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Sur la convergence exponentielle du Matching Pursuit

dans les dictionnaires quasi-incohérents

Résumé : Le but de cet article est de généraliser des résultats de Villemoes sur la
convergence exponentielle du Matching Pursuit pour des fonctions “simples” dans un dic-
tionnaire structuré, en dimension finie ou infinie. Les résultats obtenus sont fondés sur une
généralisation de ceux obtenus par Tropp pour le Matching Pursuit Orthogonal en dimension
finie, grâce à l’observation que les techniques de Tropp ne se limitent pas au cas de OMP
mais s’appliquent aussi à MP. Notre principale contribution est une analyse détaillée des pro-
priétés d’approximation et de stabilité de MP dans un dictionnaire quasi-incohérent, ainsi
qu’un borne sur le nombre d’itérations suffisant pour atteindre une erreur d’approximation
n’excédant pas (à un facteur de pénalité près) l’erreur de meilleure approximation à m
termes.

Mots clés : dictionnaire, représentation parcimonieuse, approximation non-linéaire,
matching pursuit, algorithme glouton
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4 Gribonval & Vandergheynst

1 Introduction

In a Hilbert space H of finite or infinite dimension, we consider the problem of getting m-
term approximants of a function f from a possibly redundant dictionary D = {gk, k ∈ Z} of
unit norm basis functions also called atoms. It will often be convenient to see a dictionary
as a synthesis operator (or, in finite dimension, as a matrix) D : c = (ck) 7→ Dc =

∑
k ckgk

that maps sequences to vectors in H. A special class of dictionaries that is widely used in
signal and image processing is the family of frames: a dictionary D is a frame for H if, and
only if D is a bounded operator from `2 onto H [2]. However, in this paper we consider
dictionaries that may not be frames, hence D shall be defined essentially on sequences c
with a finite number of nonzero entries. For any index set I (not necessarily finite) we will
also consider the restricted synthesis operator DI : c 7→ DIc =

∑
k∈I ckgk that corresponds

to the subset DI = {gk, k ∈ I} of the full dictionary.
When D is an orthonormal basis for H, it is well known how to get the best m-term

approximant to any f : the solution is to keep the m atoms of the basis which have the largest
inner products |〈f, gk〉| with f . However, for arbitrary redundant dictionaries the problem
becomes NP-hard [3]. In the recent years, many efforts have been put into understanding
what structure should be imposed on f (for a given dictionary) or on the dictionary itself
so that good approximants can be obtained with computationally feasible algorithms.

One of the first algorithms that appeared in the signal processing community for ap-
proximating signals from a redundant dictionary was the Matching Pursuit (MP) algorithm
of Mallat and Zhang [21], which iteratively decomposes the analyzed function f into an
m-term approximant fm =

∑m
n=1 αngkn and a residual rm = f − fm. Matching Pursuit is

also known as Projection Pursuit in the statistics community [9, 18] and as a Pure Greedy
Algorithm [22] in the approximation community. In finite dimension, MP is known to con-
verge exponentially, i.e. for some 0 < β < 1, ‖rm‖2 = ‖fm − f‖2 ≤ βm · ‖f‖2, m ≥ 1.
In infinite dimensional Hilbert spaces, Jones [20] proved that MP is still convergent, i.e.
‖fm − f‖ → 0, but with no estimate of the speed of convergence. DeVore and Temlyakov
[4] exhibited a “bad” dictionary D where there exists a “simple” function (sum of two dic-
tionary elements) for which MP gives “bad” approximations (i.e. with a slow convergence
‖fm − f‖ ≥ Cm−1/2). On the positive side, Villemoes [24] showed that for Walsh wavelet
packets, MP on “simple” functions (f = cigi +cjgj any sum of any two wavelet packets) was
exponentially convergent (just as MP in finite dimension) with ‖fm − f‖2 ≤ (3/4)m‖f‖2.

In this paper, we extend Villemoes result about MP to more general dictionaries and
“simple functions”, as stated in the following featured theorem.

Theorem 1 Let D be a dictionary in a finite or infinite dimensional Hilbert space and I
an index set such that the Stability Condition (SC)

η(I) := sup
k/∈I

‖(DI)†gk‖1 < 1 (1)

is met, where (·)† denotes pseudo-inversion. Then, for any f =
∑

k∈I ckgk ∈ span(gk, k ∈
I), MP :

Irisa



Matching Pursuits in incoherent dictionaries 5

1. picks up only “correct” atoms at each step (∀n, kn ∈ I);

2. if I is a finite set, then the residual rm converges exponentially to zero.

