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1 Introduction

The continuous wavelet transform is already a well established procedure for
analysing data. Its main advantages over the classical Fourier transform are
its local and multiresolution nature, which provide the interesting proper-
ties of a mathematical microscope. Its theory is well known in the case of
the line and plane. However, the representation and analysis of signals in
non-Euclidean geometry is a recurrent problem in many scientific domains.
Not only certain data are constrained by nature on curved surfaces, but a
lot of detectors collect information via interfaces which are geometrically
complicated. Because of these demands, spherical wavelets [Antoine and
Vandergheynst, 1999] were recently developed and applied, for example in
Cosmology [Martinez-Gonzalez et al., 2002, Cayon et al., 2003].

Although the sphere is a manifold most desirable for applications, the
mathematical analysis made so far invites us to consider other manifolds with
similar geometrical properties, and first of all, other Riemmanian symmet-
ric spaces of constant curvature. Among them, the two-sheeted hyperboloid
stands as a very interesting case. For instance, in quantum mechanics such a
manifold may be a particular example of a phase space [Gazeau et al., 1989].
Other examples come from physical systems constrained on a hyperbolic
manifold, for instance, an open expanding model of the universe. A com-
pletely different example of application is provided by the emerging field of
catadioptric image processing [Makadia and Daniilidis, 2003, Daniilidis et al.,
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2002]. In this case, a normal (flat) sensor is overlooking a curved mirror in
order to obtain an omnidirectional picture of the physical scene. An efficient
system is obtained using a hyperbolic mirror, since it has a single effective
viewpoint. Finally, from a purely conceptual point of view, having already
built the CWT for data analysis in Euclidean spaces and on the sphere, it is
natural to raise the question of its existence and form on the dual manifold.

In general, for constructing a CWT on H2, few basic requirements should
be satisfied

• wavelets and signals must ”live” on the hyperboloid;

• the transform must involve dilations of some kind; and

• the CWT on H2, should reduce locally to the usual CWT on the plane.

The paper is organized as follows. In Section 2 we sketch the geometry
of the two-sheeted hyperboloid H2. In Section 3 we define affine transforma-
tions on the upper sheet H2

+ of H2. There are two fundamental operations :
dilations and hyperbolic motions represented by the group SO0(1, 2). Then,
the action of the dilation on the hyperboloid is derived in Section 4. In
Section 5, harmonic analysis on the hyperboloid is introduced by means of
the Fourier-Helgason transform : this is a central tool for constructing and
studying the wavelet transform. Section 6 really constitutes the core of this
paper. First we define the CWT on H2

+ through a hyperbolic convolution.
Then we prove a hyperbolic convolution theorem which allows us to work
conveniently in the Fourier-Helgason domain. Theorems 6.2.1 and 6.2.2 are
our main results. We would like to state them roughly here in order to wet
our readers’ appetite since these results are reminiscent of their Euclidean
counterparts. The first one states a generic admissibility condition for the
existence of hyperbolic wavelets

Theorem 1.0.1 Let ψ be a square integrable function on H2
+ whose Fourier-

Helgason coefficients satisfy :

0 < Aψ(ν) =

∫
∞

0

|ψ̂a(ν)|2
da

a3
< +∞.

Then the hyperbolic wavelet transform is a bounded operator from L2(H2
+) to

a subset of L2(R+
∗
× SO0(1, 2) that is invertible on its range.

Our second featured theorem shows that the admissibility condition sim-
plifies to a zero-mean condition and really motivates the wavelet terminology.
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Figure 1: Geometry of the 2-hyperboloid.

Theorem 1.0.2 A square integrable function on H2
+ is a wavelet if its inte-

gral vanished, that is ∫

H2
+

dµ(χ, ϕ)ψ(χ, ϕ) = 0.

Finally we conclude this paper with illustrating examples of hyperbolic
wavelets and wavelet transforms and give directions for future work.

2 Geometry of the two-sheeted hyperboloid.

Projective structures.

We start by recalling basic facts about the upper sheet of the two-sheeted
hyperboloid of radius ρ, H2

+ρ. Let χ, ϕ be a system of polar coordinates for
H2

+ρ. To each point θ = (χ, ϕ) we shall associate the vector x = (x0, x1, x2)
of R3 given by

x0 = ρ coshχ,

x1 = ρ sinhχ cosϕ, ρ > 0, χ > 0, 0 ≤ ϕ < 2π,

x2 = ρ sinhχ sinϕ,

where χ > 0 is the arc length from the pole to the given point on the
hyperboloid, while ϕ is the arc length over the equator, as shown on Figure
1. The meridians (ϕ = const) are geodesics.

The squared metric element in hyperbolic coordinates is:

(ds)2 = −ρ2

(
(dχ)2 + sinh2 χ(dϕ)2

)
, (2.1)
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Figure 2: Geometry of the conic projection.

called Lobachevskian metric, whereas the measure element on the hyperboloid
is

dµ = ρ2 sinhχdχdϕ. (2.2)

In the sequel, we shall designate the unit hyperboloid H2
+ρ=1 by H2

+.

2.1 Conic projection

Various projections can be used to endowH2
+ with a local euclidean structure.

