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Abstract

The dictionary approach to signal and image processing has been massively investigated in the last two decades, proving very
attractive for a wide range of applications. The effectiveness of dictionary-based methods, however, is strongly influenced by
the choice of the set of basis functions. Moreover thestructureof the dictionary is of paramount importance regarding efficient
implementation and practical applications such as image coding. In this work, an overcomplete code for sparse representation of
natural images has been learnt from a set a real-world scenes. Experiments have been carried out using images of different sizes
in order to check the influence of this parameter on the learnt bases. The functions found have been organized into a hierarchical
structure. We take advantage of this representation of the dictionary, adopting a tree-structured greedy algorithm to build sparse
approximations of images. Using this procedure, no a-priori constraint is imposed on the structure of the dictionary, allowing great
flexibility in its design and lower computational complexity.
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I. I NTRODUCTION

For many applications in the field of signal and image processing, it is desirable to have an efficient, sparse
representation of information, in particular for computational cost reasons. Redundant systems, like Matching
Pursuit (MP) [1], are able to produce such a sparse representation and allow for great freedom in designing
dictionaries with prescribed properties, or adapted to particular signal structures or even to communication
application requirements [2].

The effectiveness of approaches based on expanding the signal over a redundant set of functions, however,
largely depends on the choice of the dictionary of functions itself. Thus, the question that arises at this point is
how to built effective, meaningful sets of functions, that are able to generate sparse representations of images.

Until today, the methods developed to deal with natural images impose somehow a structure in the repre-
sentation. This means that, being able to efficiently process, encode or transmit image data imposes strong
constraints on the representation framework. As examples, we can cite the wavelet transform and thecurvelet
transform. The success of the first one in image coding largely depends on its hierarchical tree structure [3],
that however limits its flexibility, as witnessed by the limited freedom in choosing the properties of a wavelet
basis. The frames of curvelet introduced by Candès and Donoho [4] exhibit an essentially optimal behavior
in representing objects withC2 singularities. They impose, however, strong constraints in the structure of
the transform, that can pose problems when dealing with real-world images, that contain features much more
complex then uniform regions and smooth edges.

In contrast, a promising approach consists in learning a set of visual primitives from training images, and
then organize the learnt dictionary in a useful and meaningful structure. In the field of computational vision,
several efforts have been done to try to deduce sets of functions that are able to efficiently represent natural
images. Particularly interesting and successful methods are those designed to learn sparse codes [5][6] or
independent components (ICA) [7][8] of natural images. The sparse approach, however, seems to be more
plausible than the ICA one from a biological [5][9] and mathematical [10] points of view.
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In this work, we study the characteristics of real world scenes to build anad hoclibrary of functions for
the sparse representation of natural images. The image is assumed to be a linear superposition of functions
belonging to an overcomplete library. The functions used in this study areAnisotropic Refinementatoms,
that have been used in [11] as basis functions for a Matching Pursuit algorithm. Here the parameters of such
waveforms are learnt from a set of natural images, using a method inspired by [5]. Moreover, basis functions
for images of different size have been learnt, in order to study the influence of this factor on the resulting
atoms.

Once the learning process is accomplished, the resulting huge amount of data must be organized. Basically,
we want to identify the essential, most significative structures underlying the learnt dictionary. This would
allow to arrange it in a tractable structure. To this end, the obtained atoms are clustered and organized in a
tree representation, like the one proposed in [12]. Atoms are grouped into clusters that represent subspaces
of the whole learnt dictionary, which are as orthogonal as possible one to the others.

The obtained tree structured dictionary allows to design a coarse-to-fine greedy algorithm to build sparse
approximations of natural images. This algorithm has the non negligible advantage of being less complex
and much faster than a classical MP method.

The great advantage of the proposed approach is that no a-priori hypothesis on the structure of the dictio-
nary is done, except for the shape of the basis waveforms. This permits a great flexibility in the design of the
dictionary, that is thus able to adapt to the structures present in images.

This report is structured as follows: in Section II, the image model adopted is introduced, as well as the
basic dictionary of Anisotropic Refinement atoms. The learning process is described in Section III, while in
Section IV is presented the method used for the construction of the tree. In Section V the experimental results
are presented and discussed, and in Section VI conclusions are drawn, and possible future applications are
depicted.