The proof of this theorem is based on a argument given by Tropp [23] where the condition (1)
is called “Exact Recovery Condition” (ERC) because it ensures that Orthonormal Matching
Pursuit (OMP) and Basis Pursuit (BP) exactly recover any f =

∑
k∈I ckgk ∈ span(gk, k ∈

I). We have chosen to rename the ERC a “stability condition”. Indeed for MP one cannot
strictly speak about recovery, however the theorem is definitely a stability result since all
residuals remain in the subspace span(gk, k ∈ I) ⊂ H. Tropp’s result was the last of
a series of “recovery” results: first with the Basis Pursuit (BP) “algorithm” – which was
introduced [1] as an alternative to MP since the latter cannot resolve close atoms– under
some assumptions on both the analyzed function and the dictionary [6, 7, 8, 16, 15]; then
with variants of the Matching Pursuit [10, 11].

The stability condition (1) may look fairly abstract, but for so-called quasi-incoherent
dictionaries, one can obtain more explicit sufficient conditions [23]. For such dictionaries, we
derive estimates of the rate of exponential convergence of MP, and we obtain the following
featured theorem

Theorem 2 Let D be a dictionary in a finite or infinite dimensional Hilbert space and let
µ : maxk 6=l |〈gk, gl〉| be its coherence. For any finite index set I of size card(I) = m <
(1 + 1/µ)/2 and any f =

∑
k∈I ckgk ∈ span(gk, k ∈ I), MP :

1. picks up only “correct” atoms at each step (∀n, kn ∈ I);

2. converges exponentially

‖fn − f‖2 ≤ ((1 − 1/m)(1 + µ))n ‖f‖2.

The previous theorems only explain the behaviour of MP on exact expansions, i.e.,
they require that the approximated function f be exactly expressed as an expansion from
a “good” set of atoms. However, real signals or images almost never have such a simple
expansion in practical dictionaries. Fortunately, just as for OMP [23], the analysis of MP as
an approximation algorithm can be carried out by taking into account how well a function
is approximated by an expansion from a good set of atoms. In particular, our results lead to
the following theorem (with the notations of Theorem 2)

Theorem 3 Let {fn} be a sequence of approximants to f ∈ H produced with MP with gkn

the corresponding atoms. Let m < (1 + 1/µ)/4 and let f?
m =

∑
k∈I?

m
ckgk be a best m-term

approximant to f from D, i.e.

‖f?
m − f‖ = σm(f) := inf{‖f − DIc‖, card(I) ≤ m, c ∈ CI}.

Then, there is a number Nm such that

PI n˚1619



6 Gribonval & Vandergheynst

1. the error after Nm steps satisfies

‖fNm − f‖ ≤ √
1 + 4m σm

2. during the first Nm steps, MP picks up atoms from the best m-term approximant:
kn ∈ I?

m.

3. if σ2
m < 3σ2

1/m then Nm is no larger than

Nm ≤ 2 + m · 4
3
· ln 3σ2

1

mσ2
m

.

In the course of this paper we actually prove slightly more general results (Theorems 4-
7) and particularize them to get our featured results (Theorems 1-3). The structure of
this paper is as follows. In Section 2, we recall the definition of MP and several variants
thereof, and prove the stability result (Theorem 1). In Section 3 we particularize this result
to a special class of dictionaries, quasi-incoherent dictionaries. This allows us to obtain
constraints on the dictionary so that the SC condition is met and we also give estimates on
the rate of convergence of MP in these cases (Theorem 2). Finally in Section 4 we explore
the approximation properties of various flavors of MP. In particular we show that greedy
algorithms may robustly select atoms participating in a near best m-term approximation
and give the resulting approximation bounds (Theorem 3).

The proof of Theorem 1 is merely a rewriting of Tropp’s proof with the observation
that it does not only work for OMP but also for MP. Thus, the main contribution of this
paper is in the study of the approximation and stability properties of greedy algorithms with
quasi-incoherent dictionaries.

Irisa



Matching Pursuits in incoherent dictionaries 7

2 Matching Pursuit(s) on “simple” expansions

In this section, we first recall the definition of MP and several variants thereof, then we
prove the stability of all these variants, in the sense of Theorem 1.

2.1 Matching Pursuit

Matching Pursuit (MP) is an iterative algorithm that builds n-term approximants fm and
residuals rm = f −fm by adding one term at a time in the approximant. It works as follows.
At the beginning we set f0 = 0 and r0 = f ; assuming fn and rn are defined, we set

∣∣〈rn, gkn+1

〉∣∣ = sup
k

|〈rn, gk〉| (2)

fn+1 = fn +
〈
rn, gkn+1

〉
gkn+1 (3)

and compute a new residual as rn+1 = f − fn+1.

2.2 Weak Matching Pursuits

When the dictionary is infinite, the supremum in (2) may not be attained, so one may have
to consider the so called weak selection rule

∣∣〈rn, gkn+1

〉∣∣ ≥ α sup
k

|〈rn, gk〉| (4)

with some fixed 0 < α ≤ 1 independent of n. Corresponding variants of MP will be called
Weak MP with weakness parameter α, or in short Weak(α) MP or even Weak MP when the
value of α does not need to be specified.

