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Abstract

The autocorrelations have been previously used as features for 1D or 2D signal classification in a wide range of

applications, like texture classification, face detection and recognition, EEG signal classification, and so on. However,

in almost all the cases, the high computational costs have hampered the extension to higher orders (more than the

second order). In this paper we present an effective method for using higher order autocorrelation functions for pattern

recognition. We will show that while the autocorrelation feature vectors (described below) are elements of a high

dimensional space, one may avoid their explicit computation when the method employed can be expressed in terms of

inner products of input vectors. Different typical scenarios of using the autocorrelations will be presented and we will

show that the order of autocorrelations is no longer an obstacle.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Usually, in the framework of statistical pattern

recognition, one pattern can be viewed as a func-

tion of time and/or spatial coordinates. Moreover,

in most cases the class membership does not change

as the pattern is translated or scaled. In such situ-
ations we would like to design a classifier that is

invariant to a given class of affine transformations.

One approach consists in transforming each pat-

tern through a function which would induce this

invariancy: if we consider each pattern as a point in
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a vector space, we wish to map all points corre-

sponding to translated (and/or scaled) versions of

one pattern in a single point. In addition, patterns

which differ in other ways should map into distinct

points, and in some sense, patterns which are sim-

ilar should map into points that are close together.

As it will be shown, the autocorrelation func-
tions possess the uniqueness property for even

orders (McLaughlin and Raviv, 1968) and they are

translation invariant. The autocorrelations have

been used in a wide range of applications: char-

acter recognition (McLaughlin and Raviv, 1968),

geo-spatial data mining (Chawla et al., 2000), af-

fine-invariant texture classification (Chetverikov

and Foldvari, 2000), time series classification
(Keogh and Pazzani, 1998) and face detection and

recognition (Popovici and Thiran, 2001; Keogh
ed.
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and Pazzani, 1998; Goudail et al., 1996). However,

in most cases, the applicability of the autocorre-

lations has been limited to first or second order,

due to high computational costs. An interesting

approach is presented in (Kreutz et al., 1996)

where the authors use the autocorrelations up to
the third order and obtain a scale invariant clas-

sification by integrating over different scales. They

succeed to reduce the number of computations by

using the shift-invariant property of the autocor-

relations and by a priori determining the lags for

which the autocorrelations are not equivalent. The

same approach is taken in (Kurita et al., 1998;

Hotta et al., 1998), but it has the disadvantage of
not being easily generalizable for higher orders or

larger local domains.

Our interest is in finding an approach which

scales well with the increase of the autocorrelation

order, allowing us to generalize the use of auto-

correlations. We will present the properties of the

autocorrelation functions and will explore different

approaches for autocorrelation-based pattern rec-
ognition. The paper is organized as follows: Section

2 discusses the properties of the autocorrelation

function and sets the background for the sub-

sequent sections, where two possible scenarios of

autocorrelation-based pattern recognition are pre-

sented. In Section 3 we present a PCA-based

technique and we show how one can perform the

PCA decomposition in the autocorrelation space.
Next section describes the use of autocorrelation

features in the general framework of kernel-based

techniques for pattern recognition. These two

techniques are exploited in Section 5 where we re-

port some experiments performed using autocor-

relation features. Finally, in Section 6 we draw

some conclusions and indicate some possible

directions for further investigation.
2. Generalized autocorrelation functions

2.1. Definition and properties

Definition 1 (Higher-order autocorrelation). Let

w : D � Rm ! R be a real-valued function. The n-
order autocorrelation function associated with

function w is defined as follows:
rðnÞw ðs1; . . . ; snÞ¼
D
Z

wðtÞ
Yn
k¼1

wðt þ skÞdt ð1Þ

It is easy to see that rðnÞw is shift-invariant, in the

sense that wðtÞ and wðt þ sÞ have the same nth

order autocorrelation.
On the other hand, for two functions w1 and w2

it can be proven (McLaughlin and Raviv, 1968)

that the second order (and higher even order)

autocorrelation functions are equal only if

w1ðtÞ ¼ w2ðt þ sÞ, meaning that the two patterns

have the same representation in autocorrelation

space if w2 is a shifted version of w1. This also

means that w1 can be recovered from rð2kÞw1
except

for an unknown translation s. Generally, in the

case of pattern recognition, this is a valuable

property.