Let us consider a half null cone C2
+ ∈ R3 of equation (x0)

2 − 1

tanψ0
((x1)

2 +

(x2)
2) = 0, x0 > 0. This cone C2

+ has Euclidean nature (metric (2.1) van-
ishes). The cone surface unrolled is a circular sector. All points of H2

+ will be
mapped onto C2

+ using a specific conic projection. The characteristic param-
eter of a conic projection is the constant of the cone m = cosψ0, where ψ0 is
the Euclidean angle of inclination of the generatrix of the cone as shown on
Figure 2. The relation with the hyperbolic angle χ0 of the parallel touching
the cone and ψ0 is :

cosψ0 =
1√

1 + tanh2 χ0

≡ m

We will only consider radial conic projection and it is more convenient to
use a radius r defined by the euclidean distance of the point on the cone to
the x0-axis:

r = f(χ), dr = f ′(χ)dχ with
dr

dχ

∣∣∣∣
χ=0

= 1. (2.3)
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Each suitable projection is determined by a specific choice of f(χ). The
metric and measure can be expressed in the new coordinates by:

(ds)2 = −
(

(dχ)2 + sinh2 χ(dϕ)2

)
= −

((
dr

f ′(χ)

)2

+ sinh2 χ(dϕ)2

)
,(2.4)

dµ = sinhχdχdϕ =
sinhχ

f ′(χ)
drdϕ. (2.5)

3 Affine transformations on the 2-hyperboloid

We recall that our purpose is to build a total family of functions in L2(H2
+, dµ)

by picking wavelet or probe ψ(χ) with suitable localization properties and
applying on it hyperbolic motions, belonging to the group SO0(1, 2), and
appropriate dilations

ψ(x) → λ(a, x)ψ(d1/ag
−1x) ≡ ψa,g(x), g ∈ SO0(1, 2). (3.1)

Dilations da will be studied bellow. Hyperbolic rotations and motions, g ∈
SO0(1, 2), act on x in the following way.

A motion g ∈ SO0(1, 2) can be factorized as g = k1hk2, where k1, k2 ∈
SO(2), h ∈ SO0(1, 1), and the respective action of k and h are the following

k(ϕ0).x(χ, ϕ) =




1 0 0
0 cosϕ0 − sinϕ0

0 sinϕ0 cosϕ0







coshχ
sinhχ cosϕ
sinhχ sinϕ


 (3.2)

= x(χ, ϕ + ϕ0), (3.3)

h(χ0).x(χ, ϕ) =




coshχ0 sinhχ0 0
sinhχ0 coshχ0 0

0 0 1







coshχ
sinhχ cosϕ
sinhχ sinϕ


 (3.4)

= x(χ + χ0, ϕ) (3.5)

On the other hand, the dilation is a homeomorphism da : H2
+ → H2

+ and
we require that da fulfills the two conditions:

(i) it monotonically dilates the azimuthal distance between two points on
H2

+:
dist(da(x), da(x

′)), (3.6)

where dist(x, x′) is defined by

dist(x, x′) = cosh−1 (x · x′), (3.7)

where the dot product is the Minkowski product in R3;
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(ii) it is homomorphic to the group R+
∗
;

R
+
∗
3 a→ da, dab = dadb, da−1 = d−1

a , d1 = Id.

The action of motion on a point x ∈ H2
+ is trivial: it displaces (rotates) by

an hyperbolic angle χ ∈ R+ (respectively by an angle ϕ). It has to be noted
that, as opposed to the case of the sphere, attempting to use the conformal
group SO0(1, 3) for describing dilation, our requirements are not satisfied. In
this paper we adopt an alternative procedure that describes different maps
for dilating the hyperboloid.

4 Dilation on hyperboloid

4.1 Dilation on hyperboloid through conic dilation

Considering the null cone of equation x2
0 − x2

1 − x2
2 = 0 there exist the

SO0(1, 2)-motions and the obvious Euclidean dilations

x ∈ C2
+ → ax ∈ C2

+ ≡ dCa (x), (4.1)

which form a multiplicative one parameter group isomorphic to R+
∗
.

Now, it is natural to use possible conic projections of H2
+ onto C2

+

H2
+ 3 x→ Φ(x) ∈ C2

+ (4.2)

in order to lift dilation (4.1) back to H2
+.

Various Φ are possible, of course. One of them is immediate. It suffices
to flatten the hyperboloid onto R2 ' C

x = x(χ, ϕ) → Π0Φ(x) = sinhχeiϕ. (4.3)

The invariant metric and measure on H2
+, respectively (2.1) and (2.2), are

then transformed into

(ds)2 → cosh2 χ(dχ)2 − sinh2 χ(dϕ)2, (4.4)

dµ(χ, ϕ) → sinhχ coshχ√
1 + sinh2 χ

dχdϕ. (4.5)

In polar coordinates r, ϕ, the measure (4.5) reads

dµ(r, ϕ) =
r√

1 + r2
drdϕ. (4.6)
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Figure 3: Action of a dilation a on the hyperboloid H2 by ”flattening”.

and the action of dilation by flattening is depicted on Figure 3.
This is not what we should expect from a genuine expansion on H2

+.
Indeed, we wish to find the form of Π0Φ such that, expressed in polar coor-
dinates, the measure is

dµ = rdrdϕ. (4.7)

Thus dilating r will linearly dilate the measure dµ as well. By expressing the
measure (4.7) with the radius defined in (2.3) we obtain

f(χ)f ′(χ) = sinhχ =⇒ f(χ) = 2 sinh
χ

2
. (4.8)

Consequently, the radius of the conic projection is r = 2 sinh χ
2
.

