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ABSTRACT

In this paper, we propose a variational model to segment an object belonging to a given scale space using the
active contour method, a geometric shape prior and the Mumford-Shah functional. We define an energy functional
composed by three complementary terms. The first one detects object boundaries from image gradients. The
second term constrains the active contour to get a shape compatible with a statistical shape model of the shape
of interest. And the third part drives globally the shape prior and the active contour towards a homogeneous
intensity region. The segmentation of the object of interest is given by the minimum of our energy functional. This
minimum is computed with the calculus of variations and the gradient descent method that provide a system of
evolution equations solved with the well-known level set method. We also prove the existence of this minimum in
the space of functions with bounded variation. Applications of the proposed model are presented on synthetic and
medical images.

1. INTRODUCTION AND MOTIVATIONS

During the last decade, variational methods and partial differential equations (PDEs) have been more and more
used to analyse, understand and exploit properties of images in order to design powerful application techniques.
Variational methods formulate an image processing or computer vision problem as an optimization problem de-
pending on the unknown variables (which are functions) of the problem. When the optimization functional is
differentiable, the calculus of variations provides a tool to find the extremum of the functional leading to a PDE
whose steady state gives the solution of the imaging or vision problem. Variational methods and PDEs are well
established domains of functional analysis which can offer strong frameworks to correctly formulate image pro-
cessing problems. A very attractive property of these mathematical frameworks is to state well-posed problems
to guarantee existence, uniqueness and regularity of solutions. Successful mathematical frameworks of functional
analysis in computer vision are the theory of viscosity solutions [1] and the framework of functions with bounded
variation [2, 3] which have given powerful tools to mathematically justify solutions of many image processing prob-
lems. Finally, applications of variational methods and PDEs have produced a lot of literature in image processing,
computer vision and computer graphics as one can read in several books [4, 5, 6, 7, 8].
In computer vision, shape analysis is a core component towards automated vision systems. It can be decomposed
into several research domains including shape modeling, shape registration, segmentation and pattern recognition.
Among these research aeras, image segmentation plays an important role in computer vision since it is often the
basis to many applications. Image segmentation has the global objective of determining the semantically important
regions in images. In the variational framework, two approaches have been extensively studied in the litterature:
the Mumford-Shah model and the active contour method. The first one aims at finding a partition of an image
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(a) original image (b) segmented image (c) initial active contour (d) final active contour

Fig. 1. In the variational framework, image segmentation can be realized with the Mumford-Shah functional
(a),(b) and the active contours method (c),(d).

into its constituent parts, which is realized by minimizing the Mumford-Shah functional [9], and the second one
detects more specific parts using the model of active contours/snakes/propagating interfaces [10]. See Figure 1 as
an example of segmentation. Active contour method is a powerful technique to perform segmentation of natural
structures. Initially proposed by Kass et al. [10], active contours are evolving curves/surfaces (represented by
PDEs) under a field of forces, depending on image features and intrinsic curve properties, that leads to the mini-
mization of an objective functional. The numerical solution of PDEs in the context of propagating contours uses the
powerful technique of level sets whose theoritical fundations are presented by Osher and Sethian in [11]. Level set
methods are suitable for evolving interfaces since they are parameter-free and can deal with topological changes.
Segmentation performances of fine real-world shapes such as medical structures in [12, 13, 14] are remarquable
with the level set active contours. Despite of these great advantages, the first-generation active contours, based
on image gradients, are highly sensitive to the presence of noise and poor image contrast, which can lead to bad
segmentation results. To overcome this drawback, some authors have incorporated region-based evolution criteria
into active contours, built from statistics and homogeneous intensity requirements [15, 16, 17, 18, 19, 20]. Yet the
segmentation of structures of interest with these second-generation active contours is not able to deal with occlusion
problems or presence of strongly cluttered background. Therefore the integration of prior shape knowledge about
the objects in the segmentation task represents a natural way to solve occlusion problems and can be considered
as a third generation of active contours. As we will see, we propose a model that exploits the advantages of the
three generations of active contours.
The shape prior can be defined by different models such as Fourier descriptors, medial axis or atlas-based para-
metric models. A performant shape representation has to capture all natural variations, be invariant with respect
to spatial transformations and compact to reduce the number of model parameters. A solution consists in using
a set of training shapes of object of interest and look for a compact representation which can best represent the
training set. Shape models based on this idea are built on statistics such as the principal components analysis
(PCA) [21, 22, 23, 24]. Recently, the level set representation of shapes has been employed as a shape model
[22, 23, 24]. This shape description presents strong advantages since parametrization free, it can represent shapes
of any dimension such as curves, surfaces and hyper-surfaces and basic geometric properties such as the curvature
and the normal to contours are easily deduced. Finally, this shape representation is also naturally consistent with
the level set framework of active contours.
The integration of a geometric shape model in the segmentation process can be done by a shape registration method
to map the prior shape onto the snake shape (the target shape) as done in [22, 25, 23]. The shape registration
problem consists in determining a geometric deformation field (rigid, affine, non-rigid) between a reference shape
and a target shape that optimizes a shape correspondance criterion. In [22], Leventon et al. have used a level
set representation of the prior shape and the active contours and they have registered both shapes by maximizing
a similarity measure between the two level sets. They have observed that the level set representation improves
the registration, both in terms of robustness and accuracy. The main reason is that the contour point-wise corre-
spondance problem (landmarks correspondance problem) is replaced by a grid point-wise intensity correspondance
problem between the shape prior and snake surfaces that is easier to solve.
This paper aims at proposing a method to segment structures of interest whose global shape is given. For the
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reasons previously described, we will use a level set representation of shapes and employ a compact model to
represent shapes of a training set. The model developed by Leventon et al. in [22], based on the principal compo-
nents analysis of training shapes represented by level set functions, appears to fulfil our shape model conditions.
Indeed, this model allows us to represent global shape variations of a training family of a structure of interest.
This shape information being global, it does not enable us to precisely capture all local shape variations present
in the training set. However, we think that local shape variations of the object to segment can be accurately
and efficiently segmented by boundary-based active contours. Combining a shape prior (not probabilistic) with
the geometric/geodesic active contours, Chen et al. have proposed in [25] a variational model that simultaneously
achieves registration and segmentation. Therefore, we firstly propose to extend the segmentation model of Chen et
al. by integrating the statistical shape model of Leventon et al.. We then add a region-based energy term based
on the Mumford-Shah functional [9] to improve the robustness of our segmentation model with respect to (w.r.t.)
noise, poor image contrast and initial position of the contour. We will also prove the existence of a solution for our
variational segmentation problem.
In section 2, we briefly review some state-of-the-art results that are directly connected to our work. In section 3,
we define our new variational model to address the object segmentation problem with a prior shape knowledge
and we derive the system of evolution equations minimizing the proposed energy. Then in section 4, we introduce
the Mumford-Shah functional in our framework. We present experimental results to validate the proposed method
on 2-D synthetic and medical images. We discuss our segmentation model and compare it with other ones in
Section 5 and conclude in Section 6. Finally, we prove in appendix the existence of a minimizer for our variational
segmentation model.

2. ACTIVE CONTOUR FAMILIES AND PCA SHAPE MODELING

In this section, we propose to briefly review the three main families of active contours, i.e. the boundary-based,
the region-based and the shape-based active contours. We also present the shape model of Leventon et al. [22].