II. I MAGE MODEL

As a first step, we define the image model used in this work. An imageI(x, y) is supposed to be represented
as a linear summation of basis functionsgγi

(x, y):

I(x, y) =
N−1∑
i=0

cigγi
(x, y) , (1)

whereci are the coefficients andN is the number of basis functions used to form the reconstruction of the
imageI(x, y).

The functionsgγi
(x, y) are created by applying geometric transformations to a generating function,g(x, y),

of unit L2 norm. The dictionaryD= {Uγg, γ ∈ Γ} for a given set of indexesΓ, is thus built by applying
the transformationsUγ to the functiong. Basically, the required transformations are translations bytx andty,
rotations byθ and scaling bysx andsy. It is easy to demonstrate that the dictionary built in such a way is
overcomplete [11].

The generating functiong should be able to efficiently represent edges on the 2-D plane and thus should
behave like a smooth scaling function in one direction and like a wavelet in the orthogonal one. In this case,
the functiong(x, y) is a Gaussian along one axis and the second derivative of a Gaussian along the other one:

g(x, y) = (2− 4x2) exp(−(x2 + y2)) . (2)

This set of atoms has been chosen because, as described in [11], is able to represent very well contours and
edges, and also because of the optimal spatial and frequency localization of the Gaussian kernel.

An Anisotropic Refinement (AR) atomgγ rotated byθ, translated bytx andty and anisotropically scaled
by sx andsy can thus be written as:

gγ(u, v) =
C√
sxsy

(2− 4u2) exp(−(u2 + v2)) , (3)
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(a) (b)

Fig. 1. Anisotropic Refinement atoms of Eq.(3). Positive values are depicted in white and negative values in black. (a) Atom with
x scalesx smaller than they scalesy. It is evident its edge-detector behavior. (b)Pathologicalatom: thesx scale is bigger
than thesy scale and the function looses its edge-detector characteristic.

whereC is a normalization constant and

u =
cosθ(x− tx) + sinθ(y − ty)

sx

, (4)

and

v =
−sinθ(x− tx) + cosθ(y − ty)

sy

. (5)

An example of Anisotropic Refinement atom is shown in Fig. 1(a).
It is interesting to remark that the atomsgγ have the same characteristics of the waveforms employed in [4]

to define the curvelet functions.

III. L EARNING THE BASIS

Our aim is to learn the parameters of the atoms (tx,i, ty,i, θi, sx,i andsy,i) that best represent an image
I(x, y), but that also take into account the sparseness of the representation. The learning can thus be accom-
plished by minimizing an objective function composed of three terms:

E =
∑
x,y

[
I(x, y)−

N−1∑
i=0

cigγi
(x, y)

]2

+ λ1

N−1∑
i=0

S(ci) + λ2

N−1∑
i=0

P (sxi
, syi

) , (6)

with respect to the parameterstxi
, tyi

, θi, sxi
, syi

and the coefficientsci, with i = 0, . . . , N − 1 andN
being the number of atoms considered for the reconstruction. The first term of the functionalE represents
the square error between the original image and the reconstructed one, and indicates how accurate is the
reconstruction. The second term encourages a sparse representation of the data, giving a high penalty to large
coefficients. In this case we setS(x) = log(1 + x2). The third part of the expression encourages, for each
atom, the scalesxi

to be smaller thensyi
. Here we have chosen to setP (x, y) = arctan(k(x− y)), where the

parameterk determines the slope of thearctan function. This term has been added to reduce the introduction
of pathologicalatoms that do not have the desired characteristics of band-pass, edge-detector functions (see
Fig. 1). Whensxi

is bigger thensyi
, the argument ofarctan is positive and the value of the function is high,

while in the case in whichsxi
is smaller thensyi

, the value ofarctan is small. The parametersλ1 andλ2 are
constant terms that attribute the importance of the second and the third term respectively, relative to the first.