Thus, the conic projection Π0Φ : H2
+ → C2

+ is a bijection given by

Π0Φ(x) = 2
√

2 sinh
χ

2
eiϕ,

with x ≡ (χ, ϕ), χ ∈ R+, 0 ≤ ϕ < 2π. The action of Π0Φ is depicted on
Figure 4. Then, the lifted dilation is of the form

sinh
χa
2

= a sinh
χ

2
. (4.9)

and the dilated point xa ∈ H2 is

xa = (coshχa, sinhχa cosϕ, sinhχa sinϕ). (4.10)

The behaviour of dist(xN, xa), with xN being the North Pole, is shown on
Figure 5. We can see that this is an increasing function with respect to a.
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Figure 6: Action of a dilation a on the hyperboloid H2
+ through a stereo-

graphic projection.

It is also interesting to compute the action of dilations in the bounded
model of H2

+. The latter is obtained by applying the stereographic projection
from the South Pole of H2 and it maps the upper sheet H2

+ inside the unit
disc in the equatorial plane:

x = x(χ, ϕ) → Φ(x) = tanh
χ

2
eiϕ. (4.11)

Using (4.9) and basic trigonometric relations we obtain

tanh
χa
2

=

√
a2 tanh2 χ

2

1 + (a2 − 1) tanh2 χ
2

≡ ζ. (4.12)

In this case, the dilation leaves invariant both ζ = 0 and ζ = 1. Figure
6 depicts the action of this transformation on a point x ∈ H2

+. A dilation
around the North Pole (DN) is considered as a dilation in the unit disc in
equatorial plane and lifted back to H2 by inverse stereographic projection
from the South Pole. A dilation around any other point x ∈ H2

+ is obtained
by moving x to the North Pole by a rotation g ∈ SO0(1, 2), performing
dilation DN and going back by inverse rotation:

Dx = g−1DNg.
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Figure 7: Visualization of the dilation on a hyperboloid H2
+.

The visualization of the dilation on the hyperboloid H2
+ is provided on

Figure 7. Here, each circle represents points on the hyperboloid at constant
χ and is dilated at scale a = 0.75.

5 Harmonic analysis on the 2-hyperboloid

5.1 Fourier-Helgason Transform

This integral transform is the precise analog of the Fourier-Plancherel trans-
form on Rn. It consists of an isometry between two Hilbert spaces

FH : L2(H2
+, dµ) −→ L2(L, dη), (5.1)

where the measure dµ is the SO0(1, 2)-invariant measure onH2
+ and L2(L, dη)

denotes the Hilbert space of sections of a line-bundle L over another suitably
defined manifold, so-called Helgason-dual of H2

+ and denoted by Ξ. We note
here that the Helgason-dual of Rn is just its own dual.

Let us see what is the concrete realization of the dual space Ξ. Most
of the following discussion can be found in [Ali and Bertola, 2002], and we
summerize it here for convenience. In fact Ξ can be realized as the projective
half null-cone asymptotic to H2

+ρ times the positive real line

C2
+ =

{
ξ ∈ R

3 : ξ · ξ = ξ2
0 − ξ2

1 − ξ2
2 = 0, ξ0 > 0

}
(5.2)

Ξ = R+ × PC+ (5.3)

r = (ν, ~ξ) ∈ Ξ, (5.4)
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where PC+ denotes the projectivized forward cone {ξ ∈ C2
+ | λξ ≡ ξ, λ >

0, ξ0 > 0} (the set of ”rays” on the cone). A convenient realization of PC+

makes it diffeomorphic to the 1-sphere S1 as follows

PC+ ' {~ξ ∈ R
2 : ‖~ξ‖ = 1} ∼ S1 (5.5)

ξ ≡ (ξ0, ξ1, ξ2) 7→ 1

ξ0
~ξ. (5.6)

The Fourier - Helgason transform, is defined in an way similar to ordinary
Fourier transform by using the eigenfunctions of the invariant differential
operator of second order, i.e. the Laplacian on H2

+. In our case, the functions
of the (unique) invariant differential operator (the Laplacian) are named
hyperbolic plane waves [Bros et al., 1994]

Eν,ξ(x) = (ξ · x)− 1

2
−iν , (5.7)

ξ ∈ ΞC , C2
+ =

{
ξ ≡ (ξ0, ~ξ) ∈ R

3, ξ · ξ = 0, ξ0 > 0

}
. (5.8)

These waves are not defined on R+ × PC2
+ but rather on R+ × C2

+; however
the action of R+ on C2

+ just rescales them by a factor which is constant in
x ∈ H2

+. In other words, they are sections of an apropriate line bundles over
Ξ which we denote by L and C2

+ is thought of as total space of R+ over PC+.
As well, we note that the inner product ξ ·x is positive on the product space
C2

+ ×H2
+, so that the complex exponential is uniquely defined.

