
ITS TECHNICAL REPORT NO. 23/2004 1

On the Use of A Priori Information for Sparse

Signal Approximations
Oscar Divorra Escoda, Lorenzo Granai and Pierre Vandergheynst

Signal Processing Institute (ITS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
LTS2-ITS-STI-EPFL, 1015 Lausanne, Switzerland

Technical Report No. 23/2004

Abstract

This report is the extension to the case of sparse approximations of our previous study on the effects of introducing
a priori knowledge to solve the recovery of sparse representations when overcomplete dictionaries are used [1]. Greedy
algorithms and Basis Pursuit Denoising are considered in this work. Theoretical results show how the use of “reliable”
a priori information (which in this work appears under the form of weights) can improve the performances of these
methods. In particular, we generalize the sufficient conditions established by Tropp [2], [3] and Gribonval and Van-
dergheynst [4], that guarantee the retrieval of the sparsest solution, to the case where a priori information is used. We
prove how the use of prior models at the signal decomposition stage influences these sufficient conditions. The results
found in this work reduce to the classical case of [4] and [3] when no a priori information about the signal is available.
Finally, examples validate and illustrate theoretical results.
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I. Introduction

In many applications, such as compression, denoising or source separation, one seeks an efficient representation or
approximation of the signal by means of a linear expansion into a possibly overcomplete family of functions. In this
setting, efficiency is often characterized by sparseness of the associated series of coefficients. The criterion of sparseness
has been studied for a long time and in the last few years has become popular in the signal processing community [5],
[6], [2], [3]. Natural signals are very unlikely to be exact sparse superpositions of vectors. In fact the set of such signals
is of measure zero in C

N [2]. We thus extend our previous work on sparse exact representations [1] to the more useful
case of sparse approximations:

min
c

‖f − Dc‖2
2 s.t. ‖c‖0 ≤ m. (1)

In general, the problem of recovering the sparsest signal approximation (or representation) over a redundant dictio-
nary is a NP-hard problem. However this does not impair the possibility of finding this efficiently when particular classes
of dictionaries are used [7]. As demonstrated in [2], [3], [6], [4], in order to ensure the good behavior of algorithms
like General Weak(α) Matching Pursuit (Weak -MP) and Basis Pursuit Denoising (BPDN), dictionaries need to be
incoherent enough. Under this main hypothesis, sufficient conditions have been stated so that both methods are able
to recover the atoms from the sparsest m-terms expansion of a signal.

However, experience and intuition dictate that good dictionaries for sparse approximations of natural signals can
be very dense and, depending on the kind of signal structures to exploit, they may in most cases be highly coherent.
For example, consider a natural image from which an efficient approximation of edges is desired. Several approaches
have been proposed where the functions in use have a very strong geometrical meaning [8], [9], [10], [11]. Indeed, they
represent local orientation of edges. In order to accurately represent all orientations, the set of functions to use need
to finely sample the direction parameter. This yields that the atoms of the dictionary may have a strong correlation.
Moreover, if further families of functions are considered in the dictionary in order to model other components like
textures, or smooth areas, the coherence between the whole set of functions can become even higher. As a further
motivation, one can also observe that the set of visual primitives obtained by Olshausen and Field while studying the
spatial receptive fields of simple cells in mammalian striate cortex [12] is redundant and with a high coherence.

Concerning the case of exact sparse signal representations, we introduced in [1] a way of using more coherent
dictionaries with Weak -MP and Basis Pursuit (BP), while keeping the possibility of recovering the optimal solution.
Two methods were proposed based on the use of a priori information about the signal to decompose: we called them
Weighted-MP and Weighted-BP. In this report we address the case of sparse signal approximations, discussing the
potentiality of using a priori knowledge in the atom selection procedure. We do not face here the issue of how to find
a reliable and useful a priori knowledge about a signal. This problem strongly depends on the nature of the signal
and on the kind of dictionary used. The aim of this paper is the theoretical study of the weighted algorithms in the
prospective of achieving sparseness. Main results are:

• The definition of Weighted-BPDN and Weighted-MP/OMP algorithms for approximation purposes. We reformulate
classic BPDN and Weak -MP in order to take a priori information into account when decomposing the signal.

• A sufficient condition under which Weighted Basis Pursuit Denoising and Weighted-MP/OMP find the best m-term
signal approximation.

• A study of how adapting the decomposition algorithm depending on a priori information may help in the recovery
of sparse approximations.

• An analysis of the effects of adding the a priori weights on the rate of convergence of Weak -MP.
• An empirical analysis, on natural signals, of the effect of using prior models at the decomposition stage when

coherent overcomplete dictionaries are used.

II. Recovery of General Signals: Sparse Approximations

Exact sparse representations are mostly useless in practice, since the set of such signals is of measure zero in C
N [2].

There are very few cases where, for a given signal, one can hope to find an m-sparse representation.
Sparse approximations, on the other hand, have found numerous applications, e.g.. in compression, restoration,

denoising or sources separation.
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The use of overcomplete dictionaries, although in a sense advantageous, has the drawback that finding a solution
to (1) may be rather difficult or even practically infeasible. Suboptimal algorithms that are used instead (like Weak
General Matching Pursuit algorithms -Weak -MP- [4] or `1-norm Relaxation Algorithms -BPDN- [13]) do not necessarily
supply the same solution as the problem formulated in (1). However, there exist particular situations in which they
succeed in recovering the “correct” solution. Very important results have been found in the case of using incoherent
dictionaries to find sparse approximations of signals. Indeed, sufficient conditions have been found such that for a
dictionary Weak -MP and BPDN algorithms can be guaranteed to find the set of atoms that form the sparsest m-terms
approximant fopt

m of a signal f . Moreover, for the case where Orthogonal Matching Pursuit (OMP) is used the set of
coefficients found by the algorithm will correspond also to the optimal one.

Prior to reviewing the results that state the sufficient conditions introduced above, let us define and recall a series
of elements that will be used in the remaining of the paper.

• f ∈ H is the function to be approximated, where H is a Hilbert space. Unless otherwise stated, in this report we
assume f ∈ R

n .
• D and D define respectively the set of atoms included in the dictionary and the dictionary synthesis matrix where

each one of the columns corresponds to an atom (D = {gi : i ∈ Ω}).
• fopt

m is the best approximant of f such that f opt
m = D · copt where the support of copt is smaller than or equal to

a positive integer m.
• Given n ≥ 0, rn and fn are the residual and approximant generated by a greedy algorithm at its nth iteration.
• Γm is the optimal set of m atoms that generate f opt

m . Often, in the text, this will be referred to as Γ for simplicity.
• The best approximation of f over the atoms in Λ is called aΛ = DD+

Λf .
• α ∈ (0, 1], is defined as the weakness factor associated to the atom selection procedure of Weak -MP algorithms

[14].
• µ1(m,D) is a measure of the internal cumulative coherence of D [2]:

µ1(m,D) , max
|Λ|=m

max
i∈Ω\Λ

∑

λ∈Λ

|〈gi, gλ〉| , (2)

where Λ ⊂ Ω has size m. Remark that the measure known as coherence of a dictionary (µ) and often used to
characterize redundant dictionaries corresponds to the particular case of µ = µ1(1,D). Furthermore µ1(m,D) ≤
mµ.

• Let η (η ≥ 0) be a suboptimality factor associated to the case where the best m-terms approximation can not be
reached by the algorithm in use. In such a case, the residual error energy after approximation is (1 + η)2 ‖ropt

m ‖2
2

instead of ‖ropt
m ‖2

2.

A. Greedy Algorithms: Weak-MP

Gribonval and Vandergheynst extended the results Tropp found for the particular case of OMP to the general Weak -
MP. Akin to the case of signal representation, the main results consist in the sufficient conditions that guarantee that
Weak -MP will recover the optimal set of atoms that generate the best m-terms approximant f opt

m . Moreover, a result
establishes as well an upper bound on the decay of the residual energy in the approximation of a signal that depends on
the internal coherence of D, and a bound on how many “correct” iterations can be performed by the greedy algorithm
depending on the dictionary and the energy of f opt

m .

1) Robustness: The sufficient conditions found in [4] that ensure that Weak -MP will recover the set of atoms that
compose the best m-terms approximant are enounced in Theorem 1. First of all, it is necessary that the optimal set
Γm satisfies the Stability Condition [4]. If in addition some conditions are satisfied concerning the remaining residual
energy at the nth iteration (‖rn‖2

2) and the optimal residual energy ‖ropt
m ‖2

2, then an additional atom belonging to Γm

will be recovered. This condition, called originally the General Recovery Condition in [2], was named, for the case of
general Weak -MP, the Robustness Condition in [4].

Theorem 1: (Gribonval & Vandergheynst [4]) Let {rn}n≥0 be a sequence of residuals computed by General MP to
approximate some f ∈ H. For any integer m such that µ1(m − 1) + µ1(m) ≤ 1, let fopt

m =
∑

γ∈Γm
cγgγ be a best

m-terms approximation to f , and let Nm = Nm(f) be the smallest integer such that

‖rNm
‖2
2 ≤

∥

∥ropt
m

∥

∥

2

2
·
(

1 +
m · (1 − µ1(m − 1))

(1 − µ1(m − 1) − µ1(m))
2

)

. (3)

Then, for 1 ≤ n < Nm, General MP picks up a “correct” atom. If no best m-terms approximant exists, the same results
are valid provided that ‖ropt

m ‖2 = ‖f − fopt
m ‖2 is replaced with ‖f − fopt

m ‖2 = (1 + η) ‖ropt
m ‖2 in (3).
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2) Rate of Convergence: In the following the main result concerning the exponential decay of the error energy bound,
as well as the bound on how many “correct” iterations can be performed by the greedy algorithm, is reviewed.

Theorem 2: (Gribonval & Vandergheynst [4]) Let {rn}n≥0 be a sequence of residuals computed by General MP to
approximate some f ∈ H. For any integer m such that µ1(m − 1) + µ1(m) ≤ 1, we have that

‖rn‖2
2 −

∥

∥ropt
m

∥

∥

2

2
≤
(

1 − 1 − µ1(m − 1)

m

)n−l
(

‖rl‖2
2 −

∥

∥ropt
m

∥

∥

2

2

)

. (4)

Moreover, N1 ≤ 1, and for m ≥ 2:

• if ‖ropt
m ‖2

2 ≤ 3 ‖r1‖2
2 /m , then

2 ≤ Nm < 2 +
m

1 − µ1(m − 1)
· ln 3 · ‖r1‖2

2

m · ‖rm‖2
2

(5)

• else Nm ≤ 1.