2.1. Boundary-Based/Geodesic Active Contours

The first model of boundary-based active contour was proposed by Kass et al. [10]. This model locates sharp image
intensity variations by deforming a curve C towards the edges of objects. The evolution equation of C is given by

the minimization of the energy functional F (C) =
∫ 1

0
|C ′(p)|2dp + β

∫ 1

0
|C ′′(p)|2dp + λ

∫ 1

0
g2(|∇I(C(p))|)dp which g

is an edge detecting function vanishing at infinity. This segmentation model presents two main drawbacks. Firstly,
the functional F depends on the parametrization of the curve C. This means that different parametrizations
of the curve may give different solutions for the same initial condition. Secondly, this approach does not take
into account changes of topology. As a result, the final curve has the same topology as the initial one. To
overcome the first limitation, Caselles et al. [26] and Kichenassamy et al. [27, 28] have proposed a new energy
functional which is invariant w.r.t. a new curve parametrization. The new intrinsic energy functional is F GAC(C) =

2
√

λ
∫ L(C)

0
g(|∇I(C(s))|)ds, where ds is the Euclidean element of length. F GAC is actually a new length obtained

by weighting the Euclidean element of length by the function g which contains information regarding the objects
boundaries. Caselles et al. have also proved in [26] that the final curve is a geodesic in a Riemannian space.
This geodesic is computed by the calculus of variations providing the Euler-Lagrange equations of F GAC and the
gradient descent method which gives the flow minimizing the functional F GAC : ∂tC = (κg− < ∇g,N >)N , where
N is the unit normal to the curve C and κ is its curvature. To overcome the second limitation, Osher and Sethian
proposed the level set method in [11, 5, 8]. The curve C is thus implicitely represented by a level set function ϕ.
Finally, a curve evolution ∂tC = FN can be re-written in a level set formulation: ∂tϕ = F |∇ϕ| which evolution of
the curve C coincides with the evolution of the zero level set of ϕ as shown in [26].

2.2. Region-Based Active Contours

Paragios and Deriche [15, 16] have employed new evolution criteria built from statistics on the regions to be
segmented. Their variational method, called geodesic active regions, allows to unify boundary- and region-based
statistical knowledge into a single energy functional which is minimized by a set of PDEs.
In [19, 20], a general paradigm for active contours is presented, derived from functionals that include local and
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global statistical measures of homogeneity for the regions being segmented. Their criteria to minimize have the
general form:

FR(Ωin,Ωout, C) =

∫

C

kb(x)ds+

∫

Ωin
kin(x,Ωin)dΩ +

∫

Ωout
kout(x,Ωout)dΩ, (1)

where Ωin, Ωout are respectively the inner and the outer region of the active contour, kin and kout are the descriptors
of these regions and kb is the boundary descriptor. To determine the solution minimizing (1), shape optimization
tools [29, 30] are needed to differentiate (1) w.r.t. the domains Ωin and Ωout that evolve in time. Then, the
evolution equations of active contours are deduced from the derivative of F R to minimize as fast as possible F R.
By using the entropy descriptor from [19], the following flow produces very good segmentation results as we can
see on Figure 2 (a) and (b).
In [17, 18, 31], a method to solve the Mumford-Shah functional [9] in the context of propagating contours is
proposed. The Mumford and Shah’s approach to solve the image segmentation problem has been extensively
studied (see [4, 7] and [18] for references) but we restrict our attention to the active contours framework. The
Mumford-Shah minimization problem is defined as follows:

inf
u,C

{FMS(u,C) =

∫

Ω
|u − u0|2dx + µ

∫

Ω−C
|∇u|2 + νHN−1(C)}, (2)

where u corresponds to an optimal piecewise smooth approximation of an original image u0, C represents the
edges of u and the length of C is given by the (N -1)-dimensional Hausdorff measure HN−1(C) [2]. Chan and Vese
[17, 18] have proposed a model to minimize the functional (2). A piecewise smooth approximation of a given image
is computed (which enables image denoising) by minimizing the following functional w.r.t. a level set function ϕ
and two functions uin and uout (we consider here only two regions Ωin and Ωout even if Chan and Vese have solved
the complete image partitionning problem):

FMS
CV (uin, uout, ϕ) = ν

∫

Ω

|∇H(ϕ)|+
∫

Ω
(|uin − u0|2 + µ|∇uin|2)H(ϕ)dx +

∫

Ω
(|uout − u0|2 + µ|∇uout|2)H(−ϕ)dx, (3)

where H is the Heaviside function. The evolution equation of the level set function embedding the active contour
is as follows:

∂tϕ = δ(ϕ)(νκ + |uout − u0|2 + µ|∇uout|2 −
|uin − u0|2 − µ|∇uin|2). (4)

An example of segmentation using this model is given on Figure 2 (c)-(e).

2.3. Shape-Based Active Contours

In [22, 32], Leventon et al. have developed active contours that use a statistical shape model defined by a PCA.
In their approach, the active contour evolves locally based on image gradients and curvature and globally towards
the maximum a posteriori (MAP) probability of position and shape of the prior shape model. However, this a
posteriori probability is maximized at each iteration by an independant optimization process, which means that
the final evolution equation is not a PDE since two independant stages are necessary to evolve the surface. The
evolution equation is the following:

u(t + 1) = u(t) + λ1 (g(c + κ)|∇u(t)| + 〈∇u(t),∇g〉)
+λ2(u

?(t) − u(t)), (5)

where u? is the shape prior. The second term of the right-hand side of (5) weighted by λ1 represents the classical
term of the geodesic active contour. And the third term depending on λ2 drives the shape of the active contour
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(a) (b) (c) (d) (e)

Fig. 2. Figures (a),(b) show a segmentation using the region-based active contour of Jehan-Besson et al., Figures
(c),(d) present a segmentation using the active contour of Chan and Vese based on the Mumford-Shah functional
and Figure (e) represents a smooth approximation of the hand.

towards the shape prior given by the MAP estimation.
In [33], Tsai et al. have integrated the previous shape model of Leventon et al. in the piecewise-constant version
of the Mumford-Shah functional proposed by Chan and Vese in [17] to segment images containing known object
types.
In [34, 25], Chen et al. have designed a novel variational model that incorporates prior shape knowledge into
geometric/geodesic active contours. On the contrary to Leventon’s approach, the shape model C? of Chen is
not a probabilistic one. It is computed as the average of a training set of rigidly aligned curves. However, this
variational approach proves the existence of a solution minimizing their energy functional, which is not the case in
the Leventon’s method. Chen’s functional is defined as:

FC(C, µ, θ, T ) =
∫ 1

0

(

g(|∇I(C(p))|) + λ
2 d2(µRC(p) + T )

)

|C ′(p)|dp, (6)

where C is the active contour, (µ,θ,T ) are the parameters of a rigid transformation (scale, orientation and trans-
lation) and d is the distance to C?, the target shape. This functional is thus minimized when the active contour
has captured both high image gradients and the shape prior. They have showed the good ability of the model to
extract real-world structures in which the complete boundary was either missing or had low resolution and contrast
[34, 25].
In [23, 35], Paragios et al. have built a new level set representation of shape from a training set in order to capture
both global and local shape variations. They have used it to non-rigidly register two shapes and to segment objects
with a modified version of the geodesic active regions defined in [15, 16].
In [36, 37, 38], Cremers et al. have modified the Mumford-Shah functional to incorporate two statistical models of
parametric shape in order to efficiently segment known objects in presence of misleading information due to noise,
occlusion and strongly cluttered background. Concerning the shape model, they have used a multivariate Gaussian
distribution in [36] and a nonlinear shape statistic derived from an extension of the kernel PCA in [37].