The images used for the learning are those of the dataset of ten512×512 pixels filtered images of Olshausen
and Field [5]. Four examples of the test images are shown in Fig. 2. Experiments have been run on16 × 16
and32× 32 patches, randomly sampled from the dataset. Only patches with a variance at least twice as large
as that of the original set of images have been taken into account for the computation. Every image patch
I(x, y) was reconstructed usingN atoms, thus, for each image the functionE was minimized in a space of
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Fig. 2. Examples of four test images from the dataset of Olshausen and Field.

dimension6 × N . In the first series of experiments with16 × 16 pixels patches, images were reconstructed
using 30 atoms (N = 30). The second set of experiments on32×32 patches was run using 60 atoms (N = 60)
for the reconstruction.

The optimization has been done on each patch individually using a Sequential Quadratic Programming
(SQP) method [13]. The algorithm, beginning from a given starting point, generates at each iteration a
directiond0 of descent for the objective function, solving a standard quadratic program. The minimization
stops when the norm of the vectord0 is smaller than a thresholdε. In our experimentsε was set equal to10−3,
since this value represented a good trade-off between learning speed and reconstruction accuracy.

The parameterλ1 was imposed to be equal to0.14σI , whereσI was the variance of the considered image
patch,λ2 was set to the same value ofλ1 and the parameterk was fixed to 5. Different combinations of the
parameters have been tested with no significant changes in the results.

IV. GENERATION OF THETREE

The resulting atoms have been grouped into clusters using the algorithm presented in [12]. This method
creates clusters in the initial dictionary and it organizes them in a hierarchical tree structure. Each nodeNi,j

at leveli and positionj in the tree hasM children and is characterized by the group of atomsGi,j contained
in the subtree spanned byNi,j. A centroidci,j is assigned to the nodeNi,j that represents the functions of the
dictionary present in the corresponding subtree:

ci,j =

∑
k∈Gi,j

gγk√
‖∑

k∈Gi,j
gγk
‖

, (7)

wheregγk
is the learnt anisotropic atom. The elements of the original learnt dictionary lie at the leaves of the

tree, and each node represents a subspace of the dictionary, which is as orthogonal as possible to its siblings.
Defining the distance between two atoms as

d(gγl
, gγm) = |〈gγl

, gγm〉| , (8)

one can define the mean distance betweenci,j and the atoms that it represents as

Di,j = 1/ni,j

∑

k∈Gi,j

d(gγk
, ci,j) , (9)

with ni,j being the cardinality ofGi,j. For a fixed setGi,j, the quality of the clustering is defined as:

QGi,j
=

1

M

M−1∑
ω=0

Di+1,jM+ω . (10)

The tree is built using ak-meansalgorithm that attempts to maximize for each group of atoms the quantity
QGi,j

. The clustering process stops whenQGi,j
increases from one step of thek-meansalgorithm to the

following one by a quantity that is smaller than a givenε. Here the value ofε is set equal to10−6.
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Fig. 3. Histograms of the scalesy conditioned to different values ofsx. (a) Results for16× 16 image patches and (b) for32× 32
image patches.

V. RESULTS

A. Learnt Dictionary

In the experiment with16× 16 pixels images and 30 atoms, the minimization of the functionalE has been
computed on 10000 images, thus obtaining 300000 atoms. We have however considered only the atoms lying
on the image area and whose scales satisfied the inequalitysx ≤ sy, and we have drawn a joint histogram of
the two scales. A large number of atoms has been found to have scalesy around 2 and scalesx of about 1. In
fact the histogram bin with the higher number of occurrences is the one corresponding to1 ≤ sx < 1.2 and
1.8 ≤ sy < 2. The learnt atoms have a mean value of the scalesx equal to 1.1348 while the mean value ofsy

is 4.1265; the mean anisotropy scale ratiosy/sx is 2.6246 with a standard deviation of 1.4508. The behavior
of the histogram ofsy conditioned to different values ofsx is depicted in Fig. 3(a).