Let us express the plane waves in polar coordinates for a point x ≡
(x0, ~x) ∈ H2

+

Eν,ξ(x) = (ξ · x)− 1

2
−iν (5.9)

=

(
coshχ−

~ξ · ~x
ξ0

)
−

1

2
−iν

(5.10)

= (coshχ− (n̂ · x̂) sinhχ)−
1

2
−iν , (5.11)

where n̂ ∈ S1 is a unit vector in the direction of ~ξ and x̂ ∈ S1 is the unit
vector in the direction of ~x. Applying any rotation % ∈ SO(2) ∈ SO0(1, 2)
on this wave, it immediately follows

R(%) : Eν,ξ(x) → Eν,ξ(%−1 · x) = Eν,%·ξ(x). (5.12)

Finally, the Fourier - Helgason transform FH and its inverse FH−1 are
defined as

f̂(ν, ξ) ≡ FH[f ](ν, ξ) =

∫

H2

f(x)(x · ξ)− 1

2
+iνdµ(x), ∀f ∈ C∞

0 (H2),(5.13)

FH−1[g](x) =

∫

iΞ

g(ν, ξ)(x · ξ)− 1

2
−iνdη(ν, ξ), ∀g ∈ C∞

0 (L),(5.14)
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where C∞

0 (L) denotes the space of compactly supported smooth sections of
the line-bundle L. The integration in (5.14) is performed along any smooth
embedding jΞ into the total space of the line-bundle L and the measure dη
is given by

dη(ν, ξ) =
dν

|c(ν)|2dσ0, (5.15)

with c(ν) being the Harish-Chandra c-function [Helgason, 1994]

c(ν) =
2iνΓ(1)Γ(iν)√
πΓ(1

2
+ iν)

. (5.16)

The factor |c(ν)|2 can be simplified to

|c(ν)|−2 =
ν sinh (πν)|Γ(1

2
+ iν)|2

Γ2(1)
. (5.17)

The 1-form dσ0 in the measure (5.15) is defined on the null cone C2
+,

it is closed on it and hence the integration is independent of the particular
embedding of Ξ. Thus, such an embedding can be the following

j : Ξ −→ R+ × C2
+ (5.18)

(ν, ξ) 7→ (ν, (1,
ξ1
ξ0
,
ξ2
ξ0

)) 7→ (νξ̂) (5.19)

Note that the transform FH maps functions on H2
+ to sections of L and

the inverse transform maps sections to functions. Thus, we have

Proposition 5.1.1 [Helgason, 1994] The Fourier - Helgason transform de-
fined in equations (5.13, 5.14) extends to an isometry of L2(H2, dµ) onto
L2(L, dη) so that we have

∫

H2

|f(x)|2dµ(x) =

∫

jΞ

|f̂(ξ, ν)|2dη(ξ, ν). (5.20)

6 Continuous Wavelet Transform on the Hy-

perboloid

One way of constructing the CWT on the hyperboloid H2
+ would be to

find a suitable group containing both SO0(1, 2) and the group of dilations,
and then find its square-integrable representations in the Hilbert space ψ ∈
L2(H2

+, dµ), where dµ is the normalized SO0(1, 2)-invariant measure on H2
+.
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We will take another approach, by directly studying the following wavelet
transform ∫

f(x)ψa,g(x)dµ(x) = 〈f, ψa,h〉.

Looking at pseudo-rotations (motions) only, we have

[Ugψ](x) = f(g−1x), g ∈ SO0(1, 2), ψ ∈ L2(H2
+, dµ), (6.1)

where Ug is a quasi-regular representation of SO0(1, 2) on L2(H2
+).

We now have to incorporate the dilation. However, the measure dµ is
not dilation invariant, so that a Radon-Nikodym derivative λ(g, x) must be
inserted, namely:

λ(g, x) =
dµ(g−1x)

dµ(x)
, g ∈ SO0(1, 2). (6.2)

The function λ is a 1-cocycle and satisfies the equation

λ(g1g2, x) = λ(g1, x)λ(g2, g
−1
1 x). (6.3)

In the case of dilating the hyperboloid through conic dilation, we simply
have

λ(a, χ) =
d coshχa
d coshχ

= a−2. (6.4)

Thus, the action of the dilation operator on the function is

Daψ(x) ≡ ψa(x) = λ
1

2 (a, χ)ψ(d−1
a x) = λ

1

2 (a, χ)ψ(x 1

a
) (6.5)

with xa ≡ (χa, ϕ) ∈ H2
+ and it reads

ψa(x) =
1

a
ψ(x 1

a
).

Finally, the hyperbolic wavelet function can be written as

ψa,g(x) = UgDaψ(x) = Ugψa(x).
Accordingly, the hyperbolic continuous wavelet transform of a signal (func-

tion) f ∈ L2(H2
+) is defined as:

Wf(a, g) = 〈ψa,g|f〉 (6.6)

=

∫

H2
+

[UgDaψ](x)f(x)dµ(x) (6.7)

=

∫

H2
+

ψa(g−1x)f(x)dµ(x) (6.8)

where x ≡ (χ, ϕ) ∈ H2
+ and g ∈ SO0(1, 2).