2.3 Orthonormal Matching Pursuit

Moreover, once m atoms have been selected, the approximant fm =
∑m−1

n=0

〈
rn, gkn+1

〉
gkn+1

is generally not the best approximant to f from the finite dimensional subspace Vm :=
span(gk1 , . . . , gkm). Orthonormal Matching Pursuit (OMP) –respectively Weak(α) OMP–
replace the update rule (3) with

fn+1 = PVn+1f (5)

where PV is the orthonormal projector onto the finite dimensional subspace V .

2.4 General Matching Pursuits

More generally one can consider the family of approximation algorithms based on the re-
peated application of two steps:

1. a (weak) selection step according to (4);

PI n˚1619



8 Gribonval & Vandergheynst

2. an update step where a new approximant fn+1 ∈ Vn+1 is chosen.

Algorithms from this larger family will be called General MP, Weak(α) General MP or Weak
General MP. Examples of Weak(α) General MP algorithms include the High Resolution
Pursuits [19, 14], which were introduced to attenuate the lack of resolution of plain MP
with time-frequency dictionaries in the time domain.

2.5 Stability of Weak(α) General MP

The major result of Tropp [23] is that under what he calls the “Exact Recovery Condition”

η(I) := sup
k/∈I

‖(DI)†gk‖1 < α, (6)

(where (·)† denotes pseudo-inversion), Weak(α) OMP “exactly recovers” any linear combi-
nations of atoms from the sub-dictionary DI , which means that Weak(α) OMP can only
pick up “correct” atoms at each step. Tropp’s proof indeed works for Weak(α) General MP,
with the only difference that we do no longer get exact recovery but only stability of the
Pursuit, as stated in the following theorem.

Theorem 4 Let I be an index set (finite or infinite) with η(I) < 1. For any f =
∑

k∈I ckgk

and α > η(I), Weak(α) General MP picks up a “correct” atom at each step, i.e., for all
n ≥ 1, kn ∈ I .

Before giving the proof of the theorem, let us give a quick reminder on the notion of pseudo-
inverse. Most of this material can be found in the usual suspects [12, 17].

Let A be a linear operator and let RangeA be its range. The pseudo-inverse A† is the
left inverse that is zero on {RangeA}⊥. It is also the left inverse of minimal sup norm. In
the case of general p by q matrices, we will make use of the Moore-Penrose pseudo-inverse.
It is the unique q by p matrix that satisfies the following properties :

AA†A = A ,

A†AA† = A† ,(
AA†)∗ = AA† and(
A†A

)∗
= A†A

where (·)∗ denotes the adjoint. In particular, AA† is an orthonormal projection onto
RangeA. If the inverse of A∗A exists, the Moore-Penrose pseudo-inverse can simply be
written :

A† =
(
A∗A

)−1
A∗.

Proof: (of Theorem 4) Just as the proof of exactness of OMP by Tropp (which is a
special case), we can show by induction that at each step MP picks up an atom kn ∈ I, so

Irisa



Matching Pursuits in incoherent dictionaries 9

the residual rn remains in the finite dimensional space VI = span(gk, k ∈ I). Initially, we
have by assumption r0 = f ∈ VI . Assuming that rn ∈ VI , we notice that the inner products
{〈rn, gk〉}k∈I between rn and {gk, k ∈ I} are listed in the vector D?

Irn while those with
{gk, k /∈ I} are listed in D?

I
rn. Thus, the atom gkn+1 is a “correct” one (i.e. kn+1 ∈ I) if,

and only if,

η(I, rn) :=
‖D?

I
rn‖∞

‖D?
Irn‖∞ < α.

By assumption, rn ∈ VI = RangeDI , and (D†
I)

?D?
I = (DID

†
I)

? = DID
†
I is a projection

onto VI . Thus, we have rn = (D†
I)

?D?
Irn and

η(I, rn) =
‖D?

I
(D†

I)
?D?

Irn‖∞
‖D?

Irn‖∞
≤ ‖D?

I
(D†

I)
?‖∞,∞ = ‖D†

IDI‖1,1,

where ‖U‖p,p denotes the operator norm of U going from `p to `p. We can now use the
well known fact that ‖ · ‖1,1 is the maximum of the `1 norm of the columns of the (possibly
infinite) matrix D†

IDI to obtain that

‖D†
IDI‖1,1 = sup

k
‖D†

IDIδk‖1 = sup
k/∈I

‖D†
Igk‖1 = η(I)

where δk is a discrete Dirac at index k. From the assumption η(I) < α, we can infer that
kn+1 ∈ I and rn+1 ∈ VI , and we get the theorem.

2.6 Recovery and convergence

Suppose that the analyzed function f belongs to span(gk, k ∈ I) where I satisfies η(I) < 1,
and that we perform some Weak(α) General MP with α > η(I): Theorem 4 states that the
Pursuit will only pick up “correct” atoms.

In the particular case of an Orthogonal Pursuit, since each residual rn is orthogonal to
previously selected atoms gk1 , . . . gkn , any atom can only be picked up once by the Pursuit.
As a result, if in addition I is a finite set of cardinal M , the Orthogonal Pursuit exactly
recovers f in M iterations: this is the main result formalized by Tropp and already present
-though not with such a clear statement– in the results of Gilbert et al [10, 11].