B. Convex Relaxation of the Subset Selection Problem

Another instance of problem (1) is given by

min
c

‖f − Dc‖2
2 + τ2‖c‖0. (6)

Unfortunately the function that has to be minimized is not convex. One can define a p-norm of a vector c for any
positive real p:

‖c‖p =

(

∑

i∈Ω

|ci|p
)1/p

. (7)

It is well known that the smallest p for which Eq. (7) is convex is 1. For this reason the convex relaxation of the subset
selection problem was introduced in [13] under the name of Basis Pursuit Denoising:

min
b

1

2
‖f − Db‖2

2 + γ‖b‖1. (8)

This problem can be solved recurring to Quadratic Programming techniques (see also Section IV). In [3], the author
studies the relation between the subset selection problem (6) and its convex relaxation (8). Next theorem shows that
any coefficient vector which minimizes Eq. (8) is supported inside the optimal set of indexes.

Theorem 3: (Correlation Condition, Tropp [3]) Suppose that the maximum inner product between the residual
signal and any atom satisfies the condition

‖D∗(f − aΛ)‖∞ < γ(1 − sup
i/∈Λ

‖D+
Λ gi‖1).

Then any coefficient vector b∗ that minimizes the function (8) must satisfy support(b∗) ⊂ Λ .

In particular, the following theoretical result show how the trade off parameters τ and γ are related.

Theorem 4: (Tropp [3]) Suppose that the coefficient vector b∗ minimizes the function (8) with threshold γ =
τ/(1 − supi/∈Γ

∥

∥D+
Γ gi

∥

∥

1
). Then we have that:

1) the relaxation never selects a non optimal atom since support(b∗) ⊂ support(copt).
2) The solution of the convex relaxation is unique.
3) The following upper bound is valid:

‖copt − b∗‖∞ ≤
τ ·
∥

∥

∥(D∗
ΓDΓ)

−1
∥

∥

∥

∞,∞

1 − sup
i/∈Γ

‖D+
Γ gi‖1

. (9)

4) The support of b∗ contains every index j for which

|copt(j)| >
τ ·
∥

∥

∥(D∗
ΓDΓ)

−1
∥

∥

∥

∞,∞

1 − sup
i/∈Γ

‖D+
Γ gi‖1

. (10)
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If the dictionary we are working with is orthonormal it follows that

sup
i/∈Γ

‖D+
Γ gi‖1 = 0 and

∥

∥

∥
(D∗

ΓDΓ)
−1
∥

∥

∥

∞,∞
= 1

and the previous theorem becomes much stronger. In particular we obtain that ‖copt −b∗‖∞ ≤ τ and |copt(j)| > τ [3],
[15].

A problem similar to the subset selection is given by the retrieval of a sparse approximation given an error constraint:

min
c

‖c‖0 s.t. ‖f − Dc‖2 ≤ ε0, (11)

whose natural convex relaxation is given by

min
b

‖b‖1 s.t. ‖f − Db‖2 ≤ ε1. (12)

In this paper, we are not going to explore this problem, but let us just recall that if the dictionary is incoherent, then
the solution to (12) for a given ε1 is at least as sparse as the solution to (11), with a tolerance ε0 somewhat smaller
than ε1 [3].

From all these results, one can infer that the use of incoherent dictionaries is very important for the good behavior
of greedy and `1-norm relaxation algorithms. However, as discussed in the introduction, experience seems to teach us
that the overcomplete dictionaries which are likely to be powerful for natural signals approximation would be very
redundant and with significant internal coherence. Hence, this inconsistent and contradictory situation claims for a
solution to be found. In the following sections, we introduce a general approach that intends to tackle this problem.
In our opinion, a more careful analysis and modeling of the signal to approximate is necessary. Dictionary waveforms
are not enough good modeling elements to be exploited in the signal decomposition stage. Further analysis is required
to better drive the decomposition algorithm.

As in our previous work concerning the case of exact signal representations [1], in this report, a priori knowledge
that relates the signal f and the dictionary D are considered for signal approximations.

III. Including A Priori Information on Greedy algorithms

As seen in our previous work on the exact sparse representation of signals [1], the use of a priori information on
greedy algorithms may make the difference between recovering the optimal set of components for a given approximation
or not. In this section we explore the effect of using a priori knowledge on greedy algorithms on the recovery of the
best m-terms approximant (f opt

m ) of a signal f . First, sufficient conditions for the recovery of a “correct” atom from the
sparsest m-terms approximant are established for the case where a priories are taken into account. Later, we study
how prior knowledge affects the rate of convergence of greedy algorithms. Finally, a practical example is presented.

A. Influence on Sparse Approximations

An important result concerning sparse approximations is the feasibility of recovering the sparsest m-terms approx-
imation fopt

m . Akin to the statements established for the exact representation case, sufficient conditions have been
determined such that, given a Weak -MP and the associated series of atoms gγn

and residuals rn (n ≥ 0) up to the nth
step, a “correct” atom at the (n + 1)th step can be guaranteed (see Sec. II). In Theorem 5, sufficient conditions are
presented for the case when some a priori knowledge is available. The main interest of this result is to show that if an
appropriate a priori (concerning f and D) is in use, a better approximation result can be achieved.

First of all, let us expose the elements that take part into the following results. In order to enhance the clarity of
the explanation, we first recall the definition of the main concepts that will be used. Let us consider first the diagonal
matrix W (f,D) introduced in [1] to represent the a priori knowledge taken into account in the atom selection procedure.

Definition 1: A weighting matrix W = W (f,D) is a square diagonal matrix of size d × d. Each of the entries
wi ∈ (0, 1] from the diagonal corresponds to the a priori likelihood of a particular atom gi ∈ D to be part of the
sparsest decomposition of f .

We define also wmax
Γ

as the biggest of the weights corresponding to the subset of atoms belonging to Γ = Ω \ Γ,
hence:

wmax
Γ

, sup
γ∈Γ

|wγ | . (13)
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Moreover, an additional quantity is required in the results depicted below:

εmax , sup
γ∈Γ

∣

∣1 − w2
γ

∣

∣ . (14)

Eqs. (13) and (14) give information about how good the a priori information is. The reader will notice that these
quantities depend on the optimal set of atoms Γ, making not possible to establish a rule to compute them in advance.
The role of these magnitudes is to represent the influence of the prior knowledge quality in the results obtained below.
Notice that 0 ≤ εmax ≤ 1 and 0 ≤ wmax

Γ
≤ 1. εmax is close to zero if “good” atoms (the ones belonging to Γ) are not

penalized by the a priori. If the supplied a priori is a good enough model of the relation between the signal and the
dictionary in use, we state that the a priori knowledge is reliable. wmax

Γ
becomes small if “bad” atoms are strongly

penalized by the prior knowledge.As we will see in the following, if the a priori is reliable and wmax
Γ

is small, then the
prior knowledge can have a relevant positive influence in the behavior of the greedy algorithm.

The consequence of taking into account the a priori matrix W , is to allow a new definition of the Babel Function
introduced by Tropp [2]. In [1] the fact that not all the atoms of D are equiprobabile is taken into account. In effect, the
availability of some prior should be considered when judging whether a greedy algorithm is going to be able to recover
the m-sparsest approximation of a signal f or not. As seen in the Sec. II, the conditions that ensure the recoverability
of the best m term approximant relay on the internal coherence measure of a dictionary µ1(m). Using the a priori
information, some atom interactions can be penalized or even dismissed in the cumulative coherence measure. Hence,
a new signal dependent cumulative coherence measure was introduced in [1]:

Definition 2: The Weighted Cumulative Coherence function of D is defined as the following data dependent measure:

µw
1 (m,D, f) , max

|Λ|=m
max

i∈Ω\Λ

∑

λ∈Λ

| < gλ, gi > | · wλ · wi. (15)

Once all necessary elements have been defined, we can finally state the result that shows the behavior of greedy
algorithms on the use of a priori information for the recovery of m-sparse approximants. As proved later in this section,
the use of such knowledge implies an improvement with respect to the classic Weak -MP also for the case of signal
approximation.

Theorem 5: Let {rn} : n ≥ 0, be the set of residuals generated by Weighted-MP/OMP in the approximation of a
signal f , and let fopt

m be the best m-terms approximant of f over D. Then, for any positive integer m such that, for a
reliable a priori information W (f,D), µw

1 (m − 1) + µw
1 (m) < 1 − εmax, η ≥ 0 and

‖rn‖2
2 >

∥

∥f − fopt
m

∥

∥

2

2
(1 + η)

2

(

1 +
m (1 − (µw

1 (m − 1) + εmax))
(

wmax
Γ

)2

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

, (16)

Weighted-MP/OMP will recover an atom that belongs to the optimal set Γm that expand the best m-sparse approximant
of f . If the best m-terms approximant f opt

m exist and can be reached, then η = 0.

This means that if the approximation error at the nth iteration is still bigger than a certain quantity which depends
on the optimal error (‖f − fopt

m ‖2
2), the internal dictionary cumulative coherence and the reliability of the a priori

information, then still another term of the best m − term approximant can still be recovered. The use of reliable a
priori information makes the bound easier to satisfy compared to when no prior knowledge is used [4]. Thus, a higher
number of terms from the best m − term approximant may be recovered.

Proof: To demonstrate the result of Theorem 5, we follow the steps of the original proofs by Tropp [2] and Gribonval
and Vandergheynst [4]. This time however, a priori knowledge is taken into account. First of all, let us remind the
following statements:

• fopt
m ∈ span (Γm)

• rn = f − fn

• ropt
m = f − fopt

m is such that ropt
m ⊥ (fopt

m − fn) ∀ 0 ≤ n < m, hence ‖rn‖2
2 = ‖fopt

m − fn‖2
2 + ‖f − fopt

m ‖2
2.