The results obtained with bigger images (32 × 32 pixels) behave similarly. In that case, 5000 images,
reconstructed using 60 atoms each, have been analyzed. Thus, in this second experiment we have again
300000 atoms learned. The mean value of the scalesx is 1.4555 and the mean value ofsy is 5.0276; the mean
of the ratiosy/sx is now 2.5043 with a standard deviation of 1.9206. The behavior of the histogram ofsy

conditioned to different values ofsx is depicted in Fig. 3(b).
In Fig. 4 are plotted the histograms of the anisotropy scale ratiosy/sx conditioned to various values of the

scalesx, for (a)16× 16, and (b)32× 32 image patches. It is evident the preference for small atoms with an
anisotropy ratio between 2 and 4. Increasing the size (here the scalesx) of the atoms, the scale ratio tends to
be uniform.

Concerning the orientations of the atoms, in Fig. 5 the histograms of the parameterθ conditioned to dif-
ferent values of the scalessx andsy, for images16 × 16 pixels, are shown. The behavior of the histograms
for 32 × 32 images is similar. The peaks in the histograms corresponding to rotationsθ equal to 0,π/2 and
π are typical of the small scales, while atoms with larger scales exhibit a much uniform distribution of the
rotations. This could be due to the fact that images are sampled using a square grid when digitalized: small
atoms seem to be more influenced by the sampling structure.

As observed before, the AR atoms employed here have the same shape of the curvelet functions introduced
in [4]. However, the learnt dictionary has substantially different properties with respect to the curvlet frame.
The width and length of a cuvelet, that essentially correspond tosx andsy of the AR atom, obey theAnisotropy
Scaling Relation:

width≈ length2 .
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Fig. 4. Histograms of the ratiosy/sx conditioned to different values ofsx. (a) Results for16 × 16 image patches and (b) for
32× 32 patches.
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Fig. 5. Histograms of the rotationθ (a) for different values of the scalesx, and (b) for different values ofsy. The diagrams refer
to 16× 16 pixels images.

Moreover, each curvelet frame element has theDirectional Sensitivity Property, that is:

number of orientations= 1/
√

width .

These two properties clearly do not hold in the dictionaries we have learnt. In our case, in fact, the scalessx

andsy are in general not related by a parabolic law (see Fig. 3). The number of orientations found, moreover,
do not decrease with the increase of the width (i.e. ofsx) of the atoms, on the contrary they seem to be
more uniformly distributed (see Fig. 5). These observations seem to confirm the idea that real-world images
are difficult to model with a tractable mathematical representation and motivate us in pursuing the promising
direction of the learning approach to image representations.

B. Dictionary Organization

In order to organize the learnt dictionary in a hierarchical, tractable structure, the obtained atoms have been
grouped using the algorithm described in Section IV, setting the number of children for each node toM = 4.
The upper part of the tree resulting from the clustering of the atoms learnt from16 × 16 image patches
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(a)

(b)

Fig. 6. The first two layers of the tree and an example of a third layer sub-cluster. The basis functions (a) and the corresponding
power spectra (b) are shown. The depicted functions are the centroids of the clusters obtained grouping the atoms learnt in the
experiment with16× 16 pixels image patches. Each node hasM = 4 children.

Fig. 7. The first two layers of the tree. The depicted functions are the centroids of the clusters obtained grouping the atoms learnt
in the experiment with32× 32 pixels image patches. Each node hasM = 4 children.

is depicted in Fig. 6. A substantially identical tree-structure has been derived clustering only 100000 learnt
atoms.

The centroids are linear combinations of the atoms learnt and are thus functions well localized in space and
frequency. The waveforms that represent the first level of the tree are edge-detector functions oriented along
the four main directions of the image plane. Descending into the tree, the children of each node specialize in
catching different image features at various scales and orientations.

In Fig. 7 it is shown the tree obtained considering the set of atoms learnt from32 × 32 image patches. In
this case, we have clustered 100000 atoms. The resulting structure is essentially similar to the one obtained
with 16 × 16 atoms.
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(a) Original image (b) PSNR = 24.93 dB (c) PSNR = 28.63 dB (d) PSNR = 30.82 dB

Fig. 8. Lena128 × 128. Original Lena image (a) and its reconstructions using respectively (b) 100, (c) 300 and (d) 500 atoms.
Results for the16× 16 dictionary.