2.4. The Statistical Shape Model of Leventon et al.

2.4.1. Definition

We finish this section by presenting the shape model developed by Leventon et al. [22] which we use in our
segmentation model. This shape model is based on the PCA that aims at capturing the main variations of
a training set while removing redundant information. In [21], Cootes and Taylor have used this technique on
parametric contours to segment different kind of objects. The new idea introduced by Leventon et al. [22] is to
apply the PCA not on the parametric geometric contours but on the signed distance functions (SDFs) of these
contours which are implicit and parameter free representations. They justified this choice in two ways. Firstly,
SDFs provide a stronger tolerance than the parametric curves to slight misalignments during the alignment process
of the training data since the values of neighboring pixels are highly correlated in a SDF. Secondly, this intrinsic
contour representation also improves the shape registration process in terms of robustness, accuracy and speed.
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Indeed, the problem of the point-wise correspondence of contours (landmarks correspondance) is replaced by a
problem of intensity correspondence on grid points which is easier to solve.
From a geometric point of view, the PCA analysis determines the best orthonormal basis {e1...em} of Rm to
represent a set of n points {φ1...φn} in the sense of the least squares fitting. Vectors {ei} are given by the
eigenvectors of the covariance matrix Σ = 1

nMM> where M is a matrix whose column vectors are the n aligned
training SDFs {φj}. Vectors {ei} correspond to the principal variation directions of the set of n points. They are
called the principal components. Moreover, the first p principal axes define a reduced p-dimensional vector space
in Rm equivalent to a hyper-plane minimizing the sum of squared distances between this hyper-plane and the set
of n points. It is important to note that the accuracy of the fitting of this p-D hyper-plane in relation to the set
of points can be measured in percentage by the formula β =

∑p
k=1 λk/

∑n
k=1 λk where λk are the eigenvalues of

Σ. Thus, it is possible to arbitrarly fix the fitting percentage β and represent the data in a sub-vector space of
dimension p. In practice, only the first principal modes are necessary to model the biggest variations present in
our training set. These p principal components are sorted in a matrix Wp. Thus, the projected data φ̂ in the p-D
space of a training data φ in Rm is given by:

φ̂ = φ + Wpxpca, (7)

where xpca is the vector of eigencoefficients:

xpca = W>
p (φ − φ). (8)

If we suppose that the probability density funtion (PDF) of the training set is Gaussian then the probability of
φ̂(xpca) is

P (φ̂(xpca)) =
1

(2π)p/2|Λp|1/2
exp(−1

2
x>

pcaΛ
−1
p xpca), (9)

where Λp is a diagonal matrix containing the first p eigenvalues.

2.4.2. Implementation

The first stage consists in aligning rigidly the training curves representing the object of interest. This is realized
using the shape similarity measure introduced by Chen et al. [34, 25]:

a(C1, C
new
j ) = aera of (A1 ∪ Anew

j − A1 ∩ Anew
j )

for 2 ≤ j ≤ n, (10)

where A1 and Anew
j denote respectively the interior regions of the curves C1 and Cnew

j where Cnew
j is the resulting

curve from the rigid registration such that Cnew
j = sjRθj

Cj +Tj and n is the number of training curves. C1 and Cj

are aligned when the measure a is minimized for the appropriate values s?
j , θ?

j and T ?
j . These values are obtained

by a global optimization algorithm called the genetic algorithm [39].
The second stage of the PCA consists in doing the singular values decomposition on the SDFs of the aligned
training curves using the code provided by Numerical Recipies [40] on the matrix Σdual = 1

nM>M to extract the
n eigenvalues ei,dual

pca and the eigenvectors λi,dual
pca . Note that the PCA is performed on Σdual rather than Σ to give

faster and more accurate results. The eigenvectors ei
pca and the eigenvalues λi

pca are then given by ei
pca = Mei,dual

pca

and λi
pca = λi,dual

pca .

2.4.3. Examples

In this paper, we have considered two sets of 2-D shapes of interest: one containing ellipses and the other one left
brain ventricles. For the ellipse, we have generated a training set of 30 ellipses by changing the size of a principal
axis with a Gaussian probability function and applied the PCA on the SDFs of 30 training ellipses. We have
obtained one principal component that fits at 98% the set of ellipses. Figure 3 shows the aligned training ellipses
and the shape function corresponding to the mean and the eigenmode of variation of the training set.
For the left brain ventricle, we have employed 2-D medical images. We have extracted 45 2-D images of left
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(a)

(b) −2λ (c) Mean (d) 2λ

Fig. 3. Figure (a) presents the 30 aligned training ellipses with the mean ellipse in dotted line. Figure (c) shows
the mean value φ. Figures (b) and (d) present φ± 2λ1e1, the unique eigenmode of variation of SDF ellipses whose
λ1 is the eigenvalue. The zero level sets of the shape function φ̂ is plotted in solid dark line.

Fig. 4. Three T1-Weighted Magnetic Resonance images of brain.

ventricles from several coronal slices of T1-Weighted Magnetic Resonance images (MRI) of healthy voluntaries
(Figure 4) to build our statistical shape model. We have applied the PCA and obtained three principal components
that fit at 88.2% the set of 45 SDFs of ventricles. Figure 5 shows the aligned training ventricles and the shape
function corresponding to the mean and the three main eigenmodes of variation of the training set.

3. OUR OBJECT SEGMENTATION MODEL

3.1. The Proposed Segmentation Model

We propose the following energy functional to address the problem of object segmentation using a geometric shape
prior and local image information:

F1 = βbFboundary(C) + βsFshape(C,xpca,xT ), (11)

where Fboundary =

∮ 1

0

g(|∇I(C(q))|)|C ′(q)|dq, (12)

Fshape =

∮ 1

0

φ̂2(xpca, hxT
(C(q)))|C ′(q)|dq. (13)

where C is the active contour, φ̂ is the shape function of the object of interest given by the PCA (see Equation (7)),
xpca is the vector of PCA eigencoefficients, hxT

is an element of a group of geometric transformations parametrized
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(a)

Fig. 5. Figure (a) presents the 45 aligned training ventricles with the mean left ventricle in dotted line. On Figure
(i), the middle column is the mean value and each row presents an eigenmode of variation of ventricles. The zero
level sets of the shape function φ̂ is plotted in solid dark line.

by xT (the vector of parameters), g is an edge detecting function and βb, βs are arbitrary positive constants that
balance the contributions of the boundary, shape and region terms.
The proposed functional F1 is an extension of the work of Chen et al [34, 25] where we have integrated the statistical
shape model of Leventon et al [22]. In the following section, we will analyse the shape term.