In order to ensure the recovery of any atom belonging to the optimal set Γ = Γm, the following needs to be satisfied:

ρw (rn) =
‖DΓ · WΓ · rn‖∞
‖DΓ · WΓ · rn‖∞

< α, (17)
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where α ∈ (0, 1] is the weakness factor [14]. To establish (16), the previous expression has to be put in terms of f opt
m

and fn. Hence,

ρw (rn) =
‖DΓ · WΓ · rn‖∞
‖DΓ · WΓ · rn‖∞

=
‖DΓ · WΓ · (f − fn)‖

∞
‖DΓ · WΓ · (f − fn)‖∞

=

∥

∥DΓ · WΓ ·
(

f − fopt
m

)

+ DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

f − fopt
m

)

+ DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

=

∥

∥DΓ · WΓ ·
(

f − fopt
m

)

+ DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

≤
∥

∥DΓ · WΓ ·
(

f − fopt
m

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

+

∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

=

∥

∥DΓ · WΓ ·
(

f − fopt
m

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

+ ρw (fopt
m − fn) ,

(18)

where the second term can be upper bounded since (f opt
m − fn) ∈ span(Γ) [1],

ρw
(

fopt
m − fn

)

≤ µw
1 (m)

1 − (µw
1 (m − 1) + εmax)

. (19)

The first term of the last equality in (18) can be upper bounded in the following way:

∥

∥DΓ · WΓ ·
(

f − fopt
m

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

=

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

f − fopt
m

)〉∣

∣

∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

, (20)

and by the Cauchy-Schwarz inequality,

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

f − fopt
m

)〉∣

∣

∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

≤
sup
γ∈Γ

‖gγ · wγ‖2 ·
∥

∥f − fopt
m

∥

∥

2

∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

=

sup
γ∈Γ

|wγ | ·
∥

∥f − fopt
m

∥

∥

2

∥

∥DΓ · WΓ ·
(

fopt
m − fn

)∥

∥

∞

=

sup
γ∈Γ

|wγ | ·
∥

∥f − fopt
m

∥

∥

2

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

fopt
m − fn

)〉∣

∣

.

(21)

In order to further upper bound the expression above, the denominator can be lower bounded, as shown in [1]. Indeed,
by the singular value decomposition:

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

fopt
m − fn

)〉∣

∣ ≥

√

σ2
minw

m

∥

∥fopt
m − fn

∥

∥

2
, (22)

where σ2
minw

is the minimum of the squared singular values of G , (DΓWΓ)
T

(DΓWΓ), and can be bounded as
σ2

minw
≥ 1− εmax − µw

1 (m− 1). Moreover, in (21), ‖f − f opt
m ‖2 can be defined as ‖f − fopt

m ‖2 = (1 + η) · ‖ropt
m ‖2, where

η ≥ 0 stands for a sub-optimality factor which indicates whether f opt
m can be reached and, if not possible (i.e. η 6= 0),

sets the best possible reachable approximation error. Hence, (21) can be rewritten as:

sup
γ∈Γ

|wγ | ·
∥

∥f − fopt
m

∥

∥

2

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

fopt
m − fn

)〉∣

∣

≤
sup
γ∈Γ

|wγ | · (1 + η) ·
∥

∥ropt
m

∥

∥

2

√

1 − µw
1 (m − 1) − εmax

m

∥

∥fopt
m − fn

∥

∥

2

. (23)

Thus, from (23) and (19), a sufficient condition for the recovery of a correct atom can be expressed as:

ρw (rn) ≤
sup
γ∈Γ

|wΓ| · (1 + η) ·
∥

∥ropt
m

∥

∥

2

√

1 − µw
1 (m − 1) − εmax

m

∥

∥fopt
m − fn

∥

∥

2

+
µw

1 (m)

1 − µw
1 (m − 1) − εmax

=
wmax

Γ

√

(1 − µw
1 (m − 1) − εmax) m · (1 + η) ·

∥

∥ropt
m

∥

∥

2
+
∥

∥fopt
m − fn

∥

∥

2
µw

1 (m)

(1 − µw
1 (m − 1) − εmax)

∥

∥fopt
m − fn

∥

∥

2

< α.

(24)
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Considering that ‖fopt
m − fn‖2

2 = ‖rn‖2
2 − ‖ropt

m ‖2
2, it easily follows that

wmax
Γ

√

(1 − µw
1 (m − 1) − εmax) m · (1 + η) ·

∥

∥ropt
m

∥

∥

2
+

√

‖rn‖2
2 − (1 + η)2

∥

∥ropt
m

∥

∥

2

2
µw

1 (m)

(1 − µw
1 (m − 1) − εmax)

√

‖rn‖2
2 − (1 + η)2

∥

∥ropt
m

∥

∥

2

2

< α. (25)

Then, we solve for ‖rn‖2
2:

‖rn‖2
2 > (1 + η)2

∥

∥ropt
m

∥

∥

2

2






1 +

(

wmax
Γ

)2

(1 − µw
1 (m − 1) − εmax)

(α (1 − µw
1 (m − 1) − εmax) − µw

1 (m))
2






. (26)

For simplicity, let us consider the case where a full search atom selection algorithm is available. Thus, replacing α = 1
in (26) proves Theorem 5.

The general effect of using prior knowledge can thus be summarized by the following two Corollaries.

Corollary 1: Let W (f,D) be a reliable a priori knowledge and assuming α = 1, then for any positive integer m
such that µ1(m−1)+µ1(m) ≥ 1 and µw

1 (m−1)+µw
1 (m) < 1−εmax, Weighted-MP/OMP (unlike Weak(α)-MP/OMP)

will be sure to recover the atoms belonging to the best m-terms approximation f opt
m .

Corollary 2: Let W (f,D) be a reliable a priori knowledge and assuming α = 1, then for any positive integer m
such that µ1(m − 1) + µ1(m) < 1 and µw

1 (m − 1) + µw
1 (m) + εmax < µ1(m − 1) + µ1(m) < 1, Weighted-MP/OMP has

a weaker sufficient condition than MP/OMP for the recovery of correct atoms from the best m-terms approximant.
Hence, the correction factor of the right hand side of expression (16) is smaller for the Weighted-MP/OMP than for
the pure greedy algorithm case:



1 +
m
(

1 − (µw
1 (m − 1) + εmax)

(

wmax
Γ

)2
)

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2



 ≤
(

1 +
m (1 − µ1(m − 1))

(1 − (µ1(m − 1) + µ1(m)))
2

)

.

Therefore, Weighted-MP/OMP is guaranteed to recover better approximants than classic MP/OMP when reliable and
good enough a priori information is in use.

B. Rate of Convergence of Weighted-MP/OMP on Sparse Approximations

The energy of the series of residuals rn (n ≥ 0) generated by the greedy algorithm progressively converges toward
zero as n increases. In the same way, Weighted-MP/OMP with reliable a priori information is expected to have a better
behavior and a faster convergence rate than the Weak -MP for the approximation case. A more accurate estimate of
the dictionary coherence conditioned to the signal to be analyzed is available: µw

1 (m) (where µw
1 (m) ≤ µ1(m)). Then

a better bound for the rate of convergence can be found for the case of Weighted-MP/OMP. We follow the path
suggested in [2] for OMP and in [4] for the case of general Weak -MP algorithm to prove this. As before, we introduce
the consideration of the a priori information in the formulation. The results formally show how Weighted-MP/OMP
can outperform Weak -MP when the prior knowledge is reliable enough.

Theorem 6: Let W (f,D) be a reliable a priori information matrix and {rn} : n ≥ 0 a sequence of residuals
produced by Weighted-MP/OMP, then as long as ‖rn‖2

2 satisfies Eq. (16) (Theorem 5), Weighted-MP/OMP picks up
a correct atom and

(

‖rn‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)

2
)

≤
(

1 − α2 (1 − µw
1 (m − 1) − εmax)

m

)n−l
(

‖rl‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)2

)

, (27)

where n ≥ l.
This implies that Weighted-MP/OMP, in the same way as weak-MP, has a exponentially decaying upper bound

on the rate of convergence. Moreover, in the case where reliable a priori information is used, the bound appears to
be lower than in the case where priors are not used. This result suggests that the convergence of Weighted greedy
algorithms may be faster than for the case of classic pure greedy algorithms.

Proof: Let us consider n such that ‖rn‖2
2 satisfies Eq. (16) of Theorem 5. Then, it is known that for Weak -MP:

‖rn−1‖2
2 − ‖rn‖2

2 ≥ |〈rn, gkn
〉|2 , (28)
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where the inequality applies for OMP, while in the case of MP the equality holds. Moreover, considering the weighted
selection, then

‖rn−1‖2
2 − ‖rn‖2

2 ≥ α sup
γ∈Γ

|〈rn, gγ · wγ〉|2
1

w2
γ

= α sup
γ∈Γ

∣

∣

〈

fopt
m − fn, gγ · wγ

〉∣

∣

2 1

w2
γ

, (29)

where the last equality follows from the assumption that Eq. (16) of Theorem 5 is satisfied and because (f − f opt
m ) ⊥

span(Γ). And by (22),

‖rn−1‖2
2 − ‖rn‖2

2 ≥ α

w2
γ

σ2
minw

m

∥

∥fopt
m − fn

∥

∥

2

2
. (30)

As stated before, ‖fopt
m − fn‖2

2 = ‖rn‖2
2 − ‖ropt

m ‖2
2, hence ‖fopt

m − fn−1‖2
2 − ‖fopt

m − fn‖2
2 = ‖rn−1‖2

2 − ‖rn‖2
2, which

together with (30) gives:

∥

∥fopt
m − fn

∥

∥

2

2
≤
∥

∥fopt
m − fn−1

∥

∥

2

2

(

1 − α

w2
γ

σ2
minw

m

)

≤
∥

∥fopt
m − fn−1

∥

∥

2

2

(

1 − α
σ2

minw

m

)

. (31)

Finally, by simply considering 0 ≤ l ≤ n by recursion it follows:

‖rn‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)2 ≤

(

1 − α
σ2

minw

m

)n−l
(

‖rl‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)2

)

, (32)

and the Theorem is proved.

Depending on the sufficient conditions specified in Sec. III-A, the recovery of the optimal set Γ will be guaranteed.
However, it is not yet clear how long a non-orthogonalized greedy algorithm (Weighted-MP in our case) will last
iterating over the optimal set of atoms in the approximation case. Let us define the number of correct iterations as
follows:

Definition 3: Consider a Weighted-MP/OMP algorithm used for the approximation of signals. We define the
number of provably correct steps Nm as the smallest positive integer such that

‖rNm
‖2
2 ≤

∥

∥f − fopt
m

∥

∥

2

2
(1 + η)

2



1 +
m
(

1 − (µw
1 (m − 1) + εmax)

(

wmax
Γ

)2
)

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2



 ,

which corresponds to the number of atoms belonging to the optimal set that is possible to recover given a signal f , a
dictionary and an a priori information matrix W (f,D).