Another important property (McLaughlin and

Raviv, 1968) of the autocorrelation functions,

which will be fully exploited later on, is given by

the following.

Lemma 2. Let w1 and w2 be two real-valued func-
tions defined over the same domain. Then, the inner
product of their corresponding autocorrelation

functions rðnÞw1
and rðnÞw2

is given by

hrðnÞw1
; rðnÞw2

i ¼
Z Z

w1ðvÞw2ðv
�

þ sÞdv
�nþ1

ds ð2Þ

Proof. We successively have

hrðnÞw1
;rðnÞw2

i

¼
Z

. . .

Z
rðnÞw1

ðs1; . . . ;snÞ 	 rðnÞw2
ðs1; . . . ;snÞds1 . . . dsn

¼
Z

. . .

Z Z
w1ðtÞw1ðt

�
þ s1Þ . . .w1ðtþ snÞdt

�

	
Z

w2ðuÞw2ðu
�

þs1Þ . . .w2ðuþ snÞdu
�

ds1 . . . dsn

¼
Z Z

w1ðtÞw2ðuÞ
Z

w1ðt
�

þsÞ w2ðuþsÞds

�n

dudt

¼
Z Z

w1ðtÞw2ðsþ tÞ
Z

w1ðvÞw2ðv
�

þ sÞdv
�n

dsdt

¼
Z Z

w1ðvÞw2ðv
�

þ sÞdv
�nþ1

ds �
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Considering the set of admissible values for sk
being discrete and having mk distinct values, it

follows that the space of nth order autocorrela-

tions has
Qn

k¼1 mk dimensions, making the explicit

computation of autocorrelations prohibitively
expensive.

For any w, we build the corresponding auto-

correlation feature vector r
ðnÞ
w (column vector), by

considering the values of rðnÞw ðs1; . . . ; snÞ ordered

sequentially (for example, by letting the variables

si run faster than sj over the set of admissible

values, for any i > j). To simplify the notation, in

the following we will denote by rk the nth order
autocorrelation vector corresponding to the func-

tion wk.

In the following, we will investigate the prop-

erties of those vectors, using the discrete version of

(2):

hr1; r2i ¼
X

s

X
t

w1ðtÞw2ðt
(

þ sÞ
)nþ1

ð3Þ

Let now r1; . . . ; rmf g be a set of linearly indepen-
dent autocorrelation vectors (not necessarily

orthogonal), let R ¼ r1j 	 	 	 jrm½ � be the transfor-

mation matrix having these vectors as its columns,

and let r be a new vector to be projected on the

space spanned by frkgmk¼1. The vector r can be

decomposed into two components:

r ¼ rW þ r?W ð4Þ

where rW 2 W ¼ SpanðfrkgÞ and r?W is orthogonal

to W . Then, the orthogonal projection rW onto W
is given by (see Appendix A for a derivation of this

result):

rW ¼ RðR0
RÞ�1R0r: ð5Þ

Note that all products R0r and R0R imply only

computations of inner products between autocor-

relation vectors which can be computed by means

of (2) and (3), avoiding the explicit computation of
autocorrelations. This method of avoiding the

explicit computation of autocorrelation vectors is

similar to the kernel trick, used, for example, in the

context of support vector machines (Vapnik,

1995).
2.2. Extended feature vectors

One may wish to combine different autocorre-

lation orders in a single and, hopefully, more

descriptive feature vector. For this, it is enough to

define I ¼ i1; . . . ; imf g as a set of indices and r
ðIÞ
w as

the vector obtained by concatenating the auto-

correlations r
ðkÞ
w , where k ¼ i1; . . . ; im. Then it is

easy to see that

hrðIÞw1
; r

ðIÞ
w2
i ¼

X
k¼i1;...;im

hrðkÞw1
; r

ðkÞ
w2
i ð6Þ

meaning that computing the inner product of two

compound feature vectors can be done by simply

summing the inner products of the components.
Another consequence of this observation is the