3.2. The Shape Term Fshape

Fshape is a functional introduced by the authors in [41] that depends on the active contour C, the vector xpca

of PCA eigencoefficients and the vector xT of geometric transformations. This functional evaluates the shape
difference between the contour C and the zero level set Ĉ of the shape function φ̂ provided by the PCA. It is an
extension of the shape-based term of Chen et al [34, 25] coupled with the statistical shape model of Leventon et al
[22]. To give an interpretation of Fshape, let us take a rigid transformation with the scale parameter equal to one,

the angle and the vector of translations equal to zero, Thus, the function φ̂2 at the point C(q) is:

φ̂2(xpca, hxT
(C(q))) = φ̂2(xpca, C(q)) '

‖ Ĉxpca
(pmin) − C(q) ‖2, (14)

where ‖ . ‖ stands for the Euclidean norm.
The equality is not strict since the shape function φ̂ is not a SDF as Leventon noticed in [22, 32]. However, the
PCA applied on aligned SDFs of a training set produces shape functions very close to SDFs. The case of a strict
equality in Equation (14), i.e. the case of φ̂ is a true SDF, will be discussed in Section 5. Figure 6 illustrates the
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Ĉxpca

C(q)

Ĉxpca (pmin)

C

φ̂(xpca, C(q))

Fig. 6. Illustration of the function φ̂(xpca, C(q)): the square shape function is approximatively equal to the square

Euclidean distance between the point C(q) and the closest point Ĉxpca
(pmin) on the zero level set Ĉxpca

of φ̂(xpca).

function φ̂.
Finally, Fshape is obtained by integrating φ̂2 along the active contour, which defines the shape similarity measure
equivalent to the sum of square differences (SSD).
The minimization of Fshape allows us to increase the similarity between the active contour and the shape model.
The functional is minimized using the calculus of variations and the gradient descent method which provide three
flows acting on the curve C, the vector of eigencoefficients xpca and the vector of geometric transformations xT .
We analyse each of the three flows by fixing the two others. The flow minimizing Fshape w.r.t. the curve C is the
classical geometric/geodesic flow [28, 26]:







∂tC(t, q) =

(φ̂2κ− < ∇φ̂2,N >)N in ]0,∞[×[0, 1],
C(0, q) = C0(q) in [0, 1].

(15)

The PDE defined in Equation (15) changes the active contour shape into any shape provided by the PCA model.
This shape morphing has two main advantages. First, it is independant of the contour parametrization because of
the intrinsic level set representation. This means that the landmarks correspondence problem is replaced by a grid
point-wise intensity correspondence which is easier to solve. Then, it is more accurate than parametrized shape
morphing since the degree of deformation of level set functions is higher. Figure 7 presents the morphing between
two curves.
The flow minimizing Fshape w.r.t. the vector of eigencoefficients xpca is:

{

dtxpca(t) = −2
∫ 1

0
φ̂∇xpca

φ̂ |C ′|dq in ]0,∞[×Ωpca,
xpca(t = 0) = xpca

0
in Ωpca.

(16)

with ∇xpca
φ̂ =







e1
pca

...
ep

pca






, (17)

where ei
pca is the ith principal component/eigenvector of the PCA presented in Section 2.4 and Ωpca is the space

of PCA variables defined by Ωpca = [−3λ1, 3λ1] × ... × [−3λp, 3λp] whose λi is the eigenvalue of the ith principal

component. The evolution Equation (16) changes the shape function φ̂ to match its zero level set with the active
contour. Figure 8 presents this shape matching.
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Minimization of Fshape with the flow given in Equation (15), xT and xpca being fixed. Active contour is
in solid line and the shape prior in dotted line. Figures (a)-(c) show the matching of a cat (initial active contour)
into a cow (shape prior). Figures (d)-(f) present the matching of a circle into a hand.

Fig. 8. Minimization of Fshape with the flow given in Equation (16), φ and xT being fixed. The prior shape is in
solid line and the active contour in dotted line. The first row presents the shape evolution of the PCA model of
30 ellipses (see Section 2.4.3). The zero level set of the shape function φ̂ evolves to match with the active contour
representing an ellipse taken in the training set. The second row shows the shape evolution of the PCA model
of 45 left brain ventricles (see also Section 2.4.3). The shape model changes to match with the active contour
representing a left brain ventricle taken in the training set.

And the flow minimizing Fshape w.r.t. the vector of geometric transformations xT is:







dtxT (t) =

−2
∫ 1

0
φ̂ < ∇φ̂,∇xT

hxT
(C) > |C ′|dp in ]0,∞[×ΩT ,

xT (t = 0) = xT0
in ΩT .

(18)
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In (15), (16) and (18), the function φ̂ is evaluated at (xpca, hxT
(C(q)). In our work, we have considered the rigid

(denoted by hxr
T
) and the affine (denoted by hxa

T
) transformations:

hxr
T

: x → h(s,θ,T )(x) = sRθx + T, (19)

hxa
T

: x → h(sx,sy,θ,sh,T )(x) = RscRθRshx + T, (20)

where

Rsc =

(

sx 0
0 sy

)

, Rθ =

(

cos θ sin θ
− sin θ cos θ

)

,

Rsh =

(

1 sh

0 1

)

and T =

(

Tx

Ty

)

. (21)

The vector of rigid transformations xr
T is composed of a scale parameter s, an angle of rotation θ and a vector of

translations T and the vector of affine transformations xa
T is composed of two scale parameters sx in x-direction

and sy in y-direction, an angle of rotation θ, a shearing parameter sh and a vector of translations T . Finally, the
domain of the rigid/affine transformations is called ΩT .
As a consequence, the gradient term ∇xT

hxT
in (18) depending on geometric transformations is:

∇xr
T
hxr

T
(x) =









∂h
x

r
T

∂s (x) = Rθx
∂h

x
r
T

∂θ (x) = s∂θRθx
∂h

x
r
T

∂T (x) = 1









, (22)

for 2-D rigid transformations and

∇xa
T
hxa

T
(x) =



















∂h
x

a
T

∂sx
(x) = (∂sx

Rsc)RθRshx
∂h

x
a
T

∂sy
(x) = (∂sy

Rsc)RθRshx
∂h

x
a
T

∂θ (x) = Rsc(∂θRθ)Rshx
∂h

x
a
T

∂sh
(x) = RscRθ(∂sh

Rsh)x
∂h

x
a
T

∂T (x) = 1



















, (23)

for 2-D affine transformations. The evolution equation (18) realizes the rigid and affine registration between the
zero level set of the shape model φ̂ and the active contour. Figures 9 and 10 present affine registrations.

Fig. 9. Minimization of Fshape with the flow given in Equation (18), φ and xpca being fixed. The row of images
represents the affine registration of a prior shape in solid line into an active contour in dotted line.

Note that the function φ̂ is evaluated at (xpca, hxT
(C(q)) in Equations (15-18).

Let us now express the previous equations in a variational level set formulation as presented in [42, 25]. The level
set approach of [42], rather than [28, 26], will be used to prove the existence of solution minimizing our energy
functional in the space of functions with bounded variation. The level set formulation of the shape functional from
Equation (13) is:

Fshape =

∫

Ω

φ̂2(xpca, hxT
(x))|∇ϕ|δ(ϕ)dΩ, (24)
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Fig. 10. Minimization of Fshape with the flow given in Equation (18), φ and xpca being fixed. Each column
presents the affine registration of a prior shape in solid line into an active contour in dotted line. The first row
shows the initial position of the shapes and the second row the registered shapes. This registration process works
with shapes having different local structures and missing information.

where ϕ is a level set function embedding the active contour C, δ(.) is the Dirac function and δ(ϕ) is the contour
measure on {ϕ = 0}. And the level set formulation of Equations (15-18) are:



















∂tϕ(t, x) =
(

φ̂2κ − 〈∇φ̂2, ∇ϕ
|∇ϕ| 〉

)

δ(ϕ)

in ]0,∞[×Ω,
ϕ(0, x) = ϕ0(x) in Ω,
δ(ϕ)
|∇ϕ|∂Nϕ = 0 on ∂Ω,

(25)







dtxpca(t) = −2
∫

Ω
φ̂∇xpca

φ̂|∇ϕ|δ(ϕ)dΩ
in ]0,∞[×Ωpca,

xpca(t = 0) = xpca
0

in Ωpca,
(26)















dtxT (t) =

−2
∫

Ω
φ̂〈∇φ̂,∇xT

hxT
〉|∇ϕ|δ(ϕ)dΩ

in ]0,∞[×ΩT ,
xT (t = 0) = xT0

in ΩT .

