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Abstract

Building good sparse approximations of functions is one of the major themes in approximation theory. When applied to
signals, images or any kind of data, it allows to deal with basic building blocks that essentially synthesize all the information at
hand. It is known since the early successes of wavelet analysis that sparse expansions very often result in efficient algorithms for
characterizing signals in noise or even for analyzing and compressing signals. The very strong links between approximation theory
and computational harmonic analysis on one hand and data processing on the other hand, resulted in fruitful crossfertilizations
over the last decade.

This paper proposes to create a tree structure from an arbitrary dictionary of functions. Due to a hierarchical classification of
the original data, an important part of the redundancy is intrinsically hold by the structure that represents whole bunch of highly
correlated atoms by an unique element. A pursuit algorithm taking advantage of this structure is proposed. It consists in finding
the best path through the tree. It presents the important advantage of being much faster than a classical Matching Pursuit. The
proposed method reduces the dimensionality of the problems without losing important information for the problem at hand; it only
minimally degrades the quality of approximation. The performance of the proposed algorithm are demonstrated in the context of
image representation.

I. I NTRODUCTION

A signal can be represented as a superposition of waveforms. In many cases, the basis waveform are orthogonal to each
other like for the Fourier analysis or for wavelets. Non-orthogonal bases became popular for their ability to lead to sparser
approximation. However, finding the sparsest approximation of a signal over a redundant dictionary of basis function can be
a daunting task. It has been proved in [4] that the finding an optimal function expansion over a redundant dictionary is an
NP-hard problem.

Mallat and Zhang introduced the Matching Pursuit algorithm [10], which greedily takes the best atoms out of the signal. A
good representation of the signal using an overcomplete dictionary can be found without having to pay the price of solving
a problem of combinatorial complexity. Since then, other methods have been proposed. The aim of the proposed methods
remain the same, lower the amount of computations that have to be made. Different approaches have been proposed. Basis
Pursuit (BP) [1] finds the representation in the overcomplete dictionary that minimizes thel1 norm of the coefficients of the
approximation instead of thel0 norm which characterizes the sparsity.

Starting from existent algorithms, it is possible to introduce slight modifications or special cases to obtain efficient search
algorithms. Making MP computationally efficient is mainly done through the design of specific dictionaries. Lots of efforts
have been invested in finding optimal dictionaries. A dictionary is optimal regarding the purpose it should fulfill. One can
think of approximation capabilities, coding efficiency or computational complexity needed during the search phase. Finding a
dictionary that is jointly good in all theses fields is a daunting task. As explained in [11], the most used approach to find efficient
dictionaries in terms of complexity is to reduce the space of possible dictionaries to a complexity-restricted set. However, in
terms of approximation, a good dictionary is less likely to lie in this reduced set. The typical example are dictionaries based
on 2D separable functions that are not able to capture curves. Regarding this simple fact, it is proposed in [11] to create a
dictionary that is efficient for approximation without complexity considerations and to slightly modify it in order to make it
computationally efficient. Small changes should not affect too much its approximation capabilities.

Dealing with information naturally introduces the notion of structuring data. When the amount of data at disposal grows, the
structure becomes very important. Data structure where also often responsible for the emergence of new methods. The success
of wavelets decompositions for images has certainly to be put in parallel with the ease of use of the associated tree structure.
It has been shown that for image compression using wavelets, a tree structure fits particularly well [2]. The present article
does not use a tree for coding but to structure the dictionary of redundant basis functions. The approximation rate decreases
as the size of dictionary increases. On the other hand, the complexity of an algorithm like matching pursuit highly depends
on the size of the dictionary. This paper will present an algorithm whose complexity only increases logarithmically.

Section II is an overview of Redundant Image Expansion. It presents the principles and the notion of sparsity of such a
decomposition. Matching Pursuit is presented as an example to solve greedily the problem. It also presents the used dictionary
for the examples that will take place in the results.

Section III deals with the creation of the tree structured dictionary. It presents the properties we would like to have and
proposes a recursive algorithm to solve the problem.
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Section IV describes the pursuit algorithm that exploits the capabilities of the previously described tree-based structure. It
also investigates the complexity of the proposed algorithm and compares them to Matching Pursuit.

Section V deals with the exact sparse problem. It exhibits a minimal condition under which it is possible to recover exactly
a signal that is a weighted sum of atoms from the dictionary.

Section VI presents the results and performance of the proposed algorithms for images.