If the Pursuit we are performing on f is not orthogonal, it is known that convergence
does not generally occur in a finite number of steps. However, if I is a finite set, the stability
condition implies that the Pursuit is actually performed in the finite dimensional space
VI . In the case of Weak MP, it follows [21] that we have exponential convergence, just as
stated in Theorem 1. In the next section, we provide some tools to estimate the rate of this
convergence, and it will turn out that they also make it possible to estimate the speed of
convergence of (Weak) OMP.

PI n˚1619



10 Gribonval & Vandergheynst

3 MP in quasi-incoherent dictionaries

In the previous section we have given fairly abstract conditions to ensure stability of Weak
General MP, exact recovery with Weak OMP and exponential convergence of Weak MP
towards the approximated function. However, the quantity η(I) that appears in the stability
condition Eq. (6) is not very explicit, and we did not yet provide estimates for the rate of
exponential convergence.

In this section, we will show that we can use the so-called Babel function of the dictionary
to estimate η(I) –and check the Stability Condition– as well as the rate of exponential
convergence of Plain MP.

3.1 Babel function and coherence

Definition 1 Let D be a dictionary. Its Babel function is defined for each integer m ≥ 1
as

µ1(m) := max
I|card(I)=m

max
k/∈I

∑
l∈I

|〈gl, gk〉| . (7)

As a special case, for m = 1, the value of the Babel function is the so-called coherence of
the dictionary

µ = µ1(1) = max
k 6=l

|〈gl, gk〉| . (8)

It is an easy observation that the Babel function is sub-additive,

µ1(k + l) ≤ µ1(k) + µ1(l), ∀k, l

hence we have µ1(m) ≤ µ · m, m ≥ 1. A dictionary is called incoherent if µ is small :
typically, in finite dimension N , any dictionary that contains an orthonormal basis has
coherence µ ≥ 1/

√
N . The union of the Dirac and the Fourier bases is an incoherent

dictionary where indeed µ = 1/
√

N and µ1(m) = µ ·m. When the Babel function grows no
faster than µ · m, we say that the dictionary is quasi-incoherent.

3.2 Explicit stability condition and rate of convergence

Using Neumann series, Tropp proved that whenever I is of size m such that µ1(m− 1) < 1,
we have the upper bound

η(I) ≤ µ1(m)
1 − µ1(m − 1)

. (9)

From this estimate we can derive the following theorem which shows that the Babel function
µ1 can provide both a practical Stability Condition for Weak General MP and an estimate
of the rate of exponential convergence for Weak MP.

Irisa



Matching Pursuits in incoherent dictionaries 11

Theorem 5 Let m be an integer such that

µ1(m) + µ1(m − 1) < 1. (10)

Then for any index set I of size at most m, any f ∈ span(gk, k ∈ I), and α > µ1(m)/(1 −
µ1(m − 1)):

1. Weak(α) General MP picks up a “correct” atom at each step, i.e., for all n ≥ 1, kn ∈ I;

2. Weak(α) MP/OMP converge exponentially to f : more precisely we have ‖f − fn‖2 ≤
(βm(α))n · ‖f‖2 with

βm(α) := 1 − α2(1 − µ1(m − 1))/m; (11)

Before we prove the theorem, we need a few lemmas.

Lemma 1 For any index set I with card(I) = m, the squared singular values of DI exceed
1 − µ1(m − 1).

The proof relies on Gersgorin Disc Theorem and can be found in [10, 5, 13, 23], see for
example [23, Lemma 2.3]. The second important lemma is due to DeVore and Temlyakov
[4], it gives a lower estimate on the amount of energy of a signal that can be removed at one
step of MP.

Lemma 2 (DeVore,Temlyakov) For any I and c,

sup
k∈I

|〈DIc, gk〉| ≥ ‖DIc‖2

‖c‖1
.

Proof: We simply need to write

‖DIc‖2 = 〈DIc,DIc〉 =
∑
k∈I

ck 〈DIc, gk〉

≤
∑
k∈I

|ck| |〈DIc, gk〉| ≤ ‖c‖1 sup
k∈I

|〈DIc, gk〉| .

We can now prove Theorem 5.
Proof: The stability result is trivial using the estimate (9) together with Theorem 4.

Let us proceed with the exponential convergence of Weak(α) MP/OMP. From the stability
part we know that at each step the residue rn = f − fn of Weak(α) MP/OMP is in VI .
Thus, rn = DIcn for some sequence cn with at most m nonzero elements. Denoting λ the
smallest nonzero singular value of DI , it follows using Lemma 1 that

‖cn‖2
1 ≤ m‖cn‖2

2 ≤ m

λ2
‖DIcn‖2

2

≤ m

1 − µ1(m − 1)
‖rn‖2.

