000087065 001__ 87065
000087065 005__ 20190416220421.0
000087065 037__ $$aREP_WORK
000087065 245__ $$aWavelets on the 2-Hyperboloid
000087065 269__ $$a2004
000087065 260__ $$c2004$$aEcublens
000087065 336__ $$aReports
000087065 500__ $$aITS
000087065 520__ $$aWe build wavelets on the 2-Hyperboloid. First, we define dilations on the hyperboloid through conic projection. Then, incorporating hyperbolic motions belonging to $SO_0(1,2)$, we define a family of hyperbolic wavelets. The continuous wavelet transform (CWT)is obtained by convolution of the scaled wavelets with the signal. This wavelet transform is proved to be invertible whenever wavelets satisfy a particular admissibility condition. Finally, the Euclidean limit of this CWT on the hyperboloid is considered.
000087065 6531_ $$aFourier-Helgason transform
000087065 6531_ $$aLTS2
000087065 6531_ $$anon-commutative harmonic analysis
000087065 6531_ $$awavelets
000087065 700__ $$0241302$$g128491$$aBogdanova, I.
000087065 700__ $$g120906$$aVandergheynst, P.$$0240428
000087065 700__ $$aGazeau, J.
000087065 8564_ $$uhttps://infoscience.epfl.ch/record/87065/files/Bogdanova2004_1162.pdf$$zn/a$$s762824
000087065 909C0 $$xU10380$$0252392$$pLTS2
000087065 909CO $$ooai:infoscience.tind.io:87065$$qGLOBAL_SET$$pSTI$$preport
000087065 937__ $$aEPFL-REPORT-87065
000087065 970__ $$aBogdanova2004_1162/LTS
000087065 973__ $$sPUBLISHED$$aEPFL
000087065 980__ $$aREPORT