(xi)) = (yi − f̂(xi))2

Input: Zl = {(xi, yi)|i = 1, . . . , l}
N > 0 – the number of terms in approximation

Output: f̂N =
∑N

n=1 αngin

Step 1:Build dictionary matrixD by tuning the kernels
using any of the methods described in section 3.
Step 2:Initialize: f̂0 ← 0, I ← [], DI ← [], DC ← D,

R← −∇Remp[f̂0] = [y1, . . . , yn]t

Step 3:
for n = 1, . . . , N do

in ← arg maxi |〈DC(:, i), R〉|
I ← [I, in]
αn ← 〈DC(:, in), R〉
R← R− αnDC(:, in)
α1,...,n ← α1,...,n − αnDI(:, in)
for i = 1, . . . , l do

βi ← 〈DC(:, in), DC(:, i)〉
DC(:, i)← DC(:, i)− βiD

C(:, in)
DI(:, i)← DI(:, i)− βiD

I(:, in)
end for
DC(:, in)← 0
DC(:, i) ← DC(:,i)

‖DC(:,i)‖ , i = 1, . . . , n {for ‖DC(:
, i)‖ 6= 0}
DI(:, in)← 0
βin ← 1
DI ← [DI ; (β1, . . . , βl)] {addβ as a new row}

end for

Note that, according to the definition of the dictionary
we used, the functionsgi in the above algorithm are con-
sidered to have the norm equal to1. Otherwise, one has to
scale all the above equations involving inner products with
a relevant factor.
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