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ABSTRACT 

Wavelet transform is a powerful instrument in catching 
zero-dimensional singularities. Ridgelets are a powerful 
instrument in catching and representing mono- 
dimensional singularities in bidimensional space. 

In this paper we propose a hybrid video coder scheme 
using ridgelet transform for the first approximation of 
line-edge singularities in displaced frame difference 
images. We demonstrate the potential of ridgelets and 
results show substantial improvements when compared to 
wavelet only.based coder. 

1. INTRODUCTION 

Images are generally described via orthogonal, non- 
redundant transforms like wavelet or discrete cosine 
transform. The good performance of wavelets in mono- 
dimensional domain is lost when they are applied to 
images using 2D separable basis since they are not able to 
efficiently code mono-dimensional singularities. 

The ridgelet transform achieves very compact 
representation