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Abstract

In this work we explore the potentialities of a represental framework for the decomposition of audio-visual
signals over redundant dictionaries, using Matching Rtar$li] (MP). It is relatively easy for a human to correctly
interpret a scene consisting on a combination of acoustcvasual stimuli and to take profit from both information
to experience a richer perception of the world. On the coptammputer systems have considerable difficulties when
having to deal with multimodal signals, and the informatibat each component contains about the others is usually
ignored. This is basically due to the complexity of the defgties that exist between audio and video signals and to
the signals representations that are considered whengttgnto mix them in multimodal fusion systems. Redundant
decompositions may describe audio-visual sequences ixtiaameely concise fashion, preserving good representation
properties thanks to the use of redundant, well designetipdaries. We expect that this will help us to overcome two
typical problems of multimodal fusion algorithms, that #ne high dimensionality of the considered signals and the
limitations of classical representation techniques, ikeel-based measures (for the video) or Fourier-like tiinss
(for the audio), that take into account only marginally ttgsics of the problem. The experimental results we obtain
by making use of MP decompositions over redundant codeback&ncouraging and make us believe that such a
research direction would allow to open a new way through imoltial signal representation.

Index Terms

Audiovisual fusion, multimodal data processing, sparsmd®gositions, Matching Pursuits, mutual information,
Pearson correlation, Kendall correlation.

I. INTRODUCTION

Human perception of the world is essentially multimodal. We continuously combifeeeatit sensorial experiences
to obtain an accurate and reliable representation of the surroundingmmeént, and this without any apparent effort.
However, even our ability to correlate various input modalities is far fromdoperfect, and this because of the
complex interaction between a number of factors that contribute to percepiitime audio-visual fusion context, for
example, theventriloquism effecéemerges when sounds are erroneously located toward their appegaitsource.
An even more impressive and curious effect is the McGurk illusion [2emdubbing an incongruous auditory syllable
with a similar visual syllable the resulting percept is not either of the compartarita combination or a fusion of the
auditory and visual components. It is thus obvious that automatic systemsrgacenormous difficulties when trying
to understand relationships between audio and video signals. Such a xtasfleequires the integration of a number
of mathematical and statistical tools in order to represent the signals, exigactingful features and fuse them. For
this purpose most of the proposed algorithms make simplifying assumptionseintonshodel the audio-visual inputs
and the complex relationships existing between them.

The problem we are study in this work is that of correlating audio tracks vidteovdata to detect those regions
in an image sequence from which the soundtrack originates. The topicraiafaéied by Hershey and Movellan [3],
they measured the correlation between audio and video using an estimaterobitin information between the
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energy of an audio track and the value of single pixels. Since a permb&sure was used, the hypothesis that pixels
are independent of each other conditioned on the speech signal waduiregd. In [3], the mutual information is
derived from the Pearson correlation coefficient under the assunp@brthe joint statistics are Gaussian. Slaney
and Covell [4] generalize this approach and look for a method able to meetmisynchrony between audio signals
and video facial images. In order to deduce a relationship between tealeppresentation of the audio and the
video pixels, the authors use Canonical Correlation Analysis, which izvagaot to maximum mutual information
projection in the jointly Gaussian case. Naoekal. [5] evaluate three different algorithms for assessing audio-visual
synchrony in a speaker localization context, using different test set§wp of the considered methods are based
on mutual information, one that assumes discrete distributions and the oth#radrconsiders multivariate Gaussian
distributions. A third algorithm makes use of Hidden Markov Models trainedustio-visual data. Audio features are
extracted from Mel-frequency cepstral coefficients, while diffekétieo features are tested, as the coefficients of the
discrete cosine transform and the pixel intensity change. All three algwitBquire training datasets in order to build
a priori models, like the methods proposed in [3], [4].