In the next section, we show that this expression can be conveniently
interpreted and studied as an hyperbolic convolution.
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6.1 Convolutions on H2

Since H2
+ is a homogeneous space of SO0(1, 2), one can easily define a convo-

lution. Indeed, let f ∈ L2(H2
+) and s ∈ L1(H2

+), their hyperbolic convolution
is the function of g ∈ SO0(1, 2) defined as

(f ∗ s)(g) =

∫

H2
+

f(g−1x)s(x)dµ(x). (6.9)

Then f ∗s ∈ L2(SO0(1, 2), dg) , where dg stands for the left Haar measure
on the group and

‖f ∗ s‖2 ≤ ‖f‖2‖s‖1, (6.10)

by the Young convolution inequality.
In this paper however, we will deal with a simpler definition where the

convolution is a function defined on H2
+. Let [·] : H2

+ −→ SO0(1, 2) be a
section in the fiber bundle defined by the group and its homogeneous space.
In the following we will make use of the Euler section, whose construction we
now highlight. Recall from Section 3 that any g ∈ SO0(1, 2) can be uniquely
decomposed as a product of three elements g = k(ϕ)h(χ)k(ψ). Using this
parametrization, we thus define :

[·] : H2
+ −→ SO0(1, 2)

[·] : x(χ, ϕ) 7→ g = k(ϕ)h(χ)

The hyperbolic convolution, restricted to H2
+, thus takes the following

form:

(f ∗ s)(y) =

∫

H2
+

f([y]−1x)s(x)dµ(x), y ∈ H2
+

We will mostly deal with convolution kernels that are axisymmetric (or
rotation invariant) functions on H2

+ (i.e. functions of the variable χ alone).
The Fourier-Helgason transform of such an element has a simpler form as
shown by the following proposition.

Proposition 6.1.1 If f is a rotation invariant function, i.e. f(%−1x) =
f(x), ∀ρ ∈ SO(2), its Fourier-Helgason transform f̂(ξ, ν) is a function of ν
alone, i.e. f̂(ν).

Proof : Applying the Fourier-Helgason transform on a rotation-invariant
function we write:
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f̂(ξ, ν) =

∫

H2
+

f(x) Eξ,ν(x)dµ(x) (6.11)

=

∫

H2
+

f(%−1x)(ξ · ν)− 1

2
−iνdµ(x), ξ ∈ PC+, ρ ∈ SO(2)(6.12)

=

∫

H2
+

f(x′)(ξ · %x′)− 1

2
−iνdµ(x′) (6.13)

= f̂(%−1ξ, ν), (6.14)

and so f̂(ξ, ν) does not depend on ξ. �

We now have all the basic ingredients for formulating a useful convolu-
tion theorem in the Fourier-Helgason domain. As we will now see the FH
transform of a convolution takes a simple form, provided one of the kernels
is rotation invariant.

Theorem 6.1.2 (Convolution) Let f and s be two measurable functions;
f, s ∈ L2(H2

+) and s be rotation invariant. The convolution (s ∗ f)(y) is in
L1(H2

+) and its Fourier-Helgason transform satisfies

(̂s ∗ f)(ν, ξ) = f̂(ν, ξ) ŝ(ν). (6.15)

Proof : The convolution of s and f is given by:

(s ∗ f)(y) =

∫

H2
+

s([y]−1x)f(x)dµ(x).

Since s is SO(2)-invariant, we write its argument in this equation in the
following way :




coshχ sinhχ 0
sinhχ coshχ 0

0 0 1







x0

x1

0


 =




coshχx0 + sinhχx1

sinhχx1 + coshχx1

0


 , (6.16)

where x = (x0, x1, x2) and we used polar coordinates for y = y(χ, ϕ). On the
other hand we can also write this equation in a symmetric form :




coshχx0 + sinhχx1

sinhχx1 + coshχx1

0


 =




x0 x1 0
x1 x0 0
0 0 1







coshχ
sinhχ

0


 . (6.17)
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Thus we have
s([y]−1x) = s([x]−1y). (6.18)

Therefore, the convolution with a rotation invariant function is given by

(s ∗ f)(y) =

∫

H2
+

f(x)s([y]−1x) dµ(x) (6.19)

=

∫

H2
+

f(x)s(x · y) dµ(x). (6.20)

On the other hand, applying the Fourier-Helgason transform on s ∗ f we
get

(̂s ∗ f)(ν, ξ) =

∫

H2
+

(s ∗ f)(y)(y · ξ)− 1

2
+iνdµ(y)

=

∫

H2
+

dµ(y)

∫

H2
+

dµ(x)s([y]−1x)f(x)(y · ξ)− 1

2
+iν

=

∫

H2
+

dµ(x)f(x)

∫

H2
+

dµ(y)s([y]−1x)(y · ξ)− 1

2
+iν

=

∫

H2
+

dµ(x)f(x)

∫

H2
+

dµ(y)s([x]−1y)(y · ξ)− 1

2
+iν

=

∫

H2
+

dµ(x)f(x)

∫

H2
+

dµ(y)s(y)([x]y · ξ)− 1

2
+iν

=

∫

H2
+

dµ(x)f(x)

∫

H2
+

dµ(y)s(y)(y · [x]−1ξ)−
1

2
+iν .