In the case of OMP and Weighted-OMP Nm will be always smaller or equal to the cardinality of Γ. For Weak -MP
and Weighted-MP, provided that µ1(m− 1)+µ1(m)+ εmax < 1, the probable number of correct iterations will depend
on the final error that remains after the best m-term approximation has been found. In the following Theorem, some
bounds on the quantity Nm are given for Weighted-MP/OMP. To obtain the results we follow [4].

Before stating the following theorem, the reader should note that from now on, wmax
Γl

defines the same concept of

(13) for an optimal set of atoms Γ of size l, i.e. for Γl.

Theorem 7: Let W (f,D) be a reliable a priori information and {rn} : n ≥ 0 a sequence of residuals produced by
Weighted-MP/OMP when approximating f . Then, for any integer m such that µ1(m−1)+µ1(m)+ εmax < 1, we have
N1 ≤ 1 and for m ≥ 2:

• if 3
∥

∥ropt
1

∥

∥

2

2
≥ m ·

∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2

, then

2 ≤ Nm < 2 +
2 · m

1 − εmax
log







3
∥

∥ropt
1

∥

∥

2

2

m ·
∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2






. (33)

• else Nm ≤ 1.

From (33) we can draw that the upper bound on the number of correct steps Nm is higher for the case of using
reliable a priori information. This implies that a better behavior of the algorithm is possible with respect to [4]. The
term wmax

Γm

(that depends on the a priori information used for Weighted-MP/OMP, 0 ≤ wmax
Γm

≤ 1 and wmax
Γm

= 1

for the case of classic Weak -MP) helps increasing the value of this bound, allowing Weighted-MP to recover a higher
number of correct iterations. wmax

Γm

represents the capacity to discriminate between “good” and “bad” atoms of the a
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priori model.

In order to prove Theorem 7, several intermediate results are necessary.
Lemma 1: Let W (f,D) be a reliable a priori information and {rn} : n ≥ 0 a sequence of residuals produced by

Weighted-MP/OMP, then as long as ‖rn‖2
2 satisfies Eq. (16) of Theorem 5, for any 1 ≤ k < m such that Nk < Nm,

Nm − Nk < 1 +
m

1 − µw
1 (m − 1) − εmax

[

log

(
∥

∥ropt
k

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

)

+ log

(

1 + λw
k

1 + λw
m

)

]

, (34)

where

λw
l ,

l (1 − (µw
1 (l − 1) + εmax)) ·

(

wmax
Γl

)2

[1 − (µw
1 (l − 1) + µw

1 (l) + εmax)]
2 , (35)

in which l corresponds to the size of a particular optimal set of atoms (l = |Γl|).

Proof: From Theorem 6, it follows that for l = Nk, n = Nm − 1, defining

βw
l , 1 − 1 − µw

1 (l − 1) − εmax

l
, (36)

where l is defined as in (35), and starting from the condition in the residual
∥

∥rNm−1

∥

∥

2

2
as defined in the Definition 3,

the following is accomplished if α = 1:

λw
m (1 + η)

2 ∥
∥ropt

m

∥

∥

2

2
<

∥

∥rNm−1

∥

∥

2

2
−
∥

∥ropt
m

∥

∥

2

2
(1 + η)2

≤ (βw
m)

Nm−1−Nk ·
(

‖rNk
‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)2

)

≤ (βw
m)

Nm−1−Nk ·
(

(1 + λk)
∥

∥ropt
k

∥

∥

2

2
(1 + η)2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)2

)

. (37)

Operating on (37) as in [4], it easily follows that:

(

1

βw
m

)Nm−1−Nk

<

∥

∥ropt
k

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

1 + λw
k

1 + λw
m

,

thus,

Nm − 1 − Nk log

(

1

βw
m

)

< log

[
∥

∥ropt
k

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

1 + λw
k

1 + λw
m

]

.

If t ≥ 0 then log(1 − t) ≤ −t and so
1

log
(

1
βw

m

) ≤ m

1 − µ1(m − 1) − εmax
.

This proves the result presented in (34) and so the Lemma.

In order to use Lemma 1 in Theorem 7, an estimate of the argument of the second logarithm in (34) is necessary.
This can be found in the following Lemma.

Lemma 2: For all m such that µw
1 (m − 1) + µw

1 (m) + εmax < 1 and 1 ≤ k < m, we have:

λw
m ≥ m ·

(

wmax
Γ

)2
(38)

λw
k

λw
m

≤ k

m
·

(1 − µw
1 (k − 1) − εmaxk

) ·
(

wmax
Γk

)2

(1 − µw
1 (m − 1) − εmaxm

) ·
(

wmax
Γm

)2 (39)

Proof: Consider the definition of λw
m of (35). Then since µw

1 (l − 2) + µw
1 (l − 1) + εmax ≤ µw

1 (l − 1) + µw
1 (l) + εmax

for 2 ≤ l ≤ m, the following can be stated:

λw
l−1

λw
l

≤ l − 1

l
·
(

1 − µw
1 (l − 2) − εmaxl−1

)

·
(

wmax
Γl−1

)2

(1 − µw
1 (l − 1) − εmaxl

) ·
(

wmax
Γl

)2 . (40)
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By assuming k + 1 ≤ l ≤ m the Lemma is proved.

Finally, building on the results obtained from Theorem 6 and Lemmas 1 and 2, Theorem 7 can be proved.

Proof: To prove Theorem 7 we need to upper bound the factor
1 + λw

k

1 + λw
m

in Eq. (34). For this purpose let us consider

the following:
(1 + λw

k )

(1 + λw
m)

≤ (1 + λw
k )

(λw
m)

≤ 1

λw
m

+
λw

k

λw
m

. (41)

Together with the results of Lemma 2, it gives:

log

(

1 + λw
k

1 + λw
m

)

≤ log







1

m
+

k

m
·

(1 − µw
1 (k − 1) − εmaxk

) ·
(

wmax
Γk

)2

(1 − µw
1 (m − 1) − εmaxm

) ·
(

wmax
Γm

)2






. (42)

Hence, using Eq. (34) we obtain

Nm − Nk < 1 +
m

1 − µw
1 (m − 1) − εmax

[

log

(
∥

∥ropt
k

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

)

+ · · ·

log







1

m
+

k

m
·

(1 − µw
1 (k − 1) − εmaxk

) ·
(

wmax
Γk

)2

(1 − µw
1 (m − 1) − εmaxm

) ·
(

wmax
Γm

)2












.

(43)

Theorem 7 is thus proved by particularizing the previous expression for the case where k = 1. For the case of Nm ≥
N1 + 1 = 2, this yields that

Nm − N1 < 1 +
m

1 − µw
1 (m − 1) − εmax

·





log

(
∥

∥ropt
1

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

)

+ log







1

m
+

(1 − εmax1
) ·
(

wmax
Γ1

)2

m (1 − µw
1 (m − 1) − εmaxm

) ·
(

wmax
Γm

)2












.

< 1 +
m

1 − µw
1 (m − 1) − εmax

·





log

(
∥

∥ropt
1

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

)

+ log







1

m
+

1

m (1 − µw
1 (m − 1) − εmaxm

) ·
(

wmax
Γm

)2












. (44)

Which, since µw
1 (m − 1) <

1 − εmax

2
and 1 − µw

1 (m − 1) − εmax >
1 − εmax

2
, then

Nm < 2 +
m

1 − µw
1 (m − 1) − εmax






log

(
∥

∥ropt
1

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

)

+ log







2 + (1 − εmaxm
) ·
(

wmax
Γm

)2

m (1 − εmaxm
) ·
(

wmax
Γ

m

)2













< 2 +
m

1 − µw
1 (m − 1) − εmax






log

(
∥

∥ropt
1

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

)

+ log







3

m (1 − εmaxm
) ·
(

wmax
Γm

)2













< 2 +
m

1 − µw
1 (m − 1) − εmax

log







3
∥

∥ropt
1

∥

∥

2

2

m ·
∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2







< 2 +
2 · m

1 − εmax
log







3
∥

∥ropt
1

∥

∥

2

2

m ·
∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2






. (45)

This is only possible if 3
∥

∥ropt
1

∥

∥

2

2
≥ m ·

∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2

.
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Compared to the case where no a priori information is available [4], the condition for the validity of bound (33) is
softened in our case. Moreover, the upper bound on Nm is increased, which means that there is room for an improvement
on the number of correct iterations Indeed, under the assumption of having a reliable a priori information, the smaller
wmax

Γm

(which implies a good discrimination between Γ and Γ) the easier it is to fulfill the condition stated in Theorem
7.

C. Example: Use of Footprints for ε-Sparse Approximations.

To give an example of the approximation of signals using a priori information, we consider again the case presented
in [1] where a piecewise-smooth signal is represented by means of an overcomplete dictionary composed by the mixture
of an orthonormal wavelet basis and a family of wavelet footprints (see [16]).

Wavelet+Footprints Dictionary

Function index

Te
m

po
ra

l A
xi

s

Fig. 1. Dictionary formed by the Symmlet-4 [17] (left half) and its respective footprints for piecewise constant singularities (right half).

Let us remind the considerations for the dictionary. The dictionary is built by the union of an orthonormal basis
defined by the Symmlet-4 family of wavelets [17] and the respective family of footprints for all the possible translations
of the Heaviside function. The latter is used to model the discontinuities. The graphical representation of the dictionary
matrix can be seen in Fig. 1 where the columns are the waveforms that compose the dictionary.

20 40 60 80 100 120
−2

−1

0

1

2

3

4

5
Original

temporal axis

am
pl

itu
de

20 40 60 80 100 120
−2

−1

0

1

2

3

4

5
Use of OMP with dictionary D without "a priory" (10 terms approx).
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Use of OMP with dictionary D with "a priory" (10 terms approx).
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Fig. 2. Comparison of OMP based approximation with 10 terms using the footprints dictionary (Fig. 1). Left: Original signal. Middle:
“blind” OMP approximation. Right: OMP with prior knowledge of the footprints location.

The use of such a dictionary, indeed, does not satisfy at all the sufficient condition required to ensure the recovery of
an optimal approximant with more than one term. Moreover, even if the best a priori was available, it is also far from
satisfying the sufficient condition based on the weighted Babel function. Nevertheless, such an example is considered in
this section because of two main reasons. The first concerns the fact that sufficient theoretical conditions exposed in the
literature are very pessimistic and reflect the worst possible case. The second reason is that, as previously discussed,
experience seems to teach us that good dictionaries for efficient approximation of signals, are likely to be highly coherent.
This fact conflicts with the requirement of incoherence for the good behavior of greedy algorithms. Hence, we find this
example of special interest to underline the benefits of using a priori information and additional signal modeling
for non-linear expansions. Indeed, with this example it is shown that, by using reliable a priori knowledge, better
approximations are possible, not only with incoherent dictionaries (where theoretical evidences of the improvement
have been shown in this paper) but also with highly coherent ones.
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We repeat the procedure used in [1] to estimate the a priori information based on the dictionary and the input data.
We also refer the reader to Sec. V for a more detailed explanation.