(27)

In our segmentation model, the flows given by the Equations (25-27) are simultaneously used to constraint the
active contour to get a shape of interest whatever the position of the active contour in the image.
In a nutshell, we have defined in this section a process to force the active contour to get a particular shape. In the
next section, we will introduce image information in our segmentation method to capture the object of interest in
the image.

3.3. Evolution Equations Minimizing The Functional F1

In this section, we compute the system of coupled evolution equations that minimizes the functional (11) in order
to realize the object segmentation with a prior shape and local image information. We directly write the system of
flows in the Eulerian/level set formulation. We define the function

f(x,xpca,xT ) =

βbg(|∇I(x)|) + βsφ̂
2(xpca, hxT

(x)), (28)
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such that

F1 =

∫

Ω

f(x,xpca,xT )|∇ϕ|δ(ϕ)dΩ. (29)

The system of flows minimizing F1 is thus



















∂tϕ(t, x) =
(

fκ − 〈∇f, ∇ϕ
|∇ϕ| 〉

)

δ(ϕ) in ]0,∞[×Ω,

ϕ(0, x) = ϕ0(x) in Ω,
δ(ϕ)
|∇ϕ|∂Nϕ = 0 on ∂Ω.

(30)







dtxpca(t) =

−2βs

∫

Ω
φ̂∇xpca

φ̂|∇ϕ|δ(ϕ)dΩ in Ωpca,
xpca(t = 0) = xpca

0
in Ωpca.

(31)







dtxT (t) =

−2βs

∫

Ω
φ̂ < ∇φ̂,∇xT

hxT
> |∇ϕ|δ(ϕ)dΩ in ΩT ,

xT (t = 0) = xT0
in ΩT .

(32)

3.4. Implementation issues

The evolution equations (40) to (42) are numerically solved by iterating the following stages until convergence is
reached:

1. Computation of the shape function φ̂(xpca,xT ) using Equation (7) and performing the rigid and affine trans-
formations (scaling, rotation, translations and shearing) with the B-splines interpolation method [43].

2. Calculation of the gradient ∇φ̂ using a central difference sheme. The term ∇xpca
φ̂ is given by the eigenvectors

of the PCA model and ∇xT
hxT

is computed according to Equations (22) and (23).

3. Discretization of terms |∇ϕ| and 〈∇f, ∇ϕ
|∇ϕ| 〉 with the Osher-Sethian numerical scheme [11]. Computation

of the curvature with central difference schemes. The Dirac function δ and the Heaviside function H are
computed by slightly regularized versions following [42, 25].

4. Calculation of the temporal derivative using a forward difference approximation.

5. Redistancing the level set function at every iteration with the Fast Marching Method of Adalsteinsson and
Sethian [44].

3.5. Experimental Results

3.5.1. Synthetic Images

In the first experiment, we have used our segmentation model to extract an ellipse which is partially cut. Figure
11 presents a geodesic active contour without a shape prior and Figure 12 with a shape prior by taking βs = 1/3,
βb = 1 and ∆t = 0.4. We can see on figure 12 that the active contour has captured high image gradients and also
the missing part thanks to the information contained in the prior shape model.
In the second experiment, our extraction model is applied to segment an ellipse with irregular boundaries which
is partially occluded by a vertical bar. Figure 13 presents the geodesic active contour without a shape prior and
Figure 14 with a shape prior by choosing βs = 1/3, βb = 1 and ∆t = 0.4.
Thus, our shape-based active contour model can segment objects with missing information, occlusion and local
shape variations.
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Fig. 11. Evolution of a geodesic active contour without a shape prior.

Fig. 12. Evolution of an active contour (in solid line) with a shape prior (in dotted line).

Fig. 13. Evolution of a geodesic active contour without a shape prior.

Fig. 14. The first row presents the evolution of an active contour (in solid line) with a shape prior (in dotted line).
The second row is a zoom on the left point of the ellipse to show that the active contour is able to segment local
structures even with the shape prior.

3.5.2. Medical Image

We have used our segmentation model to capture the left brain ventricle. Figure 15 presents the evolving geodesic
active contour without a shape prior and Figure 16 with a shape prior by choosing βs = 2, βb = 1 and ∆t = 0.4.
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(a) (b) (c) (d) (e)

Fig. 15. Evolution of a geodesic active contour without a shape constraint.

(a) (b) (c) (d) (e)

Fig. 16. Evolution of an active contour (in solid line) with a shape prior (in dotted line).

We observe on Figure 16 that the active contour has well captured the left ventricle whereas the initial contour
was around the two ventricles (see Figure 16(a)). This segmentation result could not be obtained without a shape
prior with the same initial contour as shown on Figure 15. The segmentation model has also provided the shape
of the statistical model which best fits the ventricle lying in the image.

3.6. Using Other Segmentation Models

In the framework of variational models and PDEs, it is possible to use other segmentation models such as region-
based segmentation methods developped in Section 2.2. The easiest way is to linearly combine energy functionals
or PDEs directly. For examples, if we want to use the statistiscal measures of homogeneity introduced by Jehan-
Besson et al. in [19], the new functional to be minimized will be F new = F1(C,xpca,xT )+λRFR(Ωin,Ωout, C) or if
we want to use the Mumford-Shah approach of Chan and Vese [17, 18], the energy will be F new = F1(C,xpca,xT )+
λMSFMS

CV (uin, uout, C). The PDE minimizing F new will be a linear combination of the PDEs minimizing each term
of Fnew.
In the next section, we introduce a region homogeneity criterium into our segmentation model to improve its
robustness.

4. REGION HOMOGENEITY FEATURES IN OUR SEGMENTATION MODEL

4.1. A Functional Based on the Mumford-Shah Model

In this section, we define a functional to drive the shape model towards a homogeneous intensity region with the
shape of interest. If our objects of interest are supposed to have a smooth intensity surface then the Mumford-Shah
(MS) model is the most adapted model to segment these objects.
At this stage, we had the choice to apply the MS model either on the active contour or the shape prior. Since the
MS method applied on the active contour will extract globally homogeneous regions [18] and our objective is to
capture an object belonging to a given shape space then the best solution is to apply the MS-based force on the
shape prior. Indeed, this new force will globally drive the shape prior towards a homogeneous intensity region with
the shape of interest. An illustration of this choice will appear in Section 4.4.
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We have modified the Mumford-Shah functional (2) presented by Chan and Vese in [18] to segment a smooth region
whose shape is described by the PCA model:

Fregion(xpca,xT , uin, uout) =

∮

Ĉ(xpca,xT )

ds+

∫

Ωin(xpca,xT )
(|I − uin|2 + µ|∇uin|2)dΩ +

∫

Ωout(xpca,xT )
(|I − uout|2 + µ|∇uout|2)dΩ, (33)

where the curve Ĉ is the zero level set of the shape function φ̂ extracted from the PCA process. The function φ̂
defines an image partioned into two regions Ωin and Ωout, representing respectively the object and the background,
whose common boundary is Ĉ:







Ωin(xpca,xT ) = {x ∈ Ω | φ̂(x,xpca,xT ) > 0},
Ωout(xpca,xT ) = {x ∈ Ω | φ̂(x,xpca,xT ) < 0},
Ĉ(xpca,xT ) = {x ∈ Ω | φ̂(x,xpca,xT ) = 0}.