Since ξ belong to the projective null cone, we can write

(y · [x]−1ξ) = ([x]−1ξ)0

(
y · [x]−1ξ

([x]−1ξ)0

)
, (6.21)

and using ([x]−1ξ)0 = (x · ξ), we finally obtain

(̂s ∗ f)(ν, ξ) =

∫

H2
+

dµ(x)f(x)(x · ξ)− 1

2
+iν

∫

H2
+

dµ(y)s(y)

(
y · [x]−1ξ

([x]−1ξ)0

)
−

1

2
+iν

= f̂(ν, ξ)ŝ(ν)

where we used the rotation invariance of s. �

Based on Theorem 6.1.2, we can write the hyperbolic continuous wavelet
transform of a function f with respect to an axisymmetric wavelet ψ as

Wf (a, g) ≡ Wf(a, [x]) =
(
ψ̄a ∗ f

)
(x). (6.22)
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6.2 Wavelets on the hyperboloid

We now come to the heart of this paper : we prove that the hyperbolic wavelet
transform is a well-defined invertible map, provided the wavelet satisfy an
admissibility condition.

Theorem 6.2.1 (Admissibility condition) Let ψ ∈ L1(H2
+) be an axisym-

metric function and let m, M be two constants such that

0 < m ≤ Aψ(ν) =

∫
∞

0

|ψ̂a(ν)|2 α(a)da ≤M < +∞. (6.23)

Then the linear operator Aψ defined by :

Aψf(x′) =

∫

R
∗

+

∫

H2
+

Wf(a, x)ψa,x(x
′)dxα(a)da, (6.24)

is bounded and with bounded inverse. More precisely Aψ is univocally char-
acterized by the following Fourier-Helgason multiplier :

Âψf̂(ν, ϕ) ≡ Âψf(ν, ϕ) = f̂(ν, ϕ)

∫
∞

0

|ψ̂a(ν)|2 α(a)da = Aψ(ν)f̂(ν, ϕ).

Proof : Let the wavelet transform Wf be defined as in equation (6.8) and
consider the following quantity :

∆a(x
′) =

∫

H2
+

Wf (a, x)ψa,x(x
′)dx. (6.25)

A close inspection reveals that ∆a(x
′) is itself a convolution. Taking the

Fourier - Helgason transform on both sides of (6.25) and applying Theo-
rem 6.1.2 twice, we thus obtain:

∆̂a(ν, ϕ) = |ψ̂a(ν)|2f̂(ν, ϕ) .

Finally, integrating over all scales we obtain :

∫

R
∗

+

α(a)da ∆̂a(ν, ϕ) = f̂(ν, ϕ)

∫

R
∗

+

α(a)da |ψ̂a(ν)|2 (6.26)

which is the expected result. �

There are three important remarks concerning this result. First, The-
orem 6.2.1 shows that the wavelet familly {ψa,x, a ∈ R+

∗
, x ∈ H2

+} forms a
continuous frame [Ali et al., 2000] provided the admissibility condition (6.23)
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is satisfied. In this case, the wavelet transform Wf of any f can be inverted

in the following way. Let ψ̃a,x be a reconstruction wavelet defined by :

̂̃
ψa,x(ν) = A−1

ψ (ν)ψ̂a,x(ν).

As a direct consequence of Theorem 6.2.1, the inversion formula, to be un-
derstood in the strong sense in L2(H2

+), reads :

f(x′) =

∫

R
∗

+

∫

H2
+

Wf (a, x)ψ̃a,x(x
′)dxα(a)da . (6.27)

As a second remark, the reader can check that Theorem 6.2.1 does not depend
on choice of dilation! This is not exactly true, actually. The architecture of
the proof does not depend on the explicit form of the dilation operator, but
the admissibility condition explicitly depends on it. As we shall see later, it
will be of crucial importance when trying to construct admissible wavelets.
Finally the third remark concerns the somewhat arbitrary choice of measure
α(a) in the formulas. The reader may easily check that the usual 1-D wavelet
theory can be formulated along the same lines, keeping an arbitrary scale
measure. In that case though, the choice α = a−2 leads to a tight continuous
frame, i.e. the frame operator Aψ is a constant. The situation here is more
complicated in the sense that no choice of measure would yield to a tight
frame, a particularity shared by the continuous wavelet transform on the
sphere [Antoine and Vandergheynst, 1999]. Some choices of measure though
lead to simplified admissibility conditions as we will now discuss.

Theorem 6.2.2 Let α(a)da be a homogeneous measure of the form a−βda,
β > 0. If Da is the conic dilation defined by equations (4.9), (6.4) and (6.5),
then an axisymmetric function ψ ∈ L2(H2

+, dµ(χ, ϕ)) is admissible if one of
the two following conditions is satisifed :

• 1 < β ≤ 2 and ψ is integrable, or

• β > 2 and ψ satisfies the zero-mean condition

∫

H2
+

ψ(χ, ϕ)dµ(χ, ϕ) = 0. (6.28)

Proof : Let us assume ψ(x) belongs to C0(H
2
+), i.e. it is compactly

supported
ψ(x) = 0 if χ > χ̃, χ̃ < const,
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continuous and decays when χ→ +∞. We wish to prove that
∫

∞

0

|〈Eξ,ν|Daψ〉|2 α(a)da <∞. (6.29)

First, we compute the Fourier-Helgason coefficients of the dilated function
ψ:

〈Eξ,ν(χ, ϕ)|Daψ(χ, ϕ)〉 =

∫

H2
+

Daψ(χ, ϕ) Eξ,ν(χ, ϕ) dµ(χ, ϕ)

=

∫ 2π

0

∫ χ̃a

0

λ
1

2 (a, χ)ψ(χ 1

a
, ϕ)Eξ,ν(χ, ϕ) sinhχdχdϕ.