10 20 30 40 50 60 70 80
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Rate of convergence of the residual error
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OMP with a priori
OMP

Fig. 3. Rate of convergence of the error with respect to the iteration number in the experiment of Fig. 2

Fig. 2 presents the original signal (left) together with the two approximations obtained in this example: without a
priori in the middle and with a priori at the right. The signal to be approximated has a higher number of polynomial
degrees than the number of vanishing moments of the Symmlet-4. The figures depict clearly the positive effect of the
reliable a priori information inserted in the Weighted-OMP algorithm. Indeed, with very few components, the algorithm
benefits from the a priori information estimated from the signal, and gives a much better approximation. A more global
view of this behavioral enhancement can be seen in Fig. 3 where the rate of convergence of the approximation error
is presented. The use of weights is definitively helpful and a considerable gain in the reduction of the approximation
error is achieved for a small number of terms.

IV. Approximations with Weighted Basis Pursuit Denoising

In this section, the problem of finding a sparse approximation of a signal f is addressed considering a trade-off
between the error and the number of elements that participate to the approximation. In statistics this problem is also
called Subset Selection and we will refer to it as P0:

(P0) min
c

‖f − Dc‖2
2 + τ2‖c‖0. (46)

Solving P0 is NP complex, so a possible way of simplifying the computation can be to substitute the `0 quasi-norm
with the convex `1 norm. This relaxation leads to the following problem that, from now on, is called P1:

(P1) min
b

1

2
‖f − Db‖2

2 + γ‖b‖1. (47)

This new problem corresponds to the minimization of a convex function that can be solved with classical Quadratic
Programming methods. This relaxation is similar to the one that leads to the definition of the Basis Pursuit principle
for the case of exact signal representation. The fact that this paradigm is also called Basis Pursuit Denoising can be
explained because it was introduced to adapt BP to the case of noisy data [13]. Note that if D is orthonormal the
solution of P1 can be found by a soft shrinkage of the coefficients [15], [13], while, if D is a union of orthonormal
subdictionaries, the problem can be solved recurring to the Block Coordinate Relaxation method [18], faster than
Quadratic Programming.

In [1] we introduced a theoretical framework for sparse representation over redundant dictionaries taking into account
some a priori information about the signal. In this optic we proposed the Weighted Basis Pursuit method that minimizes
a cost function that includes weights expressing the a priori information:

min
b

‖W−1b‖1 s.t. Db = f. (48)

The main results in [1] concerning WBP are contained in Proposition 1:

Definition 4: Given a dictionary D indexed in Ω and an index subset Λ ⊂ Ω, we define the Weighted Recovery
Factor (WRF) as:

WRF (Λ) = sup
i/∈Λ

∥

∥

∥
(DΛWΛ)

+
gi · wi

∥

∥

∥

1
. (49)
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Proposition 1: Given a dictionary D and an a priori matrix W (f,D), Weighted Basis Pursuit is able to recover
the optimal representation of a sparse signal f = DΓbΓ if the following Exact Recovery Condition is respected:

WRF (Γ) < 1. (50)

Moreover, a bound for the WRF is:

WRF (Γ) <
µw

1 (m)

1 − εmax − µw
1 (m − 1)

, (51)

where εmax = sup
γ∈Γ

∣

∣1 − w2
γ

∣

∣ and wγ are the elements of the diagonal matrix WΓ. Therefore, the Exact Recovery Condition

for WBP (50) holds for any index set Γ of size at most m such that

µw
1 (m) + µw

1 (m − 1) < 1 − εmax. (52)

A. A Bayesian Approach to Weighted Basis Pursuit Denoising

In this subsection the problem of signal approximation is studied from a Bayesian point of view. We also examine
under which hypotheses BPDN finds the optimal solution. This leads us to generalize the BPDN principle thorugh the
definition of Weighted Basis Pursuit Denoising (WBPDN). Let us write again the model of our data approximation,
where f̂ is the approximant and r is the residual:

f = f̂ + r = Db + r. (53)

Assuming r to be an iid Gaussian set of variables, the data likelihood is

p(f |D,b) =
1

√

2πσ2
r

· exp

(

−‖f − Db‖2
2

2σ2
r

)

, (54)

where σ2
r is the variance of the residual. In the approximation problem, one aims at maximizing the likelihood of

p(b|f,D). Formally, by the Bayes rule, we have

p(b|f,D) =
p(f |D,b) · p(b)

p(f,D)
,

and thus, assuming p(f,D) to be uniform, it follows that the most probable signal representation is:

bP = arg max
b

p(f |D,b) · p(b). (55)

Let us now assume the coefficients bi are independent and have a Laplacian distribution with standard deviation σi:

p(bi) =
1√
2σi

· exp

(

−
√

2|bi|
σi

)

From (55), by computing the logarithm, it follows that

bP = arg max
b

(

ln(p(f |D,b)) +
∑

i

ln p(bi)

)

= arg min
b

(

‖f − Db‖2
2

2σ2
r

+
∑

i

√
2|bi|
σi

)

.

Making the hypothesis that σi is constant for every index i, the previous equation means that the most probable b
is the one found by the BPDN algorithm [19]. In fact, this hypothesis does not often correspond to reality. On the
contrary, if the variances of the coefficients are not forced to be all the same, it turns out that the most probable signal
representation can be found by solving the following problem:

(Pw
1 ) min

b

1

2
‖f − Db‖2

2 + γ‖W−1b‖1, (56)

where the diagonal matrix with entries in (0, 1] is defined in Section III. One can notice that in Eq. (56), the introduction
of weights allows to individually model the components of b. This approach is analogous to the one introduced in [20]
and [1] and, from now on, we will refer to P w

1 as Weighted Basis Pursuit Denoising or WBPDN.
The assumption often made about the Gaussianity of the residual is quite restrictive. However, for another particular

problem, one could make the hypothesis that this residual has a Laplacian distribution. It is then possible to prove
that the most probable signal representation can be found substituting the `2 measure of the error with the `1. This
leads to the following minimization problem:

min
b

1

2
‖f − Db‖1 + γ‖W−1b‖1,

where W = I if the variances of the probability density functions of bi are the same for each i. This problem is faced,
for example in [20], where it is also explained that it can be solved by Linear Programming techniques.
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B. Preliminary Propositions

Here some preliminary propositions are presented, allowing us to prove the results of the following two subsections.
The proofs of most of them follow the arguments given by Tropp in [3]. In the following cΛ and bΛ lay in R

Λ but
sometimes these are extended to R

Ω by padding with zeros. The same is valid for the matrix WΛ.
Next proposition, similar to the Correlation Condition Lemma in [3], establishes a fundamental result for the rest

of the report: it basically states that, if the atoms of Λ have a small weighted coherence, expressed by the Weighted
Recovery Factor, then the support of any vector that solves P w

1 is a subset of Λ.

Lemma 3: Given an index subset Λ ⊂ Ω, suppose that the following condition is satisfied:

‖DT (f − aΛ)‖∞ <
γ

wmax
Γ

· (1 − WRF (Λ)), (57)

where wmax
Λ

∈ (0, 1] is the quantity defined by equation (13). Then, any coefficient vector b∗ that minimizes the cost
function of problem P w

1 must satisfy
support(b∗) ⊂ Λ. (58)

Proof: Assume that b∗ is a vector minimizing (56). Assume also that it uses an index outside Λ. b∗ can be compared
with its projection D+

ΛDb∗, which is supported in Λ and we obtain:

1

2
‖f − Db∗‖2

2 + γ
∥

∥W−1b∗

∥

∥

1
≤ 1

2

∥

∥f − DD+
ΛDb∗

∥

∥

2

2
+ γ

∥

∥W−1
Λ (D+

ΛDb∗)
∥

∥

1
,

which gives

2γ
(∥

∥W−1b∗

∥

∥

1
−
∥

∥W−1
Λ (D+

ΛDb∗)
∥

∥

1

)

≤
∥

∥f − DD+
ΛDb∗

∥

∥

2

2
− ‖f − Db∗‖2

2 . (59)

First we shall provide a lower bound on the left-hand side of the previous inequality. Let us split the vector b∗ into
two parts: b∗ = bΛ + bΛ, where the former vector contains the components with indexes in Λ, while the latter the
remaining components from Ω \ Λ. This yields, by the upper triangular inequality, that

∥

∥W−1b∗

∥

∥

1
−
∥

∥W−1
Λ (D+

ΛDb∗)
∥

∥

1
=
∥

∥W−1bΛ

∥

∥

1
+
∥

∥W−1bΛ

∥

∥

1
−
∥

∥W−1bΛ + W−1
Λ D+

ΛDbΛ

∥

∥

1

≥
∥

∥W−1bΛ

∥

∥

1
−
∥

∥W−1
Λ D+

ΛDWW−1bΛ

∥

∥

1
.

Since
∥

∥W−1
Λ D+

ΛDWW−1bΛ

∥

∥

1
≤ sup

i/∈Λ

∥

∥

∥(DΛWΛ)
+

giwi

∥

∥

∥

1
·
∥

∥W−1bΛ

∥

∥

1
,

using (49), one can write that
∥

∥W−1b∗

∥

∥

1
−
∥

∥W−1
Λ (D+

ΛDb∗)
∥

∥

1
≥ (1 − WRF (Λ)) ·

∥

∥W−1bΛ

∥

∥

1
. (60)

We now provide an upper bound for the right-hand side of (59). This quantity does not depend on the weighting
matrix, thus, exactly as in [3], it can be stated that:

∥

∥f − DD+
ΛDb∗

∥

∥

2

2
− ‖f − Db∗‖2

2 ≤ 2‖bΛ‖1 ·
∥

∥DT (f − aΛ)
∥

∥

∞
. (61)

From (59), (60) and (61) it turns out that:

γ (1 − WRF (Λ)) ·
∥

∥W−1bΛ

∥

∥

1
≤ ‖bΛ‖1

·
∥

∥DT (f − aΛ)
∥

∥

∞
. (62)

Since the weights are in (0, 1], and the vector bΓ, by assumption, cannot be null, it can be written:

γ (1 − WRF (Λ)) ≤ ‖bΛ‖1

‖W−1bΛ‖1

·
∥

∥DT (f − aΛ)
∥

∥

∞
≤ wmax

Λ
·
∥

∥DT (f − aΛ)
∥

∥

∞
. (63)

If (57) is valid , then (63) fails and so one must discard the hypothesis that b∗ is non-zero for an index in Λ = Ω \ Λ.