(34)

The minimization of Fregion determines the shape parameters xpca and the parameters xT of the rigid or affine

transformation of the contour Ĉ which captures a region having the shape of interest. In our work, we have not
considered the smoothing term,

∮

Ĉ
ds, since shapes generated by the PCA are smooth enough. The functional

Fregion can be written with the shape function φ̂:

Fregion(xpca,xT , uin, uout) =
∫

Ω
ΘinH(φ̂(xpca,xT )dΩ +

∫

Ω
ΘoutH(−φ̂(xpca,xT )dΩ, (35)

where H(.) is the Heaviside function, Θr = |I − ur|2 + µ|∇ur|2 and r = in or out.
The modified MS functional (35) is minimized using the gradient descent method for xpca and xT and solving the
Euler-Lagrange equations for uin and uout:



















dtxpca(t) =
∫

Ω
(Θin − Θout)

∂φ̂
∂xpca

δ(φ̂)dΩ,

=
∫

Ω
(Θin − Θout)∇xpca

φ̂ δ(φ̂)dΩ,
in ]0,∞[×Ωpca,

xpca(t = 0) = xpca
0

in Ωpca,

(36)















dtxT (t) =
∫

Ω
(Θin − Θout)

∂φ̂
∂xT

δ(φ̂)dΩ,

=
∫

Ω
(Θin − Θout)

〈∇φ̂,∇xT
hxT

〉 δ(φ̂)dΩ, in ]0,∞[×ΩT ,
xT (t = 0) = xT0

in ΩT ,

(37)







































∂tuin(t, x) = uin − I − µ∆uin

in ]0,∞[×{φ̂ > 0},
uin(0, x) = I in {φ̂ > 0},

∂tuout(t, x) = uout − I − µ∆uout

in ]0,∞[×{φ̂ < 0},
uout(0, x) = I in {φ̂ < 0}.

(38)

Figure 17 shows that the minimization of Fregion segments objects of interest when a part of information is missing
and in presence of noise and occlusion. This model can also be used to segment the left brain ventricle on Figure
18.
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(i)

Fig. 17. Minimization of Fregion with the flows given by Equations (36-38). The first row presents the evolution
of the segmentation process of an ellipse partially cut. The second row shows the segmentation of a noisy ellipse.
And the third row is the segmentation of an occluded ellipse.

Fig. 18. Segmentation of the left ventricle with the flows given by Equations (36-38).

However, this segmentation method can not handle local structure variations (see Figure 17(i)) when e.g. an ellipse
presents irregular boundaries. The model has not captured the local edge variations since it only deals with global
shape variations provided by the PCA model. If we want to to be able to capture the local variations around the
global shape we found, we need to add a local criteria to our energy functional. We will consider for this purpose
the classic geodesic active contour given by Fboundary.
Note that another segmentation method based on the Mumford-Shah functional and the PCA model of Leventon
et al. has been proposed by Tsai et al. [33] for a reduced version of the MS model. Indeed, they have employed
the piecewise constant case of the MS functional, proposed by Chan and Vese in [17], whereas we have considered
here the general case using the piecewise smooth approximation from [18]. The piecewise smooth case of the MS
model enables us to remove the intensity bias present in the piecewise constant case due to the inhomogeneity of
the outside region, i.e. the background, with respect to the inside region, the object of interest. This bias affects
the computation of the parameters xpca and xT .
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4.2. Combining Shape-Based, Boundary-Based and Region-Based Functionals

In Section 3.2, we have studied a shape-based functional Fshape that evaluates the similarity between the active
contour shape and the object shape prior to be segmented. In Section 4.1, we have analysed a region-based
functional Fregion which allows us to drive globally the shape prior towards a homogeneous intensity region. We
now combine these two functionals with the boundary-based functional Fboundary which captures the object edges
to obtain a functional F2 to segment objects with a statistical shape model and with global and local image
information.
The energy minimization of F2 is performed using the calculus of variations and the gradient descent method. We
obtain a system of coupled evolution equations whose steady-state solution gives the minimum of F2, which means
the solution of the segmentation problem. The existence of a minimum of F2 is proved in annex.
The functional F2 is expressed in the Eulerian/level set framework as follows:

F2 =

∫

Ω

f(x,xpca,xT )|∇ϕ|δ(ϕ)dΩ +

βr

∫

Ω

(

ΘinH(φ̂(xpca,xT )) + ΘoutH(−φ̂)
)

dΩ. (39)

And the evolution equations minimizing F2 are:



















∂tϕ(t, x) =
(

fκ − 〈∇f, ∇ϕ
|∇ϕ| 〉

)

δ(ϕ)

in ]0,∞[×Ω,
ϕ(0, x) = ϕ0(x) in Ω,
δ(ϕ)
|∇ϕ|∂Nϕ = 0 on ∂Ω,

(40)







dtxpca(t) = −
∫

Ω
∇xpca

φ̂(2βsφ̂|∇ϕ|δ(ϕ)+

βr(Θin − Θout)δ(φ̂))dΩ in ]0,∞[×Ωpca,
xpca(t = 0) = xpca

0
in Ωpca,

(41)















dtxT (t) = −
∫

Ω
〈∇φ̂,∇xT

hxT
〉

(2βsφ̂|∇ϕ|δ(ϕ)+

βr(Θin − Θout)δ(φ̂))dΩ in ]0,∞[×ΩT ,
xT (t = 0) = xT0

in ΩT ,

(42)







































∂tuin(t, x) = uin − I − µ∆uin

in ]0,∞[×{φ̂ > 0},
uin(0, x) = I in {φ̂ > 0},

∂tuout(t, x) = uout − I − µ∆uout

in ]0,∞[×{φ̂ < 0},
uout(0, x) = I in {φ̂ < 0}.

(43)

4.3. Implementation Issues

The minimization of F2 with the evolution equations (40) to (43) are numerically solved by iterating the following
stages until convergence is reached:

1. Computation of the shape function φ̂(xpca,xT ) using Equation (7) and performing the rigid and affine trans-
formations (scaling, rotation, translations and shearing) with the B-splines interpolation method [43].

2. Calculation of the gradient ∇φ̂ using a central difference sheme. The term ∇xpca
φ̂ is given by the eigenvectors

of the PCA model and ∇xT
hxT

is computed according to Equations (22) and (23).
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(a) (b) (c) (d) (e)

Fig. 19. Segmentation of the left ventricle by minimizing the functional F2 with the flows (40) to (43).