II. REDUNDANT IMAGE EXPANSIONS

Signal expansions using redundant dictionaries is a very active domain since the introduction of the Matching Pursuit
algorithm by Mallat and Zhang in 1993 [10]. They have shown that such a greedy algorithm converges exponentially in finite
dimension, and thus provides a good approximation to a difficult combinatorial problem. The excellent paper of Gribonval and
Nielsen [8] presents the main results in the research field during the last decade.

In general, a redundant expansion of a functionf in a Hilbert spaceH is weighted sum of basis functions, also called atoms
which are functions lying also inH. The dictionaryD is the overcomplete set of all atoms, and can be written asD = {g~γ}~γ∈Γ

with ‖g~γ‖ = 1.

For redundant dictionaries,f has many different possible representations such thatf =
∑|D|−1

n=0 cng ~γn
. The best decompo-

sition c is chosen according to asparsitymeasure. The aim would be to find the weights vectorc with minimal l0 norm. Thus,
the problem can be expressed as:

min
c
||~c||0s.t.f =

|D|−1∑
n=0

cng ~γn
. (1)

It has been proved in [4] that the finding an optimal solution for eq. 1 over a redundant dictionary is an NP-hard problem.
Different algorithms have been developed in order to find less optimal solutions at non-combinatorial costs.

Matching Pursuit (MP) is a greedy algorithm that iteratively approximates the signal. It choosesg ~γn
such that the projection

coefficient with the last residual is maximal. The residual signal at stepn is Rnf = Rn−1f− < Rn−1f |g ~γn
> g ~γn

. The
initial residualR0f = f . Thus, the functionf is decomposed as follows:

f =
N−1∑
n=0

〈g ~γn
|Rnf〉g ~γn

+RNf. (2)

The matching pursuit algorithm stops when the energy of the residual is lower than an acceptable limit.
In the case of redundant expansions for images, the atoms are bi-dimensional functions. They are often chosen to match

features contained in the scene as edges for example. The design of a dictionary depends on the application and on the purpose
to fulfill. In this paper, we used the dictionary described in [5]. The atoms of the dictionary are built from generating functions
that are scaled, rotated and translated. The first generating function is a Gaussian (eq. 3) that suits well the task of capturing
the low-frequency parts of the images. The second generating function (eq. 4) is made of a Gaussian in one direction and its
second derivative in the other direction. It has a good ability to capture edges in the images and is spatially and frequencially
well located.

g1(x, y) =
1√
π

exp−(x2 + y2). (3)

g2(x, y) =
2√
3π

(4x2 − 2) exp−(x2 + y2). (4)

The dictionaryD is then generated by applying transformations on these generating functions: rotations (θ), scaling (~a =
(a1, a2)) and translations (~b). The identityk of the generating function and the parameters of the transformations define the
atomg~γ where~γ = {k, θ,~a,~b}. The dictionary is the overcomplete set of unit energy atomsD = {g~γ}~γ∈Γ with ‖g~γ‖ = 1.

For the implementation and the experiments, the parameters had to take discrete values. For the atoms usingg2 as generating
function, the translation parameters take any positive integer value smaller than the size of the image. The rotation parameter
varies by increments ofπ18 . The scaling parameters are uniformly distributed on a logarithmic scale from one up to an eighth of
the size of the image, with a resolution of one third of octave. The scaling along the second derivative part is always smaller.

For the pure Gaussian atoms, the translation parameters can take the same values, the scaling is isotropic and varies from
1
32 to 1

4 of the size of the image on a logarithmic scale with a resolution of one third of octave. Due to isotropy, rotations are
obviously useless in this kind of atoms.
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III. T REE STRUCTURE

For algorithms like matching pursuit, overcompletness of a dictionary is intrinsically holding the fact that redundant
computations are made. The aim of structuring the data is to capture the redundancy in fewer elements without loosing
the approximation capabilities of highly redundant dictionaries.

The original dictionaryD is recursively clustered and stored as a tree where a node holds a subset ofD. Let Nl,n be a
node of the tree at levell and positionn andLl,n, the list indexes of the atoms fromD contained in the subtree spanned by
Nl,n. The matrixAl,n holds, in its columns, the atoms listed inLl,n. The nodeNl,n is a leaf node ifLl,n contains only one
element. The atoms contained inD are stored in the leaves of the tree. Each non leaf node has an associated atomcl,n, called
centroid, which represents the atoms contained in the leaves of its subtree. Figure 1 show a part of a tree and illustrates the
notation that we use.