By performing the change of variable χ′ = χ 1

a
, we get χ = χ′

a and

d coshχ = d coshχ′

a = λ(a−1, χ′)d coshχ′. The Fourier-Helgason coefficients
become

〈Eξ,ν|Daψ〉 =

∫ 2π

0

∫ χ̃

0

λ
1

2 (a, χ′

a)ψ(χ′, ϕ)Eξ,ν(χ′

a, ϕ)λ(a−1, χ′) sinhχ′dχ′dϕ.

(6.30)
Using the cocycle property

λ
1

2 (a−1, χ′) λ
1

2 (a, χ′

a) = 1,

we express

λ
1

2 (a, χ′

a) =
1

λ
1

2 (a−1, χ′)
= a. (6.31)

Substituting this in (6.30) we get

〈Eξ,ν|Daψ〉 =

∫ 2π

0

∫ χ̃

0

λ
1

2 (a−1, χ′)ψ(χ′, ϕ)Eξ,ν(χ′

a, ϕ) sinhχ′dχ′dϕ(6.32)

= a

∫ 2π

0

∫ χ̃

0

ψ(χ′, ϕ)Eξ,ν(χ′

a, ϕ) sinhχ′dχ′dϕ. (6.33)

Then, we split (6.29) in three parts:

∫
∞

0

α(a)da =

∫ σ

0

α(a)da

︸ ︷︷ ︸
I1

+

∫ 1

σ

σ

α(a)da

︸ ︷︷ ︸
I2

+

∫
∞

1

σ

α(a)da

︸ ︷︷ ︸
I3

. (6.34)

Let us focus on the first integral. Developing the Fourier-Helgason kernel
Eξ,ν in (6.33), we obtain :

I1 =

∫ σ

0

α(a)a2da
∣∣
∫ χ̃

0

∫
2π

0

dµ(χ, ϕ)ψ(χ′)(coshχ′

a − sinhχ′

a cosϕ)−
1

2
+iν

∣∣2.
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Using the explicit form of χ′

a, we have :

I1 =

∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ, ϕ)ψ(χ′)

(
1 + 2a2 sinh2 χ

′

2
− 2a

√
1 + a2 sinh2 χ

′

2
sinh

χ′

2
cosϕ

)
−

1

2
+iν

∣∣∣
2

. (6.35)

Since we are interested in the small scale behaviour of this quantity, we can
focus on the leading term in the expansion as powers of a, which yields :

I1 ∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫
2π

0

dµ(χ, ϕ)ψ(χ′)
(
1 − 2a sinh

χ′

2
cosϕ

)
−

1

2
+iν

∣∣∣
2

∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫
2π

0

dµ(χ, ϕ)ψ(χ′)
(
1 − (−1 + 2iν)a sinh

χ′

2
cosϕ

)∣∣∣
2

.

Finally, integrating over ϕ and using the rotation invariance of ψ, we obtain :

I1 ∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

sinhχ′dχ′ ψ(χ′)
∣∣∣
2

. (6.36)

The second subintegral (I2) is straightforward, since the operator Da is
strongly continuous and thus the integrand is bounded on [σ, 1

σ
]. As for

the last term, I3, we use a similar strategy. First write it as :

I3 =

∫ +∞

1

σ

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ, ϕ)ψ(χ′)a−1+2iν

( 1

a2
+ 2 sinh2 χ

′

2
− 2

√
1

a2
+ sinh2 χ

′

2
sinh

χ′

2
cosϕ

)
−

1

2
+iν

∣∣∣
2

. (6.37)

Since we are interested in the large scale behaviour this time, we keep the
leading term in the expansion as powers of 1/a and obtain :

I3 ∼
∫

+∞

1

σ

α(a)da
∣∣∣
∫ χ̃

0

sinhχ′dχ′
(
2 sinh2 χ

′

2

)
−

1

2
+iν

ψ(χ′)
∣∣∣
2

. (6.38)

The convergence of I1 and I3 clearly depends on the choice of measure in the
integral over scales. Restricting ourselves to homogeneous measures α(a) =
a−β , we can distinguish the following cases :

• β ≤ 1: In this case I3 does not converge and there are no admissible
wavelets.

• 1 < β ≤ 2: In this case both I1 and I3 converge with only mild as-
sumptions on ψ, namely that it is integrable.

• β > 2: In this case I1 diverges except when
∫
H2

+

ψ = 0.

�
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6.3 An example of Hyperbolic Wavelet

For concluding this section, we need to find a class of admissible vectors,
which satisfy the admissibility condition.

Proposition 6.3.1 Let ψ ∈ L2(H2
+, dµ). Then

∫

H2
+

Daψ(χ, ϕ)dµ(χ, ϕ) = a

∫

H2
+

ψ(χ, ϕ)dµ(χ, ϕ). (6.39)

Proof: We have to compute the following integral

I =

∫

H2
+

Daψ(χ, ϕ)dµ(χ, ϕ) =

∫

H2
+

λ
1

2 (a, χ)ψ(χ 1

a
, ϕ)dµ(χ, ϕ).