PI n˚1619



12 Gribonval & Vandergheynst

Then, by Lemma 2 we obtain

sup
k∈I

|〈rn, gk〉| ≥ ‖rn‖2

‖cn‖1
≥ ‖rn‖

√
1 − µ1(m − 1)

m
.

We conclude by noticing that

‖rn+1‖2
(a)

≤ ‖rn‖2 − ∣∣〈rn, gkn+1

〉∣∣2
≤ ‖rn‖2 − α2 sup

k
|〈rn, gk〉|2

≤ (
1 − α2(1 − µ1(m − 1))/m

) · ‖rn‖2

≤ βm(α) · ‖rn‖2

≤ . . . ≤ (βm(α))n+1 ‖r0‖2 = (βm(α))n+1 ‖f‖2.

Notice that (a) is an equality for MP and an inequality for OMP.
The above estimate is valid for the whole range of admissible weakness parameter α: α = 1
corresponds to the standard “full search” Pursuit while α = µ1(m)/(1 − µ1(m − 1)) gives
the worst case estimate corresponding to the limiting case of the weakest allowable Pursuit.
To avoid carrying unnecessary heavy notations throughout the rest of the paper, from now
on we will only consider the case of a full search Pursuit.

3.3 Estimates based on the coherence

For any dictionary, we have seen that the Babel function can be bounded using the coherence
as µ1(m) ≤ µ · m, m ≥ 1. Thus, a sufficient condition to get the stability condition (10)
with the Babel function becomes a condition based on the coherence:

m <
1
2

(
1 +

1
µ

)
. (12)

If the dictionary is a union of incoherent orthonormal bases in finite dimension N [16], then
indeed µ1(m) = µ ·m for 1 ≤ m ≤ N and Eq. (12) is equivalent to Eq. (10). In any case, the
rate βm = βm(1) of exponential convergence of a (full search) MP is estimated from above
by

βm := βm(1) = 1 − (1 − µ1(m − 1)/m) ≤ (1 − 1/m)(1 + µ). (13)

The combination of Equation (13) with Theorem 5 yields our featured result Theorem 2.

Irisa



Matching Pursuits in incoherent dictionaries 13

4 MP as an approximation algorithm

So far we have considered the behaviour of (Weak) MP on exact sparse expansions in the
dictionary. However the set of functions with an exact sparse expansion f ∈ RangeDI ,
card(I) < dimH is negligible, hence it is more interesting to know what is the behaviour of
Pursuits on more general vectors, typically on f “close enough” to some f? with an exact
sparse expansion.

4.1 Best m-term approximation

For any f ∈ H and m the error of best m-term approximation to f from the dictionary is

σm(f) := inf{‖f − DIc‖, card(I) ≤ m, ck ∈ C}. (14)

When there is no ambiguity about which f is considered, we will simply write σm. For
f ∈ H, let f?

m =
∑

k∈Im
ckgk be a best m-term approximation to f , i.e. with card(Im) ≤ m

and ‖f − f?
m‖ = σm . If a best m-term approximant does not exist (because the infimum

in the definition of σm is not reached), one can consider a near best m-term approximant
by letting ε > 0 and only requiring ‖f − f?

m‖ = (1 + ε)σm. In any case, without loss of
generality, we can assume that

1. the atoms {gk, k ∈ Im} are linearly independent;

2. f?
m is the orthogonal projection of f onto span(gk, k ∈ Im);

else we could easily replace f?
m with a better m-term approximant to f by either changing

the coefficients ck or selecting a subset I ( Im corresponding to linearly independent atoms
with span(gk, k ∈ I) = span(gk, k ∈ Im).

4.2 Robustness theorem

From the main theorem of Section 2 we know that if Im satisfies the stability condition, then
General MP performed on f?

m is stable. The following theorem is a robustness result which
shows that if f is “close enough” to f?

m, the atoms selected during “the first iterations” of a
Pursuit will coincide with those which would be selected by a Pursuit on f?

m, which can be
considered as the “correct” ones.

Theorem 6 Let {rn}n≥0 be a sequence of residuals computed by General MP to approximate
some f ∈ H. For any integer m such that µ1(m − 1) + µ1(m) < 1, let f?

m =
∑

k∈Im
ckgk be

a best m-term approximation to f , and let Nm = Nm(f) be the smallest integer such that

‖rNm‖2 ≤ σ2
m ·

(
1 +

m · (1 − µ1(m − 1))
[1 − µ1(m − 1) − µ1(m)]2

)
. (15)

Then, for 1 ≤ n ≤ Nm, General MP picks up a “correct” atom, i.e. kn ∈ Im. If no best
m-term approximant exists, the same results are valid provided that σm be replaced with
‖f − f?

m‖ = (1 + ε)σm in Eq. (15).
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14 Gribonval & Vandergheynst

An analogue to this theorem was originally proved by J. Tropp [23] in the case of OMP, and
our proof mimics the original one.

Proof: We will prove by induction that for 0 ≤ n < Nm, kn+1 ∈ Im. Since rn =
f − fn = f − f?

m + f?
m − fn, we can write

η(I, rn) :=
‖D?