Butz [6] proposes an approach based on Markov chains modeling andiicideo signals. The audio-visual consis-
tency is assessed by maximizing the mutual information between audio and eatacef, where the distributions of
such features are estimated using nonparametric density estimators. Foditheadinear combination of the power
spectrum coefficients that has the biggest entropy is learnt from aetlatesile the video is represented by pixel
intensity change. The audio and video joint densities are deduced by grdim@restimator on a set of audio-video
sequences. A method that does not make use of any previous modelgnraasrfirst proposed by Fishet al. [7]
and has been extended in their latest work [8]. The algorithm is basegmiabilistic generation model that is used
to define projection rules on maximally informative subspaces. The leamsitids are used to define the relationship
between different signal modalities using a nonparametric density estimaisrg@neral approach is used to solve a
conversational audio-visual correspondence problem, obtainirgueanging results. A slightly different approach is
used in [9], where is presented a methodology not only for correlatidgpaund video, but for extracting audio-visual
independent components from video streams. Principal Componentssinand Independent Component Analysis
are performed on audio and video features at the same time, in order todintattimally independent audio-visual
subspaces. However, this technique is not able to deal with dynamicsscene

In this work, we explore a completely new representational frameworkddio-visual fusion. This is based on
the sparse decomposition of signals over atoms dictionaries using MatchiagitByl] (MP). There are several
motivations for using such a description for our signals. The MP decaditigroprovides a very sparse representation
of the information, allowing a considerable reduction of the dimensionality ofrjpiet signals. At the same time,
an appropriate decomposition of a signal over a well designed redudidéionary provides an interpretation of the
information in terms of the most salient structures present in the signal. Tauddshllow us to handle information in
an easier and faster way, and thus to develop relatively simple and inttititveffective, fusion criteria. Moreover,
we want to underline that, by representing the video using image structiioess) that evolve in time, we deal with
dynamic features that have a true geometrical meaning, that is not the lsaseising pixel-based representations.

In order to combine audio and video representations, we are going torest'ttassical” measures of correlation,
mutual information, Pearson correlation and Kendalbrrelation. Surprisingly, we have obtained the most satisfactory
results using the Pearson coefficients. Such results show that ouigieelatiows the detection of the image zones
that originate the audio signals.

The paper is structured as follows: in Section Il, the representatiomalefivork for audio and video signals is
introduced. Section Il presents the different audio-visual fusidteréa that have been tested and Section IV shows
the experimental results. In Section V the experimental results are did¢casskin Section VI conclusions are drawn
and possible future extensions are depicted.

II. AUDIO AND VIDEO REPRESENTATION

In this work, we consider multimodal sequences composed of an audiocttrgether with its corresponding video
component. Both audio and video signals are represented using a MaRunisigit decomposition over redundant
dictionaries. This kind of atomic decomposition seems, in fact, particularly $eifabrepresenting and correlating
audio-visual inputs. Indeed, we obtain a concise description of suohlsithat is explicitly related to the physical
phenomena they are originated from. In Section II-A, the proceduré taseepresent 1-D signals using MP with
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redundant codebooks of atoms is described in details, while in SectionvB-®ill present the techniques that have
been developed to extend the MP algorithm to the complex case of videmsegue

A. Audio Decomposition

The audio signad(t) is decomposed using the MP algorithm over a redundant dictiddary}composed of unitary
norm base functions called atoms. The family of atoms that conmpgses generated by scaling by translating in
time by« and modulating in frequency kiya generating function(¢) € L?(R). Indicating with the index the set of
transformationgs, u, £), an atom can be expressed as

94(t) = Lg(t_u>ei5t- 1)

S

In our case, we consider a dictionary of Gabor atoms, that is, the dergefanctiong(t) is a normalized Gaussian
window. The choice of a Gabor dictionary is due to the optimal time-frequkernayization of the Gaussian window.
The first step of the MP algorithm decomposess

a = <CL, g’yo).g’yo + Rla) (2)

where R'a is the residual component after approximatingn the subspace described by,. The functiong.,, is
chosen such that the projectigfa, g-,)| is maximal. This procedure is recursively applied, and akaterations the

signala is represented as
N-1

a= Z (R"a; gy, ) 9 + RYa, 3
n=0
whereR" = a andR"a is the residual aften iterations. One of the analyzed signals together with its MP decomposi-
tion represented in the time-frequency plane are shown in Fig. 1.