N0,0

N1,0 N1,1 N1,2 N1,3

N2,12 N2,13 N2,14 N2,15

c1,3

c2,12

N3,50

c3,50

L3,50 = {14, 17, 18, 36}

g
14

g
17

g
18

g
36

Fig. 1. Illustration of the notations used to describe the tree. Example of classification it is possible to obtain for two dimensional Gaussian atoms.

The aim of the clustering is to assign to a node of the tree a subset of atoms belonging toD as correlated as possible to
each other. On the other hand, their corresponding centroid should be as incoherent as possible with the rest ofD and sibling
centroids. The coherence of a tree structured dictionary can be expressed in an analog manner as for aflat dictionary. It is
the maximal absolute value of the scalar product between two centroid associated to nodes having the same parent. A tree
structured dictionary is incoherent if the coherence measure 5 is small. If this value is equal is null, the centroid of sibling
nodes are orthogonal.

µ = max
l>1

max
k∈[0,(l−1)M ]

max
i,j∈[kM,(k+1)M−1],i6=j

| < cl,i, cl,j > |. (5)

The functiond(x, y) is a measure of the distance between two vectorsx andy. It takes values between0 and1. Two vectors
are strongly correlated if their distance is near0. A simple measured(x, y) = 1− |<x,y>|

||x||2||y||2 fits these requirements. Another
measure of the distance between two atoms can be found in [13]:

d(x, y) =

[
1−

( | < x, y > |
||x||2||y||2

)2
]1/2

. (6)

A centroidcl,n represents the atomsgi wherei ∈ Ll,n. It has unit energy and belongs to the column span ofAl,n noted as
R(Al,n). It can be written as a linear combination of the atoms listed inLl,n:

cl,n = Al,nCl,n. (7)
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whereCl,n is a vector containing the weights.
A centroidcl,n has to be such that:

min
i∈Ll,n

d(gi, cl,n) ≥ max
j∈D\Ll,n

d(gj , cl,n). (8)

In the general case, an unique element is not able to cover the whole span of the atoms contained inLl,n as illustrated by
eq. 9.

min
x∈R(Al,n)

c∗l,nx = 0. (9)

The qualityDl,n of a centroid can be computed; it measures the adequation between the centroid and the elements it has
to represent. A natural measure for this is the mean distance from the centroid to all the atoms.

Dl,n =
1

|Ll,n|
∑

i∈Ll,n

d(gi, cl,n). (10)

The tree can be built using a top down approach. The root nodeN0,0 is responsible for the whole dictionary and does not
have any associated centroid. The listL0,0 contains all the indices fromD. The creation of the tree begins by clustering the
root node. It leads to the creation ofM new children. The clustering algorithm is then called again on the children if the
number of atoms they are responsible for is bigger thanM . Starting from equation 10, it is possible to define a measure that
quantifies the quality of a clustering as the mean of the local distances. However, this measure does not take into account
the existing relation between the different centroids. The aim is to separate the different subspaces. Thus, let us define the
quality of a clustering as the sum ofDI(l, n) a measure of the intra-class coherence andDO(l, n) a measure of the inter-class
coherence. Both measures take values in[0, 1]; values near0 mean that correlation is strong. For a given setLl,n of atoms,
the qualityQLl,n

of a clustering is:

QLl,n,λ = DI(l, n) + λDO(l, n). (11)

A good clustering, is such that for a given positiveλ, equation 11 is minimal. Assume the existence of a primitive fitting
these requirements leading to the recursive part of the tree creation summarized by algorithm 1. The creation of the tree is
done by using this procedure on the root node withL0,0 the set of all indices of the atoms inD.

From an analytical point of view, theclusteringproblem is related to packing lines into a given subspace of possible high
dimension. This problem is widely treated in [3].

Algorithm 1 Clustering of NodeNl,n

Use clustering algorithm to getm clusters i.e. createLl+1,nm+i wherei ∈ [0,m[
Create the centroids minimizing equation 11 for a givenλ
for i = 0 to m− 1 do

if |Ll+1,nm+i| > m then
Clustering of NodeNp(i)

end if
end for

Figure 2 is a small part of a tree where the number of children per node has been fixed to 4. The correlation between siblings
is obvious in this example. This figure also illustrates the representing capabilities of a parent node regarding its children.