3. Discretization of terms |∇ϕ| and 〈∇f, ∇ϕ
|∇ϕ| 〉 with the Osher-Sethian numerical scheme [11]. Computation

of the curvature with central difference schemes. The Dirac function δ and the Heaviside function H are
computed by slightly regularized versions following [42, 25].

4. Functions uin and uout are computed in {φ̂ > 0} and {φ̂ < 0} with the method proposed in [18].

5. Calculation of the temporal derivative using a forward difference approximation.

6. Redistancing the level set function at every iteration with the Fast Marching Method of Adalsteinsson and
Sethian [44].

4.4. Experimental Result

We have used our complete segmentation model to segment the left ventricle. Figure 19 presents the evolving active
contour with a shape prior by choosing βs = 2, βb = 1, βr = 1/10, µ = 3 and ∆t = 0.4. We get the same result than
in section 3.5.2 (Figure 16). However, the convergence towards the solution is faster with the functional Fregion

since more image information is taken into account. Observe the difference between the Figure 16(d) and Figure
19(d). In the first figure, the boundary-based force is weaker than the shape-based force, so the active contour
does not stay on the border and go inside the ventricle. Whereas in the second figure, the region-based information
allows us to drive the shape prior directly towards the boundaries of the homogeneous region of interest.
Figure 19 illustrates the Section 4.1 remark: in this case, the Mumford-Shah model applied on the active contour
will separate both ventricles (that form a homogeneous intensity region) from the rest of the white matter. The
shape force will be then opposed to the region force since the shape force will pull the active contour inside the right
ventricle towards the left ventricle whereas the Mumford-Shah force will constrain the active contour to stay on
the border of ventricles. Our model avoids this situation since region-based forces are only applied on the contour
of the shape prior and not on the active contour itself.

5. DISCUSSION

The active contour obtained from the minimization of the energy functional defined in Equation (39) is able to
capture high image gradients and a homogeneous intensity region whose shape matches the object of interest.
We have seen on Figures 12 and 14 that the shape information allows us to solve the problems of missing infor-
mation/occlusion while being sensitive to local shape variations. Indeed, small deformations are allowed around
the zero level set of the shape function on a distance that depends on the relative weight βs/βb. These complex
deformations are easier to handle in the level set framework, thanks to its intrinsic representation, than parametric
ones [36, 37].
As we mentioned previously, the proposed segmentation model can be seen either as an extension of the model of
Chen et al. [25] where we have introduced the statistical shape model of Leventon et al. [22] and the Mumford-
Shah model [18] or as an energy formulation of the model of Leventon et al. with the MS energy functional. Using
the variational formulation of Chen et al. enables us to prove the existence of a solution minimizing our energy
functional in the space of functions with bounded variation (see appendix).
Note that the region term based on the Mumford-Shah functional increases the speed of convergence towards the
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solution and it also improves the robustness of the model w.r.t. the initial condition, noise and complex background.
The PCA shape model we use in our segmentation method presents a good compromise when compared to other
models. First, the computation of the p principal components which are orthonormal basis functions is straight-
forward and fast, using the singular values decomposition method. These functions are then used to produce new
shapes of the object of interest according to a simple linear equation. The number p of principal components, i.e.
the number of the shape model parameters, is often small as we have noticed for the ellipse (see Figure 3) that
needs only one principal component or for the left brain ventricle (see Figure 5) with three principal components.
Thus, global shape variations are modeled by a small number of variables which greatly reduces the complexity
of the problem, when compared e.g. to Paragios et al. model [23]. Indeed, their shape model generates more
complex shapes than the PCA but the p shape parameters of the PCA model is replaced in their work by a local
deformation field to be evaluated on a δ-band around the zero level set of the shape function. Note that the shapes
produced by the PCA are obviously implicit and intrinsic, i.e. independant of the parametrization, which facilitates
the morphing and the registration processes. However, shape functions provided by the PCA are not exactly SDFs
as proven by Leventon in [22, 32]. Nevertheless, shape functions of the PCA are very close to SDFs, which allow
us to use them in practice. New shape functions must actually satisfy the following condition to be successfully
used in the morphing and the registration processes: a point belonging to the shape function must see its intensity
continuously decreasing when moving towards the zero level set even if its gradient is not exactly in the normal
direction of the zero level set. The shape functions generated by the PCA model satisfy this condition. Moreover,
the previous condition also allows us to use affine transformations since the affinely transformed SDFs still satisfy
this condition.
The shape functions given by the PCA are thus not accurate SDFs but there are two ways to obtain exact SDFs
(and have a strict equality in Equation (14)). Either the shape function is projected in the SDFs space by redis-
tancing φ̂ as a SDF or the framework of Charpiat et al. [24] can be used to define a mean and principal modes of
variation for distance functions.
In our segmentation model, we have to compute the transformation and shape parameters. However, Cremers et
al. in [36, 37] have defined two shape energies independant of the rigid transformations and the shape parameters.
This means that their segmentation model had not to compute the vector of the rigid transformations xT and
the vector of shape parameters xpca. Thus, is it really useful to estimate the registration parameters xT and the
shape parameters xpca? It depends on two questions: does the current application need to compute transformation
and shape parameters and are affine or non-rigid transformations necessary? If the answer is positive for one of
these questions, the estimation of these parameters will be imperative. In [25, 45] for example, the transformation
parameters are used to align time series images in order to minimize the effect of motion on the fMRI signal. Then,
the shape vector xpca can be useful to know the probability that the segmented object belongs to its training set.
Finally, since we are using a variational framework and the PDEs attached to it, we can consider other models such
as [19] to segment objects by linearly combining energy functionals or the PDEs directly.

6. CONCLUSION

In this paper, we have proposed a new variational method to solve the fundamental problem of object segmentation
using local and global image information with a geometric shape prior given by the statistical model of PCA. To
reach this objective, we have defined in Section 3.2 a shape-based functional to force the active contour to get a
shape of interest whatever the position of the active contour in the image. Then in Section 4.1, we have proposed
a Mumford and Shah-based functional to drive globally the shape model towards a homogeneous intensity region
with the shape of interest. Experimental results have shown that our active contour is able to solve the problems
of missing information and occlusion while being sensitive to local shape variations.
The statistical shape model we used is the PCA model. As explained in Section 5, this model presents a good
compromise between low complexity and acceptable shape priors. However, this model works well only if the
probability density function (PDF) of the training set of the object of interest is Gaussian. If the true underlying
PDF of the training set is not Gaussian (in presence of tumors in T1-WMR images for example) then more
elaborated techniques such as non-parametric models are necessary.
Finally, note that the proposed model can capture only one object, which is a strong limitation since we loose the
powerful property of the level set approach that can segment several objects simultaneously. A first solution to
handle multiple objects would consist in associating structures by coupling the evolution equations.
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Appendix: Existence of a Solution For our Minimization Problem

This section deals with the mathematical study of

min
ϕ,xpca,xT ,uin,uout

{F2 =

∫

Ω

(

βbg(x) + βsφ̂
2(x,xpca,xT )

)

|∇H(ϕ)| +
βrFregion(xpca,xT , uin, uout)}. (44)

We follow the proofs of Chen et al. in [25] and Vese and Chan [46] to prove the existence of a minimizer for our
proposed minimization problem using the direct method of the calculus of variations and compactness theorems
on the space of functions with bounded variation.
The minimization problem is considered among characteristic functions χE of sets E = {x ∈ Ω|ϕ(x) ≥ 0} with
bounded variation. The vector of PCA eigencoefficients xpca = (xpca

1
, ...,xpcap

) is defined on Ωpca = [−3λ1, 3λ1]×
...× [−3λp, 3λp] and the vector of geometric transformations xT = (sx, sy, θ, sh, Tx, Ty) is defined on ΩT . If Ω ⊂ R2

is the domain of the original image I, say Ω = (0, 255)2, then ΩT = (0, 255]2 × [−π, π)× [−127, 127]× [−255, 255]2.
Functions uin and uout from Section 4.1 are supposed in C1(Ω) since they are smoothed versions of the original im-
age u0 (u = u0+µ∆u is the first order discretization of the linear heat diffusion equation ∂tu = ∆u with u(0) = u0).