Im
(f − fn)‖∞

‖D?
Im

(f − fn)‖∞

=
‖D?

Im
(f − f?

m) + D?
Im

(f?
m − fn)‖∞

‖D?
Im

(f − f?
m) + D?

Im
(f?

m − fn)‖∞

=
‖D?

Im
(f − f?

m) + D?
Im

(f?
m − fn)‖∞

‖D?
Im

(f?
m − fn)‖∞

where the last line comes from the fact that f−f?
m is orthogonal to VIm := span(gk, k ∈ Im).

Going on, we get

η(Im, rn) ≤
‖D?

Im
(f − f?

m)‖∞
‖D?

Im
(f?

m − fn)‖∞ +
‖D?

Im
(f?

m − fn)‖∞
‖D?

Im
(f?

m − fn)‖∞
≤ σm

‖D?
Im

(f?
m − fn)‖∞ + η(Im, f?

m − fn). (16)

Just as in the proof of the stability condition, if at step n we have fn ∈ VIm and the right
hand side in Eq. (16) is strictly less than 1, then kn+1 ∈ Im and fn+1 ∈ VIm . For n = 0 we
do have fn = 0 ∈ VIm . Moreover, since ‖rn‖2 = ‖f − fn‖2 = σ2

m + ‖f?
m − fn‖2, by the very

definition (Eq. (15)) of Nm, we have for 0 ≤ n < Nm:

‖f?
m − fn‖2 > σ2

m · m(1 − µ1(m − 1))
[1 − µ1(m − 1) − µ1(m)]2

. (17)

Next we will show that the inequality (17) implies that the right hand side in Eq. (16) is
strictly less than 1, which will prove the stability part of the theorem: kn+1 ∈ Im, 0 ≤ n <
Nm. Since f?

m − fn ∈ VIm , we have

η(Im, f?
m − fn) ≤ η(Im) ≤ µ1(m)

1 − µ1(m − 1)
,

and by a combination of Lemma 1 and Lemma 2 (just as in the proof of Theorem 5),

σm

‖D?
Im

(f?
m − fn)‖∞ ≤ σm · √m

‖f?
m − fn‖ ·

√
1 − µ1(m − 1)

.

Thus, a sufficient condition ensuring that the right hand side in Eq. (16) is strictly less than
1 is

σm · √m

‖f?
m − fn‖ ·

√
1 − µ1(m − 1)

+
µ1(m)

1 − µ1(m − 1)
< 1 (18)

which is equivalent to the assumed inequality (17).
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4.3 Comments on the robustness theorem

As already said, Theorem 6 was proved for OMP by J. Tropp [23], and we merely had
to notice that it also works for MP. Our main contribution comes next with the detailed
analysis of the approximation properties of MP through the consequences of the theorem.
The statement of the robustness theorem relates several sequences of approximation errors.
For a given f , both the sequence {‖rn‖2}n≥1 of approximation errors with MP and that
of best m-term approximation errors {σ2

m}m≥1 are decreasing, and the statement of the
theorem shows that we should also consider a “penalized” version ρ2

m := σ2
m · (1 + λm) of

the best m-term approximation error, using the penalty factor

λm :=
m · (1 − µ1(m − 1))

[1 − µ1(m − 1) − µ1(m)]2
. (19)

The penalized error sequence is defined for any m ≥ 1 such that µ1(m−1)+µ1(m) < 1, but
it is no longer decreasing, since it blows up when µ1(m − 1) + µ1(m) approaches the value
1.

The theorem tells us that “correct” atoms (i.e., atoms that belong to the best m-term ap-
proximant) are picked up by MP until a good enough approximation error ‖rn‖2 is achieved
(compared to the penalized error ρ2

m). The number of provably correct steps is at least

Nm = min{n, ‖rn‖2 ≤ ρ2
m}. (20)

For OMP, since each atom can be picked up at most once, we must have Nm ≤ m and the
theorem thus guarantees that ‖rm‖2 ≤ ρ2

m, i.e., in (at most) m steps an error no worse than
ρ2

m is reached (this is the result of Tropp). Next we want to extend this result to MP by
estimating how many steps of MP are sufficient to reach an error no worse than ρ2

m : our
goal is thus to obtain upper bounds on Nm.

4.4 Rate of convergence

Let us start with some obvious remarks. For m = 1 it is not difficult to check that λ1 = 1/(1−
µ)2 > 1 and ‖r1‖2 = σ2

1 ≤ ρ2
1, hence N1 ≤ 1. For m ≥ 2 such that µ1(m − 1) + µ1(m) < 1,

the expresssion of an upper bound on Nm must depend on the value of σm. Indeed, when
σm = 0, f = f?

m has an exact m-term expansion and the analysis of the previous section
shows that MP can loop forever within the set of “correct” atoms: the error ‖rn‖ decreases
exponentially but never reaches zero, hence Nm = ∞. To the opposite, as soon as σm

is nonzero, the decrease to zero of the residual guarantees that Nm < ∞. Given these
observations, it seems only natural that (for a given m) the smaller σm, the larger the
bound on Nm. The bound expressed in the following theorem displays this behaviour.