B. Video Decomposition

The image sequence is represented using the algorithm proposed Iosal2ind Vandergheynst [10]. This technique
decomposes a sequence into a set of 2-D atoms evolving in time, allowing éseapsalient geometric components
present in the sequence and to track their temporal transformations.

An iteration on the MP algorithm decomposes the first frame of the sequeaca cedundant dictionay, of 2-D

anisotropic atoms [11]:
I= Z Cy; G » (4)

Y €Q

wherei is the summation index;, corresponds to the projection coefficient for every aignands2 is the subset of
selected atom indexes from dictiondPy,. The changes suffered from a frath¢o I, ; are modelled as the application
of an operatoi; to the imagel; such thatl,1 = Fy(I;) andl41 = > 1 F}"(ct,gt,), whereF; represents the set
of transformationg”, of all atoms that approximate each frame. A MP-like approach similar to thdtfaséhe first
frame is applied to retrieve the new setg@’r1 (and the associated parametric transformafipn However, at every
greedy decomposition iteration some new criteria have to be consideredeantordstablish the relationship with
the expansion of the reference frame. Only a subset of functions gfetineral dictionary is considered as candidate
functions to represent each deformed atom. This subset is definedliaccto the past geometrical features of every
particular atom in the previous frame, such that only a limited set of transfimmsgtranslation, scale and rotation)
are possible.

The simple constraint of limiting possible atom transformations, and the simpliciigtodiolry functions [11] turns
into a lack of regularity (stability) of the atom motion. In order to include in the N¢f@r@thm a regularity measure, a
more flexible version of the selection criteria is considered (Weak Grekgyrithm -WGA- [12]). Instead of selecting
the function giving the biggest scalar product at every iteration, wetsitle most probable function with respect to
a certain motion. The selection of the atom that gives the maximum scalar piedrguivalent to select the most
probable atom given that all transformations have equaiori probability. However, in the case of smooth motion,
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Fig. 1. Audio signal of a subject uttering the first ten digits in Italian (top) aadViP decomposition with 800 atoms represented in the
time-frequency plane (bottom). The color map of the image goes frook itared, through blue, green and yellow, and the pixel intensity
represents the value of the energy at each time-frequency location.

there will be a lot of transformations that are unlike and even impossible. y&dan modeling of the problem can
be performed if soma priori information or knowledge about the parametric sequence descriptionilistdea The
assumption that in the sequence approximation, neighboring atoms pregelatr motion is made, since several of
them are needed to represent a region. In the greedy formulation egiBayunctional that maximizes the Maximum
a Posterioriprobability integrates the motion regularity assumption. A Markov Random Hi#RH) framework is
considered, in order to define probabilistic relations among atoms. The ladranuof the Bayesian approach to MP
video representation is complex and is treated in detail in [10], [13], to whielinterested readers are referred.

A cartoon example of the presented approach can be seen in Fig. 2 thbapproximation of a simple synthetic
object by means of a single atom is performed. The first and third row tirgi show the original sequence and
the second and fourth rows provide the reconstruction of the approximdatle bottom part of the figure shows the
parametric representation of the sequence. We see the temporal evofutiercoefficient, the coordinates evolution
of the translation parameters and the scales and angle evolution.

[11. AuDIOVISUAL FUSION

The MP decompositions of audio tracks and video sequences repsesantsalient parametrization of those signals.
Thus, a quite natural and, as it will be shown, effective way to relateoaard video sequences is that of comparing
these parametric representations. The audio-visual features caukidehe following of this work are presented in
Sections IlI-A and I1I-B, while the criteria that are used to relate themrdareduced and discussed in Section I1I-C.
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Fig. 2. Synthetic sequence approximated by 1 atom (top) and evolutiorirawees of the parameters describing such atom (bottom). From
left to right and from up down, we find: amplitude of the coefficient, hamial position, vertical position, x (short axis) scale, y (long axis)
scale, rotation.