Fig. 2. Part of a tree

Depending on the technical choices made, the generation of the tree can be computationally quiet complex. As it depends
just on the dictionary, it can be done once for all and stored for future reuses.
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Algorithm 2 Tree-Based Pursuit algorithm

R0f = f , n = 0
repeat

l=0, t=0 so thatNl,t is set to root node
repeat

I = argmaxi | < Rnf |cl+1,t∗M+i > |, i ∈ [0,M [
l = l + 1, t = tM + I

until Nl,t is a leaf
an+1 =< Rnf |cl,t >
Rn+1 = Rnf − an+1cl,t

n = n + 1
until Enough atoms where found

IV. T REE-BASED PURSUIT ALGORITHM

Based on the tree representation of the dictionary, it is possible to design a greedy algorithm that finds the best path through
the tree down to the best leaf nodes (i.e., the atoms fromD). Starting from the root node, all the scalar products between
the residual and the centroids of the children are computed. The best associated node is selected and the search goes on until
a leaf node is reached. This provides a fast alternative to the original Matching Pursuit method. The proposed procedure is
described in Algorithm 2.

Each internal node store a representative atom for its spanned subtree. The aim of the proposed algorithm is to decide which
subtree is most likely to hold atoms taking away the biggest part of the energy of the signal to approximate.

The complexity of the proposed algorithm is much lower than Matching Pursuit. For the two dimensional case, the algorithm
is slightly modified. The centroid are constructed by making use of centered atoms. At the root node, all the possible scalar
products between the centroids and the residual are computed using a fast Fourier transform. This gives us two precious piece
of information: the best subtree and the position of the maximum. During the rest of the traversal through the tree, the possible
scalar products are computed in a search window (dx × dy) surrounding the best position found at the upper level. The step
at the root node can be seen as an energy localization phase. This step is efficient due to the fact that our algorithm finds the
maximal energy of the image regarding the kind of features the dictionary is able to represent. Energy localization is also used
in some fast implementations of Matching Pursuit.

For the complexity analysis of our algorithm, we assume that the tree is balanced and that its mean depth islogM |D|
whereM is the number of children per node. The image we are looking for is of sizeN = Sx × Sy. The FFT computes the
circular scalar product; thus, the images have to be padded with zeros. LetN

′
be the amount of pixels of the padded images.

Computing the inverse Fourier transform is ofO(N ′logN ′). Thus, our reference Matching pursuit algorithm has the following
complexity for finding the best atom in the residual.

O(|D|N ′ log N ′). (12)

In order to do the same task, the proposed pursuit algorithm has following complexity.

O(MN ′logN ′ + logM |D|NW ). (13)

Figure 3 illustrates the fact that the proposed algorithm is less sensitive to the growth of the size of the dictionary than
matching pursuit is. It is a valuable piece of information as it is known that potentially the approximation rate increases as the
size of the dictionary increases.

V. EXACT RECOVERY CONDITION

The proposed algorithm is designed to be used for approximation. However, it is of big interest to see under which conditions
on the signal it can solve the exact sparse problem described in [12]. Let the signals be a linear combination of atoms from
the dictionary. The matrixA contains the set of atoms participating ins and b is a vector containing the weights. Letbmin

denote the smallest element ofb taken in absolute value. The signal can be written as:

s = Ab. (14)

The atoms inA are linearly independent otherwise, there would exist a sparser representation ofs. The exact sparse problem
consists in finding a minimal condition under which the proposed algorithm recovers exactly the atoms ofA and the
corresponding weights.
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Fig. 3. Complexity comparison between Tree-Based Pursuit (TBP) and Matching Pursuit (MP). a) the size of the image to approximate has been fixed. b)
the size of the dictionary has been fixed to 1000 atoms and the size of the images go from20× 20 up to 250× 250.

We introduce a slight modification of equation 8 that will forbid the existence of atoms that are equidistant to different
centroids. Equation 15 has to hold for all non-leaf nodes except for the root node.

min
i∈Ll,n

d(gi, cl,n) > max
j∈D�Ll,n

d(gj , cl,n). (15)

We are looking for the worst case in which it is still possible to recover exactly the original signals. Thus, we are interested
in some extreme values and properties related to the centroids which are used to take decisions during the search. We are
particularly curious about the representation capabilities of the centroids.