fact that the autocorrelations may be computed

over any topology of the local neighborhood: one

may consider a partition of the domain D ¼ [iDi

and use an extended feature vector composed of

autocorrelations computed on Di for discriminat-

ing the patterns, still one can use a similar formula

to (6) to compute the inner products. In the fol-
lowing two sections we use simple autocorrelation

vectors when deriving our results, but the same

techniques remain valid for extended feature vec-

tors as well. Moreover, in the experimental section

we present an application of extended feature

vectors for face class modeling.
3. Applying PCA to autocorrelation feature vectors

Principal component analysis (PCA) is a tech-

nique for extracting the structure from a high-

dimensional data set. PCA can be viewed as an

orthogonal transformation of the coordinate sys-

tem in which the data is described. This transfor-

mation is performed in the hope that a small
number of principal directions will suffice to well-

approximate the data. There are different methods

to perform PCA, the most common requiring the

diagonalization of the covariance matrix, or,

equivalently, to solve the eigenproblem

Cvi ¼ kivi ð7Þ
where C is the covariance matrix and ki are the

eigenvalues corresponding to the eigenvectors vi.
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Naturally, we are interested only in the non-trivial

solution of (7). Following a similar approach as in

(McLaughlin and Raviv, 1968), we will derive a

method for performing PCA in autocorrelation

space that employs only dot products between
feature vectors.

Let frkg be a set of mean-centered autocorre-

lation vectors (later we will remove this assump-

tion). The equivalent problem of (7) is

RR0vi ¼ kivi ð8Þ

where the elements of the matrix RR0 are sums of

outer products rir
0
i ðRR0 ¼

P
i rir

0
iÞ. The rank of RR0

cannot exceed m, the number of data/autocorre-

lation vectors, even if its dimensionality is usually

much bigger than m� m. We can solve the prob-

lem (8) indirectly, starting from a more manage-

able eigenproblem:

R0Rwi ¼ kiwi: ð9Þ

Note that the size of R0R is m� m and that its

eigenvectors are wi. Now, by left-multiplying with

R we obtain

ðRR0ÞðRwiÞ ¼ kiðRwiÞ: ð10Þ

If we denote by ui ¼ Rwi=
ffiffiffiffi
ki

p
, we see that ui are

the eigenvectors of ðRR0Þui ¼ kiui, so they are

actually the eigenvectors vi of problem (8). It fol-

lows that if ki 6¼ 0 (the only case we are interested

in), then

vi ¼
Rwiffiffiffiffi

ki

p ð11Þ

is the solution of (8) when wi is the solution of (9).

Since the ranks of RR0 and R0R are equal, there are
no eigenvectors missed or added by this indirect

method.

Then, the projections of the vectors frkg on the

principal directions will be given by

ai ¼ R0vi ¼
R0Rwiffiffiffiffi

ki

p : ð12Þ

Generally, vi are not valid nth order autocor-

relations so the projection of a vector r on vi
cannot be computed directly as a simple inner
product. Instead we have to use
r0vi ¼
r0Rwiffiffiffiffi

ki

p : ð13Þ

All of the above development has been done

supposing that the vectors rk are centered around

their mean. We will remove now this restric-

tion and we will prove that the centering in the
autocorrelation space can be carried out indi-

rectly, without computing the autocorrelations.

In Eqs. (8)–(13) we have to replace the matrix

R with R� where R� ¼ r1 � �rj 	 	 	 jrm � �r½ �, with �r
being the mean autocorrelation vector. Comput-

ing the product R0
�R� reduces to computing

the inner products hri � �r; rj � �ri for all i; j ¼
1; . . . ;m:

hri � �r; rj � �ri ¼ hri; rji �
1

m

Xm
k¼1

hri; rki

� 1

m

Xm
k¼1

hrj; rki þ
1

m2

Xm
k;l¼1

hrk; rli

ð14Þ

which translates into

R0
�R� ¼ R0R� 1

m
1mmðR0RÞ � 1

m
ðR0RÞ1mm

þ 1

m2
1mmðR0RÞ1mm ð15Þ

where 1mm is an m� m matrix of ones.