A. Audio Feature

The audio representation that we obtain from the MP decomposition it is matlgiexploitable to our end and has
to be further processed in order to obtain a function that is comparable wigtvthution of the video parameters. We
require a signal composed of the same nunmbef samples of the MP video parameters. Moreover, we would like
to depict the audio signal with only one time-evolving feature, in order todsppethe computation and to simplify
the problem formulation. Typical features used to represent audiolsigreathe Mel-frequency cepstral coefficients
(MFCCs) [14], that the dominant features used for speech recogratihremployed in [4], [5]. In [6] the audio feature
is obtained from the spectrogram of the audio track by learning from drtgpdataset the linear combination of the
power spectrum coefficients with the biggest entropy. Fisher and IDi@jrpropose a similar feature that maximizes
the mutual information with the video. This uses an on-line procedure thatradeequire a training process. In both
cases ([6] and [8]), the final feature is a 1-D function that is downéednip order to obtain the same length for the
audio and the video features.

In this work, we decided to use a much simpler approach exploiting the spassef the MP decompaosition. Our
audio feature is obtained by projecting over the time axis, the time-frequepcgsentation obtained with MP (see
Fig. 1). Infact, our feature is similar to those described in [6], [8], withdifference that we attribute to each frequency
component the same weight. This can be seen as a representation ofitlemfecontent that is present at each time
instant. This is of course a very simple approach, and one of the firstsiates of this work will be the conception of
some more accurate criteria to select the audio feature. However, tisespss and the fine time-frequency resolution
of the dictionary decomposition allow us to obtain a description that capturely i@ evolution of the audio track.
We show in Fig. 3 the audio feature obtained for the signal of Fig. 1. Theesare normalized to a maximum of 1
and the mean value has been removed.
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Fig. 3. Audio feature representing the signal of Fig. 1. The values@raalized to 1 and the mean has been removed.

B. Video Features

When considering the video signal, basically all the works we reviewegixsks intensity values as video features,
with the exceptions of [5] and [6], where the pixel intensity change is nredsn a3 x 3 averaging spatial window is
considered. Pixel-related quantities seem to us a relatively poor sdurdermation that has a huge dimensionality,
it is quite sensitive to noise and does not exploit structures in images. Walkaided thus to explore the possibilities
offered by the MP video decomposition technique presented in Sectionlfi-Bis way, we hope to be able to track
important geometric features over time and to effectively parameterize tlaosédrmations that represent changes in
the scene. The output of the MP algorithm is a set of atoms parameters seabdehe temporal evolution of 3-D
video features. Each atom is characterized by a coefficient, 2 posittampégers, 2 scale parameters and a rotation,
i.e. 6 parameters. Fig. 4 shows the atom parameters evolution as a fundiioe .oT he described video sequence, in
this case, is of lengtih, = 192 frames.

The video features we consider, however, are not all the 6 videongdeas. The scale parameters have been
discarded, since they carry few information about the mouth movementsedviar, the atom orientation appears
to be a component that brings an unprecise description of the real geofeature rotation and thus results to be
unreliable. We have decided, therefore, to employ only the atoms coeffizidmpositions as video features, obtaining
3 descriptors per atom. Since a video sequence is represented with adireerN of time-evolving atoms, we end
up with a list of3 x NV functions composed af samples. The video features that we compare with the audio feature
are, in addition, normalized in amplitude and with zero mean.

C. Fusion Criteria

The way audio and visual features are correlated is a critical point irtleegsing. The effectiveness of the adopted
criterion depends on how data is processed before this step and houtpiog af the fusion step is exploited. In this
study, we want to explore the capabilities of MP decompositions to repressantingful audio and visual structures,
in order to correlate them and identify those visual primitives that originateadloéo signal. Thus, starting from
the atomic representations obtained using the procedures describedion $leave want to detect those 2-D time-
evolving atoms that are more correlated with the representation of the sacidip do this, three different correlation
measures have been tested. They are described in the next sections.