λB
l,n = max

j∈[nM,(n+1)M−1]
max

gi∈D�Ll+1,j

| < cl+1,j , gi > |. (16)

The valueλB
l,n is a measure of the correlation between the centroids of sibling nodes (children ofNl,n) and the atoms of

the dictionary not contained in their respective subtree. Its value expresses the coherence between a set of centroids used by
the search algorithm and the subset of the dictionary they do not represent. It is a measure of the perturbations that could be
introduced by other atoms of the dictionary when looking for the best subtree based on the projections of the centroids on the
residual.

From equation 9, we know that there are cases that are not favorable; i.e. for a centroidcn,l there exists linear combination
of atomAl,nb 6= 0 such thatc∗l,nAl,nb = 0. In general, it is not possible to cover the whole span of a collection of atoms by
an unique one.

The matrixAI
l,n contains in its columns the atoms ofA contained in the subtree of the nodeNl,n. The weights corresponding

to these atoms are inbI
l,n. In an analog way, we defineAO

l,n andbO
l,n for the atoms ofs that are not in the subtree ofNl,n.

Theorem 1:Tree-Based Pursuit recovers exactly the signals if at each internal nodeNl,n (except the root node) containing
at least one atom participating ins, the following condition is satisfied for all matricesK 6= 0 having0 outside of the diagonal
and0 or 1 on the diagonal.

|cl,nAI
l,nKbI

l,n| > 2λB
l−1,bn/Mc(||b||1 − bmin). (17)

Proof. The general idea of the proof is to find for a nodeNl,n the minimal condition that ensures that the algorithm will
never choose a subtree containing no atom from the signal in its leaves.

At an arbitrary nodeNl,n in the tree during the search, we have to decide which subtree is most likely to hold a least
onegood atom of the signals = Ab. To make the decision, the scalar product betweens and the centroids associated to the
children of the current node are computed. Let define the matricesφl,n andψl,n containing in their columns respectively the
goodand thebad centroids hold by the children of nodeNl,n. A goodcentroid is such that the subtree of the associated node
contains at least one atom participating ins with non-null associated weight.

If the signal we are trying to recover is made of only one atom fromD then it is correctly found due to inequality 15.
If there are more than one atom participating ins then the recovery is not guaranteed as shown by equation 9. In order to

be sure that the algorithm takes agood decision, the following inequality has to hold.

||φ∗l,ns||∞ > ||ψ∗l,ns||∞. (18)
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The number of bad centroid isk which is the number of columns ofψl,n. If k = 0 every child of the node we are considering
contain atoms taking part ins. The algorithm mandatory takes agooddecision. The interesting case is whenk is not null. We
first derive an upper bound to the right-hand term of equation 18.

||ψ∗l,ns||∞ = ||ψ∗l,nAb||∞ (19)

≤ λB
l−1,bn/Mc||b||1. (20)

Let ci be theith column of the matrixφl,n. And AI
i the atoms fromA that are located in the subtree of the node corresponding

to centroidci. In an analog way,AO
i are the atoms that are not associated to this centroid. The vectorb, containing the weights,

is also divided in two parts. The signal can be expressed as:

Ab = AI
i b

I
i + AO

i bO
i . (21)

We now derive a lower bound to the right hand term of equation 18.

||φ∗l,ns||∞ = ||φ∗l,nAb||∞ (22)

≥ min
i
|c∗i Ab| (23)

= min
i
|c∗i AI

i b
I
i + c∗i A

O
i bO

i | (24)

≥ min
i

(|c∗i AI
i b

I
i | − |c∗i AO

i bO
i |) (25)

≥ min
i
|c∗i AI

i b
I
i | −max

i
|c∗i AO

i bO
i | (26)

≥ min
i
|c∗i AI

i b
I
i | − λB

l−1,bn/Mc||bO
i ||1 (27)

≥ min
i
|c∗i AI

i b
I
i | − λB

l−1,bn/Mc||b||1 + bmin. (28)

Using equations 18, 20 and 28 it is possible to derive the following condition on the signals to ensure that the algorithm
takes the right decision at the current step.

min
i
|c∗i AI

i b
I
i | > 2λB

l−1,bn/Mc||b||1 − λB
l−1,bn/Mcbmin. (29)

If for the current signals inequality 29 holds at each node that the search algorithm explores, then it will eventually find
a correct atom ofs. If the subtree of nodeNl,n contains more than on atom ofA, then the pursuit algorithm will eventually
pass again inNl,n. As it is not possible to know in which order the atoms are recovered, inequality 29 has to be true for all
possible subsets ofAi. It introduces the matrixK of equation 17.