Theorem 7 Let {rn}n≥0 be a sequence of residuals computed by MP to approximate some
f ∈ H. For any integer m such that µ1(m − 1) + µ1(m) < 1, let f?

m and Nm = Nm(f) be
defined as in Theorem 6. We have N1 ≤ 1, and for m ≥ 2:
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16 Gribonval & Vandergheynst

• if σ2
m ≤ 3σ2

1/m then

2 ≤ Nm ≤ 2 +
m

1 − µ1(m − 1)
· ln 3σ2

1

mσ2
m

; (21)

• else Nm ≤ 1.

We need some technical results before we proceed to the proof of the theorem. The first
results concern the rate of decrease of the error {‖rn‖} for 1 ≤ n ≤ Nm: the faster the
decrease, the smaller the number of steps needed to reach the condition ‖rn‖ ≤ ρm.

Lemma 3 With the notations of Theorem 6, if {rn} is a sequence of residuals produced by
MP, we have for 1 ≤ n ≤ Nm:

‖rn‖2 − σ2
m ≤ min

0≤l≤n
(βm)n−l

(‖rl‖2 − σ2
m

)
, (22)

with βm as defined in Eq. (13).

Proof: We know from Theorem 6 that kn+1 ∈ Im for 0 ≤ n < Nm, hence we have

‖rn‖2 − ‖rn+1‖2 = |〈rn, gkn+1〉|2 = sup
k∈Im

|〈rn, gk〉|2

= sup
k∈Im

|〈f?
m − fn, gk〉|2

≥ (1 − βm) · ‖f?
m − fn‖2

where the second line follows from the fact that f − f?
m is orthogonal to VIm and the

last inequality is, again, a consequence of Lemma 1 and Lemma 2. Observing again that
‖rn‖2 = σ2

m + ‖f?
m − fn‖2, we have ‖rn‖2 − ‖rn+1‖2 = ‖f?

m − fn‖2 − ‖f?
m − fn+1‖2 and we

obtain

‖f?
m − fn+1‖2 ≤ βm · ‖f?

m − fn‖2.

It follows that for 0 ≤ l ≤ n + 1,

‖f?
m − fn+1‖2 ≤ (βm)n+1−l · ‖f?

m − fl‖2.

We can now conclude that

‖rn+1‖2 ≤ σ2
m + (βm)n+1−l · (‖rl‖2 − σ2

m

)
which gives for 1 ≤ n + 1 ≤ Nm and 0 ≤ l ≤ n + 1

‖rn+1‖2 − σ2
m ≤ (βm)n+1−l · (‖rl‖2 − σ2

m

)
.
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As a consequence of Lemma 3 we have the following relation between the numbers Nl.

Lemma 4 With the assumptions and notations of Theorem 6, for any 1 ≤ k < m such that
Nk < Nm we have

Nm − Nk ≤ 1 +
m

1 − µ1(m − 1)
·
(

ln
σ2

k

σ2
m

+ ln
1 + λk

λm

)
. (23)

Proof: We let l = Nk and n = Nm − 1 in Eq. (22) and use the very definition of Nm

and Nk (cf Eq. (20)) to obtain

λm · σ2
m < ‖rNm−1‖2 − σ2

m

≤ (βm)Nm−1−Nk · (‖rNk
‖2 − σ2

m

)
≤ (βm)Nm−1−Nk · (1 + λk) · σ2

k.

It follows that (1/βm)Nm−1−Nk ≤ (σ2
k/σ2

m) · (1 + λk)/λm, hence we have Nm − Nk ≤ 1 + ∆
with

∆ :=
1

ln 1
βm

(
ln

σ2
k

σ2
m

+ ln
1 + λk

λm

)
.

For t ≥ 0, we have ln(1− t) ≤ −t, hence 1/ ln(1/(1− t)) ≤ 1/t. Since βm = 1− (1−µ1(m−
1))/m, it follows that

1
ln 1

βm

≤ m

1 − µ1(m − 1)

and we obtain Eq. (23) by combining the previous estimates.
Theorem 7 will follow from Lemma 4 using the estimate of (1 + λk)/λm provided by the
following lemma.

Lemma 5 For all m such that µ1(m − 1) + µ1(m) < 1 and 1 ≤ k < m, we have

λm ≥ m (24)
λk

λm
≤ k

m
· 1 − µ1(k − 1)
1 − µ1(m − 1)

. (25)

Proof: For the first inequality, we write

λm = m · 1
1 − µ1(m − 1) − µ1(m)

· 1 − µ1(m − 1)
1 − µ1(m − 1) − µ1(m)

and observe that the two rightmost factors are no less than 1. For the second inequality,
consider 2 ≤ l ≤ m: since µ1(l− 2)+ µ1(l− 1) ≤ µ1(l− 1)+µ1(l), it is not difficult to check
that

λl−1

λl
≤ l − 1

l
· 1 − µ1(l − 2)
1 − µ1(l − 1)

.