Finally, we have to compute the projection of

r� ¼ r0 � �r on the principal axis, where r0 is a new

autocorrelation vector which has to be projected
on the principal directions. Similar to (15), we

have:

r0�R� ¼ r00R� 1

m
11mðR0RÞ � 1

m
ðr00RÞ1mm

þ 1

m2
11mðR0RÞ1mm ð16Þ

and from (13) we have the projection on the ith
principal direction:

r0�v�i ¼
r0�R�w�iffiffiffiffiffiffi

k�i
p ð17Þ

where v�i, w�i and k�i are obtained by considering

Eqs. (9) and (11) with R� replaced for R.
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4. Higher-order autocorrelations in the context of

kernel-based methods

A standard technique of transforming a linear

classifier into a non-linear one, consists in pro-
jecting the initial space into a feature space,

through a non-linear mapping Uð	Þ. Now, being

given a fixed mapping U : X ! K, we define the

kernel function as the inner product function

k : X � X ! R, i.e., for all x1; x2 2 X :

kðx1; x2Þ¼D Uðx1Þ;Uðx2Þh i: ð18Þ
For a set of m vectors xi � Xm, the Gram matrix

Gij¼D hUðxiÞ;UðxjÞi ¼ kðxi; xjÞ ð19Þ
is called kernel matrix.

Usually we are not given the function Uð	Þ, but

the kernel function kð	; 	Þ. Some of the kernels used
in practice are

polynomial kPðxi; xjÞ ¼ ðhxi; xji þ 1Þp

sigmoidal kSðxi; xjÞ ¼ tanhðjhxi; xji þ dÞ
radial basis function kRBFðxi; xjÞ

¼ expð�ckxi � xjk2Þ
¼ expð�cðhxi; xii þ hxj; xji � 2hxi; xjiÞÞ

It follows that for all kernel functions that can be

expressed in terms of inner products of data, we

can use the technique developed above to carry out

the computations of the kernel matrix. Then,

performing a kernel PCA (Sch€olkopf et al., 1998)
or training a Support Vector Machine (Vapnik,

1995; Cristianini and Shawe-Taylor, 2000) is an

immediate task (Popovici and Thiran, 2001). We

use this approach for computing the kernel matrix

corresponding to a SVM trained in autocorrela-

tion space and we present an application in Section

5.2.
5. Applications

In this section we will present different scenarios

of using the autocorrelation feature vectors for

pattern classification. The point here is to exem-

plify the use of autocorrelation features and not

necessarily to build a state-of-the-art classifier for
either of them. The first example uses the tech-

nique developed in Section 3, while the second

shows how a kernel-based classifier can be trained

in the autocorrelation space and is based on the

considerations from Section 4.

5.1. 1D Functions

In order to assess the validity of the method

presented here, we carried out a number of tests on

the Waveform dataset from the UCI database

(Blake and Merz, 1998). The set consists of 5000

samples of 1D signals, distributed equally in three

classes. The goal of the experiment was to study
the influence of different parameters in a binary

classification task: discriminate between the first

class (called A) and the other two (B and C).

The discrimination function was based on the

distance from feature space (DFFS): a sample is

classified as belonging to class A if its DFFS to the

feature space of class A is less than a threshold (the

DFFS is defined as the length of the orthogonal
component of a vector that is to be projected on

the space spanned by the eigenvectors of the

covariance matrix––see for details Turk and

Pentland (1991).

In all experiments, 500 vectors from class A
(randomly chosen) have been used to perform

PCA in autocorrelation space, and to determine

the threshold. Another 500 vectors from class A
and 500 from classes B and C have been used to

test the classification. Fig. 1 presents some results

obtained by autocorrelations features in compari-

son with some other methods (notation

ACorr(n,d) is used to designate an autocorrelation

function of order n having d distinct values for

each of the variables si (lags)).

5.2. 2D Functions

In the case of pattern recognition for computer

vision, a large number of classical algorithms have

been adapted to perform the classification of im-

age patterns. Usually an image pattern of size

w� h is considered as a vector in a ðwhÞ-dimen-

sional space. A disadvantage of this perspective is
the loss of 2D neighborhood information. On the

other hand, the autocorrelation features are easily
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adapted to the dimensionality of the problem, by

choosing the correct shape of the neighborhood.

Here, we will briefly present a method for face

class modelling that makes use of 2D autocorre-

lations for describing the face patterns. For a more

detailed description the interested reader is re-

ferred to Popovici and Thiran (2001). We consider

examples of human faces and non-faces in the
form of intensity matrices of size 20 · 20 and we

describe them in terms of their autocorrelation

coefficients for orders from 1 to 6. More precisely,

each image pattern (faces and non-faces alike) is

considered to be described by an extended feature

vector (see Section 2.2) of orders 1; . . . ; k with

k ¼ 1; . . . ; 6; and we test different neighborhood

sizes. The positive examples (faces) have been
cropped from the XM2VTS database (Messer

et al., 1999). The negative examples (non-faces)

have been collected in a bootstrap manner: an

initial set was generated by randomly cropping

20 · 20 patterns from images without any human

face. Then, the classifier was trained and tested on

some other images that did not contain faces. The

patterns that were classified as faces (so, actually
false positives) have been collected and added to

the negative set. The procedure was repeated sev-

eral times, incrementally building a set of repre-

sentative negative examples.

The classifier employed was a second-degree

polynomial SVM and we applied the technique

from Section 4 for computing the kernel matrix.
No preprocessing has been used, so the result

could be further improved by using some specific

algorithms for image processing. Fig. 2 summa-
rizes the results obtained.

It is interesting to note that generally (except for

one case), an increase in number of autocorrela-

tion orders led to an improvement in perfor-

mances. However, it is still not clear how one

should choose the neighborhood to be considered.
6. Conclusions

We have presented an effective method for using

higher order autocorrelation coefficients for pat-

tern recognition. While the autocorrelation feature

vectors reside in a high dimensional space, making

their direct use prohibitively expensive, we have

shown that one may avoid their computation when
the pattern recognition method can be expressed in

terms of inner product of input data. Luckily, a

large number of algorithms falls in this category,

allowing the use of autocorrelation functions of

any order.

Also, we have presented two possible scenarios

of using these features for describing time series or

image patterns. The generalization to higher
dimensions of input data is immediate. For

example, one may imagine the use of autocorre-

lation features for characterizing satellite images
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acquired in different spectra (so input patterns are

of shape w� h� b where b is the number of

bands). Then one has just to define the topology

over which the autocorrelation coefficients are to

be considered, while keeping the same methodol-

ogy of training the classifier as we have presented.
However, there are still two open questions:

how can one choose the right order(s) for auto-

correlation functions, without exploring a large

range of them? and, how to choose the right

topology of the neighborhood for a given task?
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Appendix A

A.1. Orthogonal projection of autocorrelation vec-

tors

Using the notations from Section 2.1, any vec-

tor r can be written as a sum of two components:

r ¼ rW þ r?W . Since rW 2 W , it is a linear combi-

nation of vectors r1; . . . ; rm, so there exists a vector

c 2 Rm such that

rW ¼ Rc:

From the fact that r?W is orthogonal on W (so

R0r?W ¼ 0) we have

R0r ¼ R0ðrW þ r?W Þ ¼ R0rW ¼ R0Rc:

It follows that

c ¼ ðR0RÞ�1R0r

rW ¼ RðR0RÞ�1R0r:

Thus we have the orthogonal projection of r on

W . Further, we can obtain the modulus of the

projection and the distance from the space W by

krW k2 ¼ hrW ; rW i ¼ ðR0rÞ0ðR0RÞ�1ðR0rÞ

kr?W k2 ¼ krk2 � krW k2 ¼ hr; ri � ðR0rÞ0ðR0RÞ�1ðR0rÞ:
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