We remind some definitions and theorems introduced in Evans and Gariepy [2], Giusti [3], Chen [25], Chan and
Vese [46] and Ambrosio [47].

Definition 1: Let Ω ⊂ RN be an open set and let f ∈ L1(Ω). The total variation norm of f is defined by

TV (f) =

∫

Ω

|∇f | = sup
φ∈Φ

{∫

Ω

f(x)div φ(x)

}

, (45)

where Φ =
{

φ ∈ C1
0 (Ω,RN )| |φ(x)| ≥ 1, on Ω

}

. (46)

Definition 2: A function f ∈ L1(Ω) is said to have bounded variation in Ω if its distributional derivate satisfies
TV (f) < ∞. We define BV (Ω) as the space of all functions in L1(Ω) with bounded variation. The space BV (Ω)
is a Banach space, endowed with the norm:

‖f‖BV (Ω) = ‖f‖L1(Ω) + TV (f). (47)

Theorem 1 A measurable subset E of RN has finite perimeter in Ω if and only if the characteristic function
χE ∈ BV (Ω). We have perΩ(E) = TV (χE) =

∫

Ω
|∇χE | < ∞.

Definition 3: Let Ω ⊂ RN be an open set and let f ∈ L1(Ω) and α(x) be positive valued continuous and bounded
functions on Ω. The weighted total variation norm of f is defined by

TVα(f) =

∫

Ω

α(x)|∇f | =

sup
φ∈Φα

{∫

Ω

f(x)div φ(x)

}

, (48)

where

Φα =
{

φ ∈ C1
0 (Ω,RN )| |φ(x)| ≥ α(x), on Ω

}

. (49)

If a function f has a finite weighted total variation norm in Ω then it also belongs to BV (Ω).

Definition 4: A function f ∈ BV (Ω) is a special function of bounded variation if its distributional derivative
is given by

|Df | = TV (f) +

∫

Ω∩Sf

JfdHN−1, (50)
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where Jf is the jump part defined on the set of points Sf and HN−1 is the (N -1)-dimensional Hausdorff measure.
The space of special functions of bounded variation SBV (Ω) is a Banach space, endowed with the norm:

‖f‖SBV (Ω) = ‖f‖L1(Ω) + |Df |. (51)

Theorem 2 Let Ω ⊂ RN be an open set with a Lipschity boundary. If {fn}n≥1 is a bounded sequence in BV (Ω),
then there exist a subsequence {fnj} of {fn} and a function f ∈ BV (Ω), such that fnj → f strongly in Lp(Ω) for
any 1 ≤ p < N/(N − 1) and

TV (f) ≤ lim inf
nj→∞

TV (fnj). (52)

The following theorem is a generalization of the main theorem of Chen [25].

Theorem 3 Let Ω ⊂ RN be an open set with a Lipschity boundary. If {fn}n≥1 is a bounded sequence in BV (Ω)
and if {αn}n≥1 is a sequence of positive valued continuous functions that uniformly converges to α on Ω, then
there exist subsequences {fnj} of {fn} and a function f ∈ BV (Ω) such that fnj → f strongly in Lp(Ω) for any
1 ≤ p < N/(N − 1) and

TVα(f) ≤ lim inf
nj→∞

TVαnj
(fnj). (53)

Theorem 4 Let Ω be a bounded and open subset of R2 and I be a given image with I ∈ L∞(Ω). The minimization
problem (44) re-writes in the following form

min
χE ,xpca,xT ,uin,uout

{F2 =

∫

Ω

(

βbg(x) + βsφ̂
2(x,xpca,xT )

)

|∇χE | +
βrFregion(xpca,xT , uin, uout)} (54)

has a solution χE ∈ BV (Ω), xpca ∈ Ωpca, xT ∈ ΩT and uin, uout ∈ C1(Ω).

Proof: We use the direct method of the calculus of variations:
(A) Let {χEn,xpcan

,xTn
, uinn

, uoutn
}n≥1 be a minimizing sequence of (54), i.e.

lim
n→∞

F2(χEn,xpcan
,xTn

, uinn
, uoutn

) =

inf
χE ,xpca,xT ,uin,uout

F (χE ,xpca,xT , uin, uout). (55)

(B) Since χEn is a sequence of characteristic functions of En, then χEn(x) ∈ {0, 1} - a.e. in Ω. A constant M > 0
exists such that ‖χEn‖L1(Ω) ≤ M , ∀n ≥ 1. Therefore, χEn is a uniformly bounded sequence on BV (Ω).
Since {xpcan

} and {xTn
} are bounded sequences on compact spaces Ωpca and ΩT , subsequences that converge to

limits xpca and xT exist.

The integrant f(x,xpca,xT ) = βbg + βsφ̂
2 is positive and bounded because both functions φ̂2 and g are bounded

on Ω. Since the PCA is applied on continuous functions (SDFs) then the functions φ̂ and f are also continuous
and fn(x) = f(x,xpcan

,xTn
) converges uniformly to f on Ω.

Following Theorem 3, a subsequence of χEn that converges to a function χE strongly in L1(Ω) exists.
Moreover , Theorem 3 also states that

∫

Ω

f |∇χE | ≤ lim inf
nj→∞

∫

Ω

fnj |∇χEnj
|, (56)

(C) In the region-based functional defined in Equation (35):

Fregion(xpca,xT , uin, uout) =
∫

Ω

(ΘinH(φ̂(xpca,xT )) + ΘoutH(−φ̂))dΩ, (57)
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the function H(φ̂(xpca,xT )) is a characteristic function χG of sets G = {x ∈ Ω|φ̂(x) ≥ 0}. So we have

Fregion(xpca,xT , uin, uout) =
∫

Ω

(ΘinχG(xpca,xT )) + Θout(1 − χG))dΩ (58)

and we can define the function u = uinχG + uout(1 − χG). The minimizing sequence of Equation (54) implies

lim
n→∞

Fregion(xpcan
,xTn

, uinn
, uoutn

) =

inf
xpca,xT ,uin,uout

Fregion(xpca,xT , uin, uout). (59)

Since the function χG depends continuously on variables xpca and xT , we have χG(xpcan
,xTn

) = χGn and un =
uinn

χGn + uoutn
(1 − χGn). According to Ambrosio’s lemna [47], we can deduce that there is a u ∈ SBV (Ω), such

that a subsequence unj
converges to u a.e. in BV − w∗ and

Fregion(xpca,xT , uin, uout) =

Fregion(u) ≤ lim inf
nj→∞

Fregion(unj
), (60)

which means that u is a minimizer of Fregion. Then, by combining Equations (56) and (60), χE , xpca, xT , uin and
uout are minimizers of (54).
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