1) Pearsorp correlation coefficient: The most common measure of correlation is the Pearson correlation coeffi-
cient [15]. The Pearson correlation is a parametric measure of corretatibreflects the degree of linear relationship
between two variables that are on an interval or ratio scale. It ranges+ to —1. The observations for both vari-
ables should be approximately (bivariate) normally distributed. Given twervhtion vectors andY of lengthn,
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Fig. 4. Temporal evolution of the parameters of an atom used to de@antpe video sequence corresponding to the audio track of Fig. 1.
From left to right and from top to bottom: Amplitude of the coefficient, hanizb displacement, vertical displacement, short axis scale, long
axis scale and rotation. Only the parameters depicted in the first rowfi(beef and positions) are considered as video features and fused with
audio.

the value of the Pearson correlation coefficighietweenX andY is computed as
> (Xi = X)(Y; - Y) 7
VI (X - X230 (Y - )2
whereX andY denote the mean values &fandY” respectively.
For each video feature, the value of the correlafianith the audio feature is computed. A probabilitassociated

to the correlation coefficient is also computed, in order to assess the sigodiof the value op. When the true
correlation is zero, the quantity

p= ®)

n—2

.
t=—F—w—, (6)
V1= p?
belongs to &tudent’s distribution withn — 2 degrees of freedonmi(n — 2), with n number of available samples [15].
If the probabilityp that? belongs ta:(n — 2) is small, then the correlation is significant. We want to remark that each
atom is described by 3 quantities evolving in time. Hence, for each atom vee3haarrelation values. We select those
video atoms that have all 3 correlation coefficieftsith probabilityp < 0.025.

2) Kendallr correlation coefficient: Kendall 7 [16] is a non-parametric measure of correlation, which is intended
to measure the strength of the relationship between two processesX i &f) and (X}, Y;) be a pair of (bivariate)
observations. IfX; — X; andY; — Y; have the same sign, we shall say that the pair is concordant. On the atider ha
if they have opposite signs, we shall say that the pair is discordant. mglesaontaining. observations we can form
n(n—1)/2 pairs corresponding to choicés< i < j < n. LetC stand for the number of concordant pairs dndtand
for the number of discordant pairs. Then, a simple way to measure strefimgtlationship is to computs = C — D.

A preponderance of concordant pairs, resulting in a large positived S, indicates a strong positive relationship
betweenX andY’, while a preponderance of discordant pairs resulting in a large negative ofS, indicates a strong
negative relationship betweenhandY. As a measure of relationship strengthhas a disadvantage. Its range depends
on the sample size. But a simple normalization gets around this problem. Sisican vary betweer-n(n — 1)/2
and+n(n — 1)/2, we can therefore compute

_2(C-D)

on(n—1)" 0
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having always-1 < 7 < 1. Kendall correlation coefficient can measure linear and non-linear relationships, being
at he same time robust to outliers.

We compute the value af between each video atom parameter and the audio feature, ending up aitine8 of
7 per atom. A correlation indeX' is computed for every time-evolving atom, as the average of the absolutesvalue
of the 3 correlations. The bigger is the value df, the more correlated is the time-evolving atom with the audio
component. We consider as most correlated with the audio signal, the 10ataes that are characterized by the 10
biggest values of the indek.

3) Mutual information: The mutual information [17] is a general measure for statistical indeperdbat quan-
tifies the reduction in the uncertainty of one random variable given kn@sletbout another random variable. Con-
sidering two random variable¥ andY with possible outcome®Q x and{2y and with marginal probability densities
P(x), P(y) and joint probability density’(x, ), the mutual information)/ (X, Y’), of X andY is defined as

- % 5 ool

IEQX yer
An estimate of the mutual information is computed by estimating the probability denssiieg a Parzen window
technique [18], [19]. The Parzen density estimate is defined as

:%ZK(V—VZ‘), 9)
i=1

where K (-) is the Gaussian kernel andis the available number of samples. The generalization of Eq. 9 to the
multivariate case is obtained by simply substituting the 1-D Gaussian kernel witlultislimensional analogue.