If the condition proposed there is satisfied, the algorithm will make the right choice at the current step. If there are more
than one correct atoms in the currently explored subtree, and that the algorithm worksproperly then, we are going to pass
again in this node. The current condition is a sufficient for making the good choice once. Thus, to be sure that at the current
node the decision will always be correct, the condition has to be satisfied for all possible combinations of weighed atoms in
s in the subtree of the children of the current node.

If λB
l−1,bn/Mc = 0, meaning that the different centroids are orthogonal to the rest of the dictionary, then the condition implies

that there should not be a combination of vectors ofAI
i Kbi orthogonal to the centroidci. This is closely related to the fact

that in general it is not possible to represent the whole span of a bunch of vectors by an unique element (eq. 9).

VI. RESULTS

The definition of the tree creation presented in section III does not present the technical choices made for the experiments.
The used clustering algorithm was thek-means[9] [6]. The k-meansalgorithm tries to iterativerly maximizeQLl,n,λ. The
computation is over when the gain is less than a fixedε; ε can be made arbitrarily small. This algorithm iteratively updates
the centroid that are computed as a simple sign weighted sum described by algorithm 3. Theλ in equation 11 has been fixed
to 0 implying that only intra-class distance is used.

The tree is built using centered versions of the atoms which implies the translation parameter to be constant. Figure 4 shows
the centroids at the first level of the tree. They are used by the algorithm to compute all possible scalar products and to make
the initial choice of the subtree and the area to explore. The figure illustrates the fact that the initial centroid represents the
different shape of atoms at our disposal inD. The second line shows them in the frequency domain. Again, each of them
represents a special behavior.

The test image is Lena (size 128x128). The reference search strategy is a Matching Pursuit that computes all the possible
scalar products by making multiplications in the Fourier domain. It is the reference matching pursuit we used in section IV
for the complexity comparison.



9

Algorithm 3 Centroid update for a groupG of atoms
c = 0
for all gi ∈ G do

if 〈c|gi〉 ≥ 0 then
c = c + gi

else
c = c− gi

end if
end for
Normalizec to have unit energy.

Fig. 4. Centroids at the first level of the tree. The first line shows the atoms in the spatial domain (inner third), the second shows them in the frequency
domain (logarithm of the scale).

The same Matching Pursuit was used in our algorithm at the first level of the tree. If the number of children per nodes
is |D|, the proposed algorithm and the reference Matching Pursuit would do the same. The computation time and the results
would also be the same. The presented results where obtained with a number of children per node under 20 (less than1% of
the size of the dictionary).

Most of the complexity of the search procedure remains in the firstM full searches to execute in order to locate the best
subtree at the first level. The total amount of time needed to finish highly depends on the choice ofM . On the other hand,
if this value is too small, the atoms will not be perfectly found. It comes from the fact that there are not enough centroid
to represent the diversity of atoms contained in the original dictionaryD. As illustrated by figure 5 the reconstruction error
rapidly decreases aM increases.
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Fig. 5. Reconstruction error given the number of nodes for 500 atoms. Dashed line shows the results with a full search algorithm. Mean time to find an
atom.

Figure 5 also shows the amount of time per atom given the number of children per node in the tree. On can see that the it
is quasi linear on the range we are studying. To compare, our reference full-search needed about 47 seconds per atom. Thus,
the proposed algorithm is about 50-150 times faster.

In the case of real block-orthogonal dictionaries, the results of our search strategy and the full-search would be the same.
Even in the non-favorable case proposed as example here, it performs well.
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VII. C ONCLUSION AND FUTURE WORK

This paper presented the potential of the Tree-Based Pursuit algorithm as an efficient method to limit the complexity of
overcomplete signal expansions. It is shown to decrease the complexity of the signal decomposition with respect to Matching
Pursuit, while the quality of the resulting approximation is kept quite satisfactory, depending however on the clustering algorithm
and distance measures used for the creation of the tree. Future work will investigate more efficient clustering algorithms, taking
into account inter-cluster distance, since thek-meansclustering algorithm only considers intra-cluster distances. The representing
capabilities of the centroid and the impact on the Pursuit algorithm will also be investigated. A tree is a natural manner to
encode information, we will try to exploit these intrinsic properties by coding the path instead of the atoms indices. We will
also extend this to encode a centroid instead of atoms if it is worth regarding a rate-distortion criterion.
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