We now focus on finding a necessary and sufficient condition for the existence and unicity of a minimum of P w
1 . The

presence of the `1 norm imply that the cost function of this problem is non-smooth at zero: for this reason the concept
of subdifferential is used. Given a real vector variable x, the subdifferential of ‖x‖1 is denoted by ∂‖x‖1 and defined
as:

∂‖x‖1 , {u|u∗x = ‖x‖1, ‖u‖∞ ≤ 1} .

The vectors u that compose the subdifferential are called subgradients [21].
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Lemma 4: A necessary and sufficient condition for b∗ to globally minimize the objective function of P w
1 over all

the coefficient vectors with support Λ is that:

cΛ − b∗ = γ
(

DT
ΛDΛ

)−1
W−1

Λ u, (64)

where u is a vector from ∂‖b∗‖1. Moreover, the minimizer is unique.

Proof: One can observe that solving P w
1 is equivalent to minimize the following function over coefficient vectors

from R
Λ:

F (b) ,
1

2
‖aΛ − DΛb‖2

2 + γ‖W−1
Λ b‖1.

A point b∗ minimizes the second term of F (b) if and only if the following Fermat criterion holds (see [21], [22]):

0 ∈ ∂‖b∗‖1.

Moreover, b∗ minimizes F (b) if and only if 0 ∈ ∂F (b∗). In our case this means that

∃ u ∈ ∂‖b∗‖1 s.t. DT
ΛDΛb∗ − DT

ΛaΛ + γW−1
Λ u = 0, (65)

for some vector u taken from ∂‖b∗‖1. Let the atoms in Λ be linearly independent, from (65) it follows:

b∗ −
(

DT
ΛDΛ

)−1
DT

ΛaΛ + γ
(

DT
ΛDΛ

)−1
W−1

Λ u = 0,

and so

D+
ΛaΛ − b∗ = γ

(

WΛDT
ΛDΛ

)−1
u.

To conclude the proof it is sufficient to recall that cΛ = D+
ΛaΛ.

If W = I, then this result coincides with the one developed by Fuchs in [23] and by Tropp in [3] in the complex case.

Lemma 5: Suppose that b∗ minimizes the cost function of problem P w
1 . Then the following bound holds:

‖cΛ − b∗‖∞ ≤ γ

wmin
Λ

·
∥

∥

∥

(

DT
ΛDΛ

)−1
∥

∥

∥

∞,∞
, (66)

where wmin
Λ is defined as

wmin
Λ , inf

i∈Λ
wi. (67)

Proof: Let us consider the necessary and sufficient condition of Lemma 4: taking the `∞ norm of (64) we obtain:

‖cΛ − b∗‖∞ = γ
∥

∥

∥

(

DT
ΛDΛ

)−1
W−1

Λ u
∥

∥

∥

∞
≤ γ

∥

∥

∥

(

DT
ΛDΛ

)−1
W−1

Λ

∥

∥

∥

∞,∞
· ‖u‖∞

By definition of subdifferential, ‖u‖∞ ≤ 1. Inserting this into the previous equation and using the sub-multiplicative
property of matrix norms (‖AB‖p,q ≤ ‖A‖p,q · ‖B‖p,q), we can prove that

‖cΛ − b∗‖∞ ≤ γ
∥

∥

∥

(

DT
ΛDΛ

)−1
∥

∥

∥

∞,∞
·
∥

∥W−1
Λ

∥

∥

∞,∞
.

Just apply the fact that
∥

∥W−1
Λ

∥

∥

∞,∞
= sup

i∈Λ
(1/wi) =

1

wmin
Λ

to reach the result.

The following proposition states a result that will be used in next subsection to prove Theorem 8. Note that here Γ
is the optimal index subset of Ω, and thus cΓ is the sparsest solution to the subset selection problem.

Proposition 2: (Tropp [3]) Given an input signal f and a threshold τ , suppose that the coefficient vector cΓ, having
support Γ of cardinality m, is the sparsest solution of the problem P0. Set fopt

m = DcΓ. Then:

• ∀k ∈ Γ, |cΓ(k)| ≥ τ .
• ∀i /∈ Γ, |〈f − fopt

m , gi〉| < τ .

These preliminary statements of this subsection will allow us to obtain the main results in the following of the report.
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C. Weighted Relaxed Subset Selection

Let us now study the relationship between the results obtained by solving problem P w
1 and P0. Suppose that cΓ is

the sparsest solution to P0 and that its support is Γ, with |Γ| = m. DΓ will be the matrix containing all the atoms
participating to the sparsest approximation of f and f opt

m will be the approximant given by cΓ, i.e fopt
m = Dcopt =

DD+
Γ f = DΓD+

Γ f . Assuming WRF (Γ) < 1, we have the following result.

Theorem 8: Suppose that b∗ minimizes the cost function of problem P w
1 with threshold

γ =
τ · wmax

Γ

1 − WRF (Γ)
,

where wmax
Γ

is defined in (13). Then:

1) WBP never selects a non optimal atom since support(b∗) ⊂ Γ.
2) The solution of WBP is unique.
3) The following upper bound is valid:

‖cΓ − b∗‖∞ ≤
τ · wmax

Γ

wmin

Γ

·
∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞

1 − WRF (Γ)
. (68)

4) The support of b∗ contains every index j for which

|cΓ(j)| >
τ · wmax

Γ

wmin

Γ

·
∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞

1 − WRF (Γ)
. (69)

The scalar wmin
Γ appearing in Eqs. (68) and (69) is defined in Eq. (67).

Proof: Considering the first stated result, note that every atom indexed by Γ has zero inner product with the
optimal residual (ropt

m = f − fopt
m ) since fopt

m is the best approximation of f using the atoms in Γ. Using Proposition 2
and recalling that D is finite, it can be stated that

∥

∥DT (f − fopt
m )

∥

∥

∞
< τ. (70)

Moreover, Lemma 3 guarantees that

∀γ s.t.
∥

∥DT (f − fopt
m )

∥

∥

∞
<

γ

wmax
Γ

· (1 − WRF (Γ)), (71)

and that the solution b∗ to the convex problem P w
1 is supported on Γ. From (70) and (71) it follows that for any γ

that satisfies the following condition, it is insured that support(b∗) ⊂ Γ:

γ ≥
τ · wmax

Γ

1 − WRF (Γ)
. (72)

In the following, the smallest possible value for γ is chosen: in this way, Eq. (72) becomes an equality.
The uniqueness of the solution follows from Lemma 4.
With regard to the third point, the results from Lemma 5 yield

‖cΓ − b∗‖∞ ≤ γ

wmin
Γ

∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞
≤

τ · wmax

Γ

wmin

Γ

1 − WRF (Γ)
·
∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞
.

This proves the point 3.
Concerning the fourth result of the theorem, one can observe that, for every index j for which

|cΓ(j)| > γ
∥

∥

∥

(

DT
Γ DΓ

)−1
W−1

Γ

∥

∥

∥

∞,∞
,

the corresponding coefficient b∗(j) must be different form zero. As before, substituting Eq. (72) leads to prove the last
result of the Theorem.

This theorem states two important concepts. First, if the trade off parameter is correct and the weighted cumulative
coherence of the dictionary is small enough, WBPDN is able to select the correct atoms for the signal expansion
and it will not pick up the wrong ones. Furthermore, the error achieved by the algorithm on the amplitude of the
coefficients related to the selected atoms is bounded. Nevertheless, once the algorithm has recovered the atom subset,
the appropriate amplitudes of the coefficients can be computed by the orthogonal projection of the signal onto the
space generated by the selected atoms. This method is illustrated in Section IV-E to generate some examples.
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The quantities wmin
Γ and wmax

Γ
depend on the reliability and goodness of the a priori. In particular, if W tends to

be optimal (i.e. its diagonal entries tend to 1 for the elements that should appear in the sparsest approximation and
to 0 for the ones that should not), one can observe that wmin

Γ → 1 and wmax
Γ

→ 0.

D. Relation with the Weighted Cumulative Coherence

In this subsection, the previous results are described using the weighted cumulative coherence function defined in
(15). In this way a comparison is made between the results achievable by BPDN and WBPDN.

Theorem 9: Assume that the real vector b∗ solves P w
1 with

γ =
wmax

Γ
· τ(1 − εmax − µw

1 (m − 1))

1 − εmax − µw
1 (m) − µw

1 (m − 1)
.

Then support(b∗) ⊂ Γ and

‖b∗ − cΓ‖∞ ≤
τ · wmax

Γ

wmin

Γ

(1 − εmax − µw
1 (m − 1))

(1 − εmax − µw
1 (m) − µw

1 (m − 1))(1 − µ1(m − 1))
. (73)

Proof: This result can be obtained from Proposition 1 and Theorem 8, since:

‖b∗ − cΓ‖∞ ≤ γ

wmin
Γ

∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞
=

τ · wmax

Γ

wmin

Γ

(1 − εmax − µw
1 (m − 1)) ·

∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

∞,∞

(1 − εmax − µw
1 (m) − µw

1 (m − 1))
.

The last term of the numerator in the previous expression is the norm of the inverse Gram matrix. Since

‖
(

DT
Γ DΓ

)−1 ‖∞,∞ = ‖
(

DT
Γ DΓ

)−1 ‖1,1 ≤ 1

1 − µ1(m − 1)
,

(see [3], [23], [1]) this proves equation (73).

This result is valid in general and illustrates how the distance between the optimal signal approximation and the
solution found by solving P w

1 can be bounded. In case no a priori is given, the bound on the coefficient error is obtained
from Eq. (73) setting W = I. Consequently, wmin

Γ = 1, εmax = 0 and wmax
Γ

= 1 (see also [3]):

‖b∗ − cΓ‖∞ ≤ τ

1 − µ1(m) − µ1(m − 1)
. (74)

Comparing the two bounds, one can observe how the availability of a reliable prior on the signal can help in finding a
sparser signal approximation. This concept is emphasized in the following corollary.