Again, for each atom we have 3 mutual information values of the audio aratdhe parameters. Thus, a mutual
information index) is calculated for every primitive as the average of the mutual informatiorficeets. In the
results we show in this report, the video atoms that are considered the mesaten with the soundtrack are the 10
with biggest information indeX/.

IV. EXPERIMENTS

The framework we have developed is used to detect the region in the viatewotitains the speaker that originates
the corresponding audio signal. Such an application can be directly imcindg conversational human-machine
interface, on which one or more persons interact with a computer justdakspm in front of a camera, or in a smart
video-conference system.

Experiments have been carried out on real-world video streams rafirgsene or two persons speaking and mov-
ing in front of a camera. The video data was recorded at 25 framespend at a resolution df44 x 176 pixels.
The input soundtrack was collected at 48 kHz and it was sub-sampledeén torobtain a signal at 8 kHz. All the test
sequences last about 8 seconds, and are thus approximately 208 foage

The image sequence is represented using the procedure describectiom $eB. Thus, the video frames are
high-pass filtered and decomposed using the MP algorithm of Divorravandergheynst, obtaining a set of 2-D
time-evolving atoms. The audio part is decomposed over a dictionary ofr@édims whose window lengths range
from 512 to 16384 time samples, using thastWaveimplementation of MP for 1-D signals [20]. Based on such
decomposition, the audio feature is extracted as described in Section TMhé number of basis functions used for
the decomposition of the image and audio sequences is heuristically chogbede experiments, in order to get
convenient representations. However, note that a distortion criteriaecaasily set, to automatically determine the
required number of atoms. In Fig. 5, we show the results of the descnibeddgure applied to the test video sequence
Elena 1 The sequence shows a person repeating two simple words for 13 timigéamtglslightly less than 8 seconds,
that is 192 frames. During the utterance of the phonemes, there is no sighifiovement on the scene. The subject
speaking is close-up filmed; The frame number 15 of the video sequeremia &1 Fig. 5(a). The video component is
decomposed using 120 basis functions, while the audio track is représétiie&s00 Gabor atoms. In picture Fig. 5(b),
the absolute value of the atoms obtained by correlating the video stream andltbeignal using Pearson correlations
fusion criterion (Section IlI-C.1) are shown. At the top figure, resutslie video sequendelena 1correlated with
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Fig.5. Experiments on the sequeritiena 1 Frame 15 of the original sequence is shown in (a). In picture (b)lteassing Pearson correlations
are shown. At the top figure, results for the video sequéitera 1correlated with its audio component are depicted. At the bottom, we show
the resulting atoms when the video sequeBtana 1is correlated with the audio signal of the sequeBtena 2 In (c) we show the results
using ther correlation coefficients as fusion criterion, when using the corredodtap), and the one from sequeriekena 2(bottom). Finally,

in (d) results for mutual information with correct (top) and incorreati{tm) audio signals are depicted.

its audio component are depicted. At the bottom, we show the resulting atomstimhgideo sequendglena lis
correlated with the audio track of the sequeBtena 2 The atoms are weighted by the coefficients computed by the
MP algorithm. In Fig. 5(c) we show the results using theorrelation coefficients as fusion criterion (Section IlI-C.2),
when using the correct audio (top), and the one from sequeleca 2(bottom). Each video atom is weighted with its
correlation indexr’, therefore the image values are proportional to the strength of the dumnelbeetween the image
areas and the soundtrack. Finally, in Fig. 5(d) results for mutual informéatision criterion (Section I1I-C.3) with
correct (top) and incorrect (bottom) audio signals are depicted. Thesaice weighted with their mutual information
index M, thus the picture intensity values are proportional to the strength of thelaibon between the image zones
and the audio. In this experiment, the Pearson correlation measure cleogrforms the other fusion criteria, it is
the only one that is able to clearly distinguish between correct and int@wem and it is capable of detecting the
speaker’'s mouth (see Fig. 5(b) top).