(a) Original image (b) PSNR = 24.24 dB (c) PSNR = 26.37 dB (d) PSNR = 27.96 dB

Fig. 9. Barbara128 × 128. Original Barbara image (a) and its reconstructions using respectively (b) 100, (c) 300 and (d) 500
atoms. Results for the16× 16 dictionary.

C. Image Representation

We take advantage of the hierarchical representation of the learnt dictionary, using a tree-based MP algo-
rithm to generate sparse representations of images. The method, proposed in [12], finds at each step the best
path through the tree down to the leaves level, picking the best atom from the learnt dictionary. LetRNI be
the residual image afterN steps of the algorithm. The method firstly performs a full search overRNI for the
set ofM root nodes, returning the centroidcB that best matches the residual image and its position(xB, yB).
Then, a full search over a window of sizeW ×W (hereW = 3) around the position(xB, yB) is performed,
considering the subtree referring tocB. The algorithm executes the search descending through the tree down
to the leaves level, where the atom that best matchesRNI is found.

The complexity of this modified MP method is much lower than that of a full search method. Moreover,
the learnt dictionary is completely general and can be used to reconstruct images of different types and sizes,
and with variable quality. Fig. 8 shows the128× 128 Lenatest image reconstructed using 100, 300 and 500
atoms. Fig. 9 shows the128 × 128 Barbara test image approximated with 100, 300 and 500 atoms. The
original image has been down-sampled by a factor of 4 obtaining thus a32 × 32 sub-image that has been
interpolated with 2-D Gaussian functions in order to obtain a low-pass image. The difference between the
original image and this low-pass version has been reconstructed with the tree-based MP algorithm and the
result of the reconstruction has been added again to the low-pass part.

In order to speed up the construction of the tree and the search procedure, the algorithm described above
has been applied to a reduced tree composed of 100000 elements. The results of the reconstruction of the
128 × 128 Lena image are shown in Fig. 10. As can be immediately observed, the results are qualitatively
and quantitatively similar to those obtained using the entire dictionary.

We have also decomposed the imageLenausing the tree constructed with 100000 atoms learnt on32× 32
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(a) Original image (b) PSNR = 25.06 dB (c) PSNR = 28.59 dB (d) PSNR = 30.72 dB

Fig. 10. Lena128 × 128. OriginalLenaimage (a) and its reconstructions using respectively (b) 100, (c) 300 and (d) 500 atoms.
The results have been obtained applying the tree-based MP algorithm to a sub-dictionary of 10000016× 16 atoms.

(a) Original image (b) PSNR = 25.42 dB (c) PSNR = 28.99 dB (d) PSNR = 31.25 dB

Fig. 11. Lena128 × 128. OriginalLenaimage (a) and its reconstructions using respectively (b) 100, (c) 300 and (d) 500 atoms.
The results have been obtained applying the tree-based MP algorithm to a dictionary of 100000 atoms learnt from32 × 32
image patches.

image patches (see Fig. 7). The results using 100, 300 and 500 atoms are shown in Fig. 11. In this case the
performances of the reconstruction algorithm are slightly improved with respect to the results obtained with
the16× 16 atoms dictionary. This is probably due to the wider range of values taken in this case by the scale
parameters: bigger atoms are present in the dictionary, that can take into account larger image features.

VI. CONCLUSIONS

In this work we addressed the problem of efficiently representing images using sparse superposition of
functions selected in a redundant dictionary. Meaningful atoms were designed through learning by minimiz-
ing a cost functional enforcing sparsity and good approximation power. Universal sets of basis functions
were than obtained, displaying various spatial and frequency localization behaviors. Dictionaries of various
dimensions and composed of atoms with different size were built, demonstrating the robustness and flexibility
of the proposed approach. The characteristics of the learnt sets of functions were described and discussed in
the context of sparse image representation. Imposing a hierarchical structure on the learnt sets was achieved
using a clustering approach. Finally, a fast tree-structured greedy algorithm was designed to benefit from
the organization of the dictionary, and it was tested on the learnt dictionaries. Applications of this technique
to image coding are foreseen, where encoding atom identities could also be performed in a tree-structured
manner.
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