By change of variable χ 1

a
= χ′, we get

I =

∫

H2
+

λ
1

2 (a, χ′

a)ψ(χ′, ϕ)λ(a−1, χ′)dµ(χ′, ϕ)

=

∫

H2
+

λ
1

2 (a−1, χ′)ψ(χ′, ϕ)dµ(χ′, ϕ),

and having λ
1

2 (a−1, χ′) = a, which follows directly from (6.4), we get

I = a

∫

H2
+

ψ(χ′, ϕ)dµ(χ′, ϕ),

which proves the proposition. �

Using this result, we can build the hyperbolic ”difference” wavelet (difference-
of-Gaussian, or DOG wavelet). Thus, given a square-integrable function ψ,
we define

fβψ (χ, ϕ) = ψ(χ, ϕ) − 1

β
Dβψ(χ, ϕ), β > 1.

More precisely, using the hyperbolic function ψ = e− sinh2 χ
2 , we dilate it

through earlier specified conic projection and obtain

Dβψ =
1

β
e
−

1

β2
sinh2 χ

2 , (6.40)

we get:

fβψ (χ, ϕ) = e− sinh2 χ
2 − 1

β2
e
−

1

β2 sinh2 χ
2 . (6.41)

21



Now, applying a dilation operator on (6.41) we get

Daf
β =

1

a
e−

1

a2 sinh2 χ
2 − 1

aβ2
e
−

1

a2β2 sinh2 χ
2 . (6.42)

One particular example of hyperbolic DOG wavelet at β = 2 is:

f 2
ψ(χ, ϕ) =

1

a
e−

1

a2 sinh2 χ
2 − 1

4a
e−

1

4a2 sinh2 χ
2 .

The resulting hyperbolic DOG wavelet is shown for different values of the
scale a and the position (χ, ϕ) on the hyperboloid.

7 Euclidean limit

Since the hyperboloid is locally flat, the associated wavelet transform should
match the usual 2-D CWT in the plane at small scales, i. e, for large scales of
radius of curvature. In this section we give a precise mathematical meaning
to those notions.

Let Hρ ≡ L2(H2
ρ , dµρ) be the Hilbert space of square integrable functions

on an hyperboloid of radius ρ,
∫

H2
ρ

|f(χ, ϕ)|2ρ2 sinhχdχdϕ <∞, (7.1)

and H = L2(R2, d2~x) be the square integrable functions on the plane.
We write the function Eν,ξ(x) for any ρ:

Eρν,ξ(x) =

(
x0 − n̂~x

ρ

)
−

1

2
−iνρ

, (7.2)

for x ∈ H2
+, (x2 = ρ2). The Inönü-Wigner contraction limit of the Lorentz

to the Euclidean group SO(2, 1)+ → ISO(2)+ is the limit at ρ→ ∞ for (7.2)
with x0 ≈ ρ, ~x2 � ρ2, i.e

lim
ρ→∞

Eρν,ξ(x) = lim
ρ→∞

(
x0 − n̂~x

ρ

)
−

1

2
−iνρ

(7.3)

≈ lim
ρ→∞

(
1 − n̂~x

ρ

)
−iνρ

= exp (iνn̂~x). (7.4)

Having the Fourier-Helgason transform on the hyperboloid at radius ρ

ψ̂ρ(ν, ξ) =
ρ

2π

∫

~x

ψ(~x)Eν,ξ(~x)
d2~x

x0

(7.5)
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Figure 8: The hyperbolic DOG wavelet fβψ , for β = 2 at different scales a
and positions (χ, ϕ).
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and since x0 ≈ ρ for ρ→ ∞, we obtain

lim
ρ→∞

ψ̂ρ(ν, ξ) =
1

2π

∫

~x

ψ(~x) exp (iνn̂~x)d2~x (7.6)

= ψ̂(~k), (7.7)

which is the Fourier transform in the plane.
Thus, the admissibility condition of the hyperbolic wavelet for radius

ρ→ ∞ is

lim
ρ→∞

∫

R∗

+

|ψ̂ρa(ν)|2
a2

da→
∫

R2

|ψ̂(~k)|2

|~k|2
d~k, (7.8)

and it contracts to the admissibility condition of 2-D CWT.
Consequently, the necessary condition of the hyperbolic wavelet contracts

to the one in the plane:

lim
ρ→∞

∫

H2

ψρ(χ, ϕ)dµ(χ, ϕ) →
∫

R2

ψ(~x)d2~x. (7.9)

8 Conclusions

In this paper we have presented a constructive theory of continuous wavelet
transform on the hyperboloid H2

+ ∈ R3
+. First we start by deffining the

affine transformations on the hyperboloid and proposing different scheams
for dilating a point from which we choose the dilation through conic projec-
tion. Then we introduce the notion of convolution on this manifold. Having
defined dilations and motions together with the hyperbolic convolution we
construct the continuous wavelet transform and the corresponding admissi-
bility condition is derived. An example of hyperbolic DOG wavelet is given.
Finally, we use the Inönü-Wigner contraction limit of the Lorentz to the
Euclidean group SO0(2, 1)+ → ISO(2)+ to consider the contraction of the
CWT on the hyperboloid to the one on the plane.
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