Corollary 3: Let W (f,D) be a reliable a priori knowledge, with

wmax
Γ

wmin
Γ

≤ 1,

then for any positive integer m such that µ1(m−1)+µ1(m) < 1 and µw
1 (m−1)+µw

1 (m)+εmax < µ1(m−1)+µ1(m) < 1,
the error ‖b∗ − cΓ‖∞ given by the coefficients found by WBPDN is smaller than the one obtained by BPDN.

Hence, the bound stated by Eq. (73) is lower than the one in Eq. (74), i.e.

τ · wmax

Γ

wmin

Γ

(1 − εmax − µw
1 (m − 1))

(1 − εmax − µw
1 (m) − µw

1 (m − 1))(1 − µ1(m − 1))
≤ τ

1 − µ1(m) − µ1(m − 1)
.

Note the similarity between Corollaries 2 and 3. The proof of the latter Corollary is reported in the appendix. Here

the hypothesis that
wmax

Γ

wmin

Γ

≤ 1 is made. Observe that if the a priori is particularly good this factor can be much smaller

than one and so the improvement with respect to the general case can be really big.
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E. Example

We examine again the example presented in section III-C, but this time using the Basis Pursuit Denoising and
Weighted Basis Pursuit Denoising algorithms. The dictionary used for the decomposition is illustrated in section III-C,
as well as the input signal. For an explanation of the prior model and the extraction of the a priori matrix, see [1] or
Section V.

The signal f is decomposed first solving the minimization problem illustrated in (47) (BPDN). Then, the a priori
knowledge is introduced, and we solve the minimization problem illustrated in (56) (WBPDN). Both solutions were
numerically found using Quadratic Programming techniques. The trade off parameter γ controls the `1 norm of the
coefficient vector and indirectly its sparseness. The signal representations present many components with negligible
values due to the numerical computation: a hard thresholding is performed in order to get rid of this misleading
information, paying attention not to eliminate significant elements. In this optic it is possible to measure the `0 norm
of the vector b. The data reported here refer to a threshold value of 0.01. Of course the reconstructions are computed
starting from the thresholded coefficients. Figure 4 shows the reconstructions of the input signal given by a 10-terms
approximation found by BPDN and WBPDN. Figure 6 (on the left-hand) illustrates the mean square error of the
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Fig. 4. Comparison of BPDN and WBPDN based approximation with 10 terms using the footprints dictionary (Fig. 1). Left: Original
signal. Center: reconstruction using 10 BPDN coefficients. Right: reconstruction using 10 WBPDN coefficients.

approximations of f with m terms found by BPDN and WBPDN.

Let us call b∗ the approximation found by BPDN and bw
∗ the one found by WBPDN. As just explained, these vectors

are thresholded removing the numerically negligible components, and in this way we are able to individuate a sparse
support and so a subset of the dictionary. Let us label the subdictionary found by WBPDN with Dw

∗ (composed by the
atoms corresponding to the non-zero elements of bw

∗ ). Once this is given, there are no guarantees that the coefficients
that represent f are optimal (see Theorems 8 and 4). These are, thus, recomputed projecting the signal onto Dw

∗ and
a new approximation of f named bw

∗∗ is found. Exactly the same is done for BPDN, ending up with a subdictionary
D∗ and a new approximation b∗∗. Of course, support(b∗) = support(b∗∗) and support(bw

∗ ) = support(bw
∗∗). Formally

the approximants found by BPDN and WBPDN are respectively:

f∗∗ = D∗D
+
∗ f = Db∗∗ and

fw
∗∗ = Dw

∗ (Dw
∗ )+f = Db∗∗.

(75)

In synthesis, the pursuit algorithm is used only to select a dictionary subset and then the coefficients of the
approximation are computed again, by means of a simple projection. Fig. 5 and 6, show how this technique considerably
improves the results obtained by solving problems P1 and Pw

1 . Moreover they confirm the advantages of the weighted
algorithm with respect to the non weighted one.

V. Examples: A Natural Signal Approximation with Coherent Dictionaries and an A Priori Model

In the previous sections, the example of approximating a synthetically generated piecewise-smooth signal has been
presented. This successfully illustrates how we can exploit prior signal models in order to ameliorate the behavior of
sub-optimal algorithms in the retrieval of sparse approximations. In this section we show that the improvement is not
limited to artificially generated signal, provide a very simple example where weighted algorithms perform better also
with natural signals. Moreover, as we will show, the a priori weights can be automatically extracted from the data and
optimized such that the performance of the weighted algorithm in use is maximized. Continuing with the class of signals
analyzed in previous examples, we would like to approximate a signal that can be considered as piecewise-smooth. This
kind of signals can be efficiently approximated by using dictionaries of functions that can optimally represent both
features of the signal: discontinuities and smooth parts. For this purpose an overcomplete coherent dictionary given by
footprints and wavelets is used, as in [1] and in all the previous examples in the present work.
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Fig. 5. The original signal reconstructed from a 10-terms approximation computed by BPDN (left) and WBPDN (right). The comparison
show the improvement given by recomputing the projections once that the algorithm has selected a subdictionary. For the errors see Figure
6
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Fig. 6. Errors (in log scale) of the m-terms approximations f with BPDN and WBPDN. In the figure on the right the approximations are
computed projecting the signal on the subdictionary selected by the algorithm (see Eq. 75)

A. A Noisy Piecewise-smooth Natural Signal

As often suggested, images may be represented by a piecewise-smooth component and a texture component [24],
[25]. A way to get a “natural” 1D piecewise-smooth signal is to extract a column or a row from a natural image. In
particular, we study two 1D signals extracted from the image “cameraman”, shown in Fig. 7: one corresponds to the
140th column, and the second to the 80th row.

Fig. 7. Cameraman picture used to extract the example of a “real world” 1D signal with piecewise-smooth characteristics
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B. Modeling the Relation Signal-Dictionary

The dictionary in use is composed by the union of the Symmlet-4 orthonormal base and the set of piecewise-constant
footprints (see Sec. III-C and Fig. 1). Since the input signals are constituted by 256 samples, the dictionary is expressed
by a matrix of size 256×512. The modeling of the interaction between the signal and the dictionary is performed using
the simple approach described in [1]. The weighting matrix W (f,D) is generated by means of a pre-estimation of the
locations where footprints are likely to be used and the assumption that in such locations wavelets have less probability
to be required. This discrimination is reflected in the diagonal matrix W (f,D) in the following way: locations where
a footprint is likely to be placed are not penalized (thus the weighting factor remains 1). On the contrary, wavelets
that overlap the footprint and footprints considered unlikely to be used get a penalizing factor β ∈ (0, 1]. To be more
explicit, the edge detection based model used in [1] is recalled:

Algorithm 1 W (f,D) estimation

Require: D = DSymmlet ∪ DFootprints, define a threshold λ , define a penalty factor β
1: fdiff = D+

Footprints · f {Footprints location estimation (edge detection)}
2: Threshold fdiff by λ putting greater values to 1 or β otherwise.

3: W diag
footprints = fdiff {Diagonal of the sub-matrix of W (f,D) corresponding to footprints.}

4: Create W diag
wave s.t. all wavelets intersecting the found footprints locations equal β, set to 1 otherwise.

5: W (f,D) = diag
([

W diag
wave W diag

footprints

])

;

As one can observe, two parameters configure the model that generates W (f,D): a threshold λ and a penalty weight
β. In practice, as shown later in this section, these can be selected by an optimization procedure such that the energy
of the approximation error is minimized.

C. Signal Approximation

An additional phase is inserted before the approximation. It consists of an estimation of the main features of the
particular signal to approximate and their relation with the dictionary in use. We thus resume the general procedure
by these two steps:

1) Estimation of the a priori information from the “real world” signal using a prior model.
2) Use of a weighted algorithm (greedy or relaxed) based on the estimated a priori knowledge to find the appropriate

atoms subset to approximate the “real world” signal.

Furthermore, an iterative version of this two phase algorithm can be considered in order to optimize the parameters
that configure the prior model used in the first step: the Expectation Maximization (EM) algorithm. A first approach
for the parameters tuning can be a grid search, or a multi-scale grid search. More sophisticated search techniques could
be used, in particular, an overview can be found in [26].

D. Results

The results obtained from the framework introduced above are illustrated in the following. First, we show the
quantitative impact of using Weighted -MP/OMP and WBPDN in terms of the residual error energy. Right after, the
use of atoms of the dictionary to represent the main features of the signal is analyzed. Finally, we explore the influence
of tuning in an appropriate way the two parameters that configure our penalty model.

1) Approximation Results with OMP: Two approximation examples, where OMP and Weighted-OMP are used, are
presented. Following the two steps procedure, described above, we look for approximants of the signals appearing at
the left of Figs. 8 and 9. The former corresponds to the 140th column of the cameraman picture and the latter to the
80th row. The improvement in performance of Weighted-OMP in the case of sparse approximations is assessed by the
rate of convergence of the residual energy. On the right hand of Figs. 8 and 9, the graphs show that after a certain
number of iterations, Weighted-MP selects better atoms than classic Weak -MP. Hence the convergence of the error
improves and this yields a gain of up to 2 dBs for the first example and up to 2.5 dBs in the second one (depending
on the iteration).