The same type of results are depicted in Fig. 6 for the sequUeleoa 2 The same person of the previous sequence
utters the digits from 1 to 10 in Italian, and the stream is again 192 frames |tvegsefjuence is static and the subject is
filmed close to the camera. The frame number 10 of the video sequence is ishiBig. 6(a). We represent the image
sequence using again 120 video atoms, while the audio is represented @itha®0@r functions, since the speech
track in this case is more complex than the previous one. The audio commdrtleistsequence, together with its MP
decomposition, is depicted in Fig. 1. In picture 6(b), results using Peaoelation for correct audio (top) and the
audio track ofElena 1(bottom) are depicted, in (c) we can see the results using doerelation coefficients and in (d)
using mutual information. Again, the best performances are achievdaitexgp Pearson correlation coefficient.

A series of results on the sequertelésa are shown in Fig. 7. This example is more challenging, since the subject
moves the head while speaking and she pronounces a more articulateahagpldxcphrase. In this case, we want to
remark that using the mutual information criterion, we are able to detect tlaespemouth, but the discrimination
between correct and incorrect audio track is extremely poor. The atiggguences, together with the resulting video
sequences, are available on the author’s web page [21].
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Fig. 6. Experiments on the sequeriglena 2 The frame number 10 of the video sequence is shown in (a). In pi¢tiireesults obtained by
correlating the video stream and the audio signal using Pearson comslat®shown. At the top figure, results for the video sequEtesa

2 correlated with its audio component are depicted. At the bottom, we shoreshting atoms when the video sequeitbena 2is correlated
with the audio signal of the sequenEkna 1 In (c) we show the results using thecorrelation coefficients as fusion criterion, when using the
correct audio (top), and the one from sequeBtEna 1(bottom). Finally, in (d) results for mutual information with correct (topglancorrect
(bottom) audio signals are depicted.

V. DISCUSSION OF THERESULTS

The sequences we have used in this study are simple cases represeatopgysmn speaking in front of the camera
without moving significantly. However, such a scenario is more realistic tharcan think. In fact, one can assume
that a face detector is available and thus, if more than one person aratirofr@ camera and only one is speaking,
it seems possible to exploit our proposed approach to locate the spebdeirfg a procedure like the one described
in [8]. Moreover, videos have been filmed without any control on the illutionaconditions and in addition some
background noise is present in the audio streams.

The results we have obtained are somehow surprising, in the sense thasthmerformances are achieved by the
simplest association measure, that is the Peapsooefficients. The other two measures that we have tested, the
Kendall r coefficients and the mutual information, clearly fail in discriminating betwegrecband incorrect audio
tracks, and in general are not able to locate the mouth of the persorirgped@ker coefficient is a correspondence
measure that quantifies how much two variables tend to vary together. knomsuilts, it seems that the video atoms
that correlate most with the audio, according to this criterion, are thoseahathe less in time. This is perhaps due
to the fact that the visual primitives are not perfectly stable in time and thusdbe features are affected by a certain
noise. The correlation estimator based on Kendakems to be not enough robust to such a noise.

The choice of mutual information as audio-visual fusion criterion is cons@jeoften, the most natural one. This
should be able to capture complex and general dependencies betwiablega This is the choice that has been shown
to be effective in [5], [6], [7], [8], [9]. In our case, to the contyamutual information performs poorly in relating
audio and video features. In our opinion, this is primarily due to the factthtigajoint distributions of audio-visual
parameters are estimated on-line using a small number of samples, leading rtegiigible errors in the mutual
information estimate. One of the strong points of mutual information is its completradn However, this can turn
into a weakness when dealing with small data samples.