Taking the product for k + 1 ≤ l ≤ m we obtain the result.
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18 Gribonval & Vandergheynst

Proof: (Theorem 7) From Lemma 5 we have

(1 + λk)/λm = 1/λm + λk/λm ≤ (1 + k/(1 − µ1(m − 1))) /m.

Moreover, since 2µ1(m− 1) ≤ µ1(m − 1) + µ1(m) < 1, we have 1 − µ1(m − 1) > 1/2, hence

ln
1 + λk

λm
≤ ln

(
1 +

k

1 − µ1(m − 1)

)
− lnm

≤ ln (2k + 1) − ln m

For 1 ≤ k < m, either Nm ≤ Nk or we can apply Lemma 4 and obtain

Nm ≤ Nk + 1 +
m

1 − µ1(m − 1)

(
ln

σ2
k

σ2
m

+ ln
2k + 1

m

)
.

Taking k = 1 yields either Nm ≤ N1 = 1 (which is the second case of the theorem) or
Nm ≥ N1 + 1 = 2 and

Nm ≤ 2 +
m

1 − µ1(m − 1)
· ln 3 σ2

1

m σ2
m

which is only possible if 3σ2
1 > mσ2

m.
Let us conclude by showing how Theorem 7 can be used to obtain our featured result,

Theorem 3. If m < (1+1/µ)/4, it is easy to check that the condition µ1(m−1)+µ1(m) < 1
is satisfied and that m ≤ λm ≤ 4m. As a result, ρ2

m ≤ (1 + 4m)σ2
m and Nm defined in

Theorem 6 satisfies the first and second statements of Theorem 3. The third statement is
checked using Theorem 7 and the easy fact that 1/(1 − µ1(m − 1)) < 4/3.
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5 Connection with Villemoes’ result

Before concluding this paper we would like to make it explicit how the work presented here
extends the results of Villemoes about MP in the Walsh wavelet packet dictionary [24].
Without going into too much details, let us recall the definition of the Walsh wavelet packet
dictionary (the material below is essentially taken from [24]). The dictionary, which is the
collection of atoms gp(x) = gj,k,n(x) := 2j/2Wn(2jx−k) in H = L2(R) obtained by dilations
and translations of the Walsh system {Wn}n≥0 on L2[0, 1], has coherence µ = µ1(1) = 1/

√
2.

In this dictionary, one can find four atoms gpd
, gpu , gpl

, gpr with gpl
orthogonal to gpr which

satisfy
(

gpd

gpu

)
=

1√
2

(
1 1
1 −1

) (
gpl

gpr

)
. (26)

As a result, we have µ1(2) ≥ |〈gpd
, gpl

〉| + |〈gpd
, gpr 〉| =

√
2 > 1. Hence, the hypothesis

(Eq. (10)) of Theorem 5 is only valid for m = 1, i.e., only 1-term expansions from the Walsh
wavelet packet dictionary can be stably recovered through MP! One should not be mislead
by the meaning of such a “poor” result: it essentially means that one should be very careful
about the relevance of the notion of a “correct” atom when such a notion is ambiguously
defined. Let us consider a simple example. Assume we want to recover expansions from
span(gk, k ∈ I) with I = {pl, pr}. Since gpd

∈ span(gpl
, gpr ), if MP is performed on f := gpd

it will pick up gpd
as it first atom, and this is a “wrong” choice since only a choice gk, k ∈ I

is considered a “good” one according to the terminology used in this paper. The fact that
MP on a 2-term expansion can pick up a “wrong” atom is thus correctly predicted by the
analysis, but the question is rather the relevance of the notion of “correct” versus “wrong”
atom which is intrinsically ambiguous in this example.

In Villemoes’ result, there is no statement about recovery of “good” versus “wrong”
atoms, instead the main point is the exponential convergence which comes from the stability
of the pursuit in some subspace of dimension at most four: for every I of size two, there
exists a reasonably small set J ⊃ I which satisfies the stability condition η(J) < 1, hence
all the residuals remain in the finite dimensional subspace span(gp, p ∈ J). The latter is of
finite dimension at most four hence the convergence is exponential. The rate of convergence
is computed on a case by case basis.
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20 Gribonval & Vandergheynst

6 Conclusions

Non-linear sparse approximations in redundant dictionaries opened brand new perspectives
in data processing, mostly thank to the freedom in designing atoms that match particular
structures. Until recently, these methods nevertheless suffered from a lack of constructive
results regarding the approximation properties and stability of the associated decomposition
algorithms. This paper provides insights that one of the most widely used heuristics, the
Matching Pursuit algorithm, is stable and offers good approximation properties when the
dictionary is sufficiently incoherent. Extending these results to wider (and more useful)
classes of dictionaries is a fundamental problem that we hope to address in forthcoming
papers.
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