2) Approximation Results with BPDN: The 1D signal extracted from the 140th column of cameraman, illustrated
on the left side of Fig. 8, is approximated by using BPDN and WBPDN. As explained in section IV-E, the pursuit
algorithm is used only to select a dictionary subset and then, the coefficients of the approximation are computed again
by means of a simple projection. Fig. 10 shows the decay of the energy of the error while the number of atoms selected
increases. It is clear how the use of the a priori helps the algorithm in finding a better approximation of the signal.
The results concerning WBPDN are obtained by adopting a weighting matrix that corresponds to λ = 90 and β = 0.2.
Notice that these values are not optimal for all the numbers of non-zero coefficients. Better results can be achieved by
tuning appropriately β and γ for any desired m.
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Fig. 8. Experiment of approximating the 1D signal extracted from the 140th column of “cameraman”. Left, 1D signal used in the experience
can be seen. Right, the rate of convergence of the residual error. In red can be observed the OMP result. In blue the Weighted-OMP result.
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Fig. 9. Experiment of approximating the 1D signal extracted from the 80th row of the 256x256 cameraman picture from Fig. 7. Left, 1D
signal used in the experience can be seen. Right, the rate of convergence of the residual error. In red can be observed the OMP result. In
blue the Weighted-OMP result.
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Fig. 10. Error (in dB) obtained by BPDN and WBPDN approximating the 1D signal extracted from the 140th column of the image
“cameraman” (see Fig. 7) using different numbers of atoms. Both results are obtained by using quadratic programming for selecting a
dictionary subset and then recomputing the coefficients by re-projecting the signal onto the span of the subdictionary. The procedure is
illustrated in section IV-E.
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3) Capturing the Piecewise-smooth Component with Footprints Basis: Here, the results intend to underline the
importance of selecting the appropriate atom to represent a particular signal feature. In Fig. 11 we can see in the
upper row the resulting approximants of original signal obtained from the 140th column (Fig. 8) after 50 iterations
of OMP (left) and Weighted-OMP (right). The result which considers the a priori is a 1.51 dBs better than the
approximant obtained by OMP. At this point, it is important to notice the result depicted in the lower row of Fig. 11.
These waveforms represent the signal components that are captured exclusively by the footprints atoms and Symmlet-4
scaling functions. These signal components should correspond to the piecewise-smooth parts of the signal. However, and
as depicted by the lower row of Fig. 11, in the case of OMP (bottom left) the piecewise-smooth component captured
by footprints and low-pass functions is far from what one could expect. Intuitively one can understand that the OMP
algorithm is failing in the selection of atoms. On the other hand, the result obtained by Weighted-OMP (bottom right)
clearly shows that footprints and Symmlet-4 scaling functions are capturing a much more accurate approximant of the
piecewise-smooth component of the signal. Hence, a better approximation is achieved by using the a priori information.
This leads to a sparser approximation too.
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Fig. 11. Upper left: Approximation after 50 iterations with OMP without using a priori information. Upper right: Approximation after 50
iterations with Weighted-OMP(+1.51 dBs). Bottom left: Signal components captured by Symmlet-4 scaling functions and Footprints when
simple OMP is used. Bottom right: Signal components captured by Symmlet-4 scaling functions and Footprints using Weighted-OMP.

4) Parameter Search: Finally, we show the influence of the parameters λ and β in the average quadratic error of
the residues obtained by Weighted-MP, i.e.

E {rn|λ′, β′} =

N−1
∑

n=0

‖rn‖2

N
s.t. rn has been obtained fixing λ = λ′ and β = β′. (76)

In Figs. 12 and 13 the magnitude of Eq. (76) is shown as a function of λ (model threshold) and β (penalty weight) for
the two natural examples exposed in this work. Fig. 12 corresponds to the case of the 140th column of cameraman,
and Fig. 13 concerns the 80th row.

In the figures, a mapping of the meaning of the colors is available. The lower the value of E {rn|λ′, β′} is, the
more probably the associated model parameters are the good ones. In this case, it can be easily observed how the
optimal configuration of parameters concentrates in both cases in a unique global optimum. Hence, the set of optimal
parameters that fit the data model can be easily found by some iterative procedure.
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Fig. 12. Representation of the expectation map depending on the parameters that configure the a priori model in the experiment set up
in Fig. 8. The expectation corresponds to the energy of the residual error.
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Fig. 13. Representation of the expectation map depending on the parameters that configure the a priori model in the experiment set up
in Fig. 9. The expectation corresponds tot the energy of the residual error.

VI. Conclusions

This work presents theoretical results on the performance of including a priori knowledge in algorithms for signal
approximation like Weak -MP or BPDN. We introduce weighted variants called Weighted-MP/OMP and WBPDN.
Theoretical results show that these algorithms may supply much better results than classic approaches for highly non-
linear signal approximations, if sufficiently reliable prior models are used. This reliability is theoretically represented
in our results by εmax while the discriminative ability of the a priori is given by wmax

Γ
and wmin

Γ . The fact that
these quantities are normally unavailable in practice, disables us to use numerically the sufficient conditions found
unlike in the case where no prior is used. Nevertheless, the results found are able to explain how weighted Greedy
and BPDN algorithms behave compared to non-weighted ones. A field to explore may be to try to determine some
bounds on this quantity depending on the class of signals to approximate and the practical estimators (those that
generate the a priori weights) in use. Practical examples concerning synthetic and natural signals have been presented
where we used a dictionary with high internal cumulative coherence. Theoretically, with such a dictionary, greedy or
relaxation algorithms are not guaranteed to recover the set of atoms of the best m-terms approximation. Sufficient
conditions for the recovery of all the correct atoms of the best m-terms approximation are far from being satisfied.
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Nevertheless, these are too restrictive and pessimistic. Even if they are not satisfied, in some cases, the recovery is
still possible. In our examples, classic algorithms like OMP or BP do not seem to succeed in selecting what can be
considered, intuitively, as the appropriate atoms to represent efficiently the different signal events. To the contrary, the
use of an appropriate joint prior model of the interaction between the signal and the dictionary is able to significantly
enhance the final subset selection result. This fact confirms our theoretical results. Weighted-MP/OMP and WBPDN
outperform their classic counterpart when a reliable a priori knowledge is used. Sparse signals approximation requires
the use of dictionaries capable to catch efficiently the main features of a certain signal. Particular applications often
focus on a certain class of signals to be treated. Thus, it is a wise strategy to use adapted dictionaries for such signals.
On top of that, and in order to overcome the possible internal coherence of the dictionary in use an appropriate strategy
is also to adapt the subset selection algorithm to the class of signals to be approximated. In effect, the lesson drawn
from our study is that signal adapted algorithms are of key importance in optimal atoms selection for best m-terms
signal approximations with dictionaries that are not highly incoherent. This can be done from a Bayesian point of view
by introducing appropriate prior models in known algorithms, resulting, for example, in weighted versions of those:
Weighted-MP/OMP or WBPDN. Moreover, we show also how, in the Bayesian scope, Weak -MP and BPDN are nothing
but particular cases where a specific non-discriminative a priori is used. Finally, we conclude that a suitable framework
for non-linear signal approximation turns to be the use of optimized dictionaries as pool of adapted building pieces
in the approximation synthesis step and the use of signal adapted algorithms by means of a priories in the analysis
(subset selection) step. Very good feature estimators exist and a lot of experience on them is available in the literature.
For every particular application models exploiting certain features may be found. These can be married with most
common algorithms used for sparse approximations/representations (Weak -MP, BPDN, BP) to obtain much better
performances. In fact, the examples presented in this work may be subject to improvement if more robust estimators
were used.

Appendix

Proof of Corollary 2 of Section III-A:

Proof: For simplicity, let us use an upper bound on the left hand side of the above inequality. Indeed, the factor
0 < (wΓ

max)
2 ≤ 1 is removed:
(

1 +
m (1 − (µw

1 (m − 1) + εmax)) (wΓ
max)

2

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

≤
(

1 +
m (1 − (µw

1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

.

Let us suppose the a priori knowledge in use is reliable. Then the following relations can be assumed:

µw
1 (m − 1) + µw

1 (m) + εmax ≤ µ1(m − 1) + µ1(m) < 1 (77)

and

µw
1 (m − 1) + εmax ≤ µ1(m − 1). (78)

Now we can proof the inequality. Let us make the hypothesis that the following is true:
(

1 +
m (1 − (µw

1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

≤
(

1 +
m (1 − µ1(m − 1))

(1 − (µ1(m − 1) + µ1(m)))
2

)

(1 − (µw
1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2 ≤ (1 − µ1(m − 1))

(1 − (µ1(m − 1) + µ1(m)))
2 .

Then,

1 ≤ (1 − µ1(m − 1))

(1 − (µw
1 (m − 1) + εmax))

· (1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

(1 − (µ1(m − 1) + µ1(m)))
2 . (79)

According to (77) and (78), the following can be considered:

τ1 , µ1(m − 1) − (µw
1 (m − 1) + εmax)

τ2 , µ1(m − 1) + µ1(m) − (µw
1 (m) + µw

1 (m − 1) + εmax)

where 0 ≤ τ1 � µ1(m) and 0 ≤ τ2 � µ1(m − 1) + µ1(m). Hence, being δ , τ2/ (1 − (µ1(m − 1) + µ1(m))) the second
fraction in (79) can be substituted:

1 ≤ (1 − µ1(m − 1))

(1 − (µw
1 (m − 1) + εmax))

· (1 + δ)
2
. (80)
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Moreover, considering for the first fractional term of (80) that δ′ , τ1/ (1 − µ1(m − 1)), then

1 ≤ 1

1 + δ′
· (1 + δ)

2
= (1 + δ) · 1 + δ

1 + δ′
. (81)

From this, clearly (1 + δ) ≥ 1. So, if (1 + δ) ≥ (1 + δ′) then Corollary 2 is proved.
Hence, let us check finally if this last condition holds:

(1 + δ) ≥ (1 + δ′) (82)

δ ≥ δ′ (83)
τ2

(1 − (µ1(m − 1) + µ1(m)))
≥ τ1

(1 − µ1(m − 1))
(84)

τ2

τ1

(1 − µ1(m − 1))

(1 − (µ1(m − 1) + µ1(m)))
≥ 1 (85)

τ2

τ1
≥ 1. (86)

Which is indeed true, since:

τ2 ≥ τ1 (87)

(µ1(m − 1) − µw
1 (m − 1)) + (µ1(m) − µw

1 (m)) − εmax ≥ (µ1(m − 1) − µw
1 (m − 1)) − εmax (88)

(µ1(m) − µw
1 (m)) ≥ 0, (89)

and this concludes the whole proof.

The use of reliable a priori information ensures that Weighted-MP/OMP will be able to recover an approximant as
good as Weak -MP or better.

Proof of corollary 3 of section IV-D:

Proof: We want to prove that

τ

1 − µ1(m) − µ1(m − 1)
≥

τ · wmax

Γ

wmin

Γ

· (1 − µw
1 (m − 1) − εmax)

(1 − εmax − µw
1 (m) − µw

1 (m − 1))(1 − µ1(m − 1))
, (90)

or equivalently

1 ≤ (1 − εmax − µw
1 (m) − µw

1 (m − 1)) (1 − µ1(m − 1))

(1 − µw
1 (m − 1) − εmax) (1 − µ1(m) − µ1(m − 1))

· wmin
Γ

wmax
Γ

.

If the a priori is reliable the weights corresponding to the atoms indexed by Γ are big and the ones corresponding

to the atoms in Γ are small. That is,
wmax

Γ

wmin

Γ

≤ 1. Moreover we suppose that µ1(m − 1) + µ1(m) < 1 and µw
1 (m − 1) +

µw
1 (m) + εmax < µ1(m − 1) + µ1(m) < 1. Under these hypotheses one can prove equation (90) following the same

procedure of the previous demonstration.
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