This could be the reason of the fact that a simple correlation measure astts®® correlation coefficient is capable
of detecting audio-visual dependencies much more better than more complayeneral association criteria. We
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(b)

Fig. 7. Experiments on the sequerteésa; The frame number 5 of the video sequence is shown in (a). In pidregsults obtained by
correlating the video stream and the audio signal using Pearson conelati® shown. At the top figure, results for the video sequEtisa
correlated with its audio component are depicted. At the bottom, we shawshking atoms when the video sequence is correlated with a non
coherent audio signal. In (c) we show the results using-tberrelation coefficients as fusion criterion, when using the corredbgtmp), and

an incorrect one (bottom). Finally, in (d) results for mutual informatidgthworrect (top) and incorrect (bottom) audio signals are depicted.

recall here that using the correlation coefficipntve can detect linear relationships in the case of bivariate Gaussian
distributions. If these hypotheses are satisfied, such statistical measupecipowerful than mutual information or
Kendall 7. In other words, Pearson correlation is more precise than the otheawa@liechniques, when the data
sample has a reduced size. In our case such assumptions of linearityramality seem to hold, probably because of
the type of features we have used.

VI. CONCLUSIONS ANDFUTURE WORKS

In the present work, we propose a dictionary approach to audio aad wgresentation in the context of multimodal
audio-visual fusion. The motivation for exploring this way is mainly the oleigrn that image sequences are typically
interpreted as huge pixel intensities matrices evolving in time. The fact ofdaritgy pixel-related quantities seems
to us a remarkable limiting factor, since the pixel itself is a poor source ofrivdtion. Video atoms, on the other
hand, represent time-evolving image structures, and their parametertbde®ncisely how such structures move and
change their characteristics in space and time. A very simple example cag ti&i€oncept. If a person is moving
back and forth while speaking in front of the camera, the pixel valueseomtiuth region change depending on the lips
movements and on the person movement. These two cause the evolution oéthetensities in an undistinguishable
way. On the other hand, if the mouth is represented using atoms that track the stnactures and describe their
intensity, position, scale and orientation variations, then, we are able to inéttgret what is happening in the scene.

All the works in the field use very simple representations for the signalsathgirocessed involving huge compu-
tations and/or training of complex priori models. One evident advantage of using redundant parametric decompo-
sitions, is that we obtain an extremely concise representation of informatadristht the same time accurate. In our
case, for example, instead of processidg x 176 = 25344 time-evolving variables (pixel intensities) to deal with the
video signal, we consider only20 x 3 = 360 variables (atoms parameters). The price to pay, for the moment, is the
high computational complexity of the MP algorithm, especially in what concemsitieo signal. However, from our
point of view this price is virtually zero, since the audio and video atoms wasang are exactly the same that the MP
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decoders use to reconstruct the compressed audio-visual seqivoresver, recent results on signal approximation
show that fast algorithms for the sparse representation of signals esingdant dictionaries are being achieved [22].

The results we show in this paper are purely explorative, we directly nekefialgorithms that have been conceived
for different purposes and the features and fusion criteria we cenaré, at least, rough. However, the experimental
results we have obtained encourage us in pursuing in this direction. Imtie fwe look forward to conceive an
appropriate audio feature and studying more in details the relationship meawd@ and video, in order to define an
accurate fusion strategy. Moreover, the stability of the video repragantes to be considered, since for the moment
the video MP algorithm is far from being perfect in tracking image featuresinplex scenes.

In this work, noa priori model on the audio-visual relationship has been established, excapefbypotheses
underlying the Pearson correlation criterion (see Section IlI-C.1). 8ieve that thanks to the parametric representa-
tion we obtain using MP, it will be possible to build a general audio-visual iinod&low for an improvement in the
robustness of multimodal fusion of speech and images. For this purpeggamto study a database of sequences and
learn a statistical model of the interdependencies between audio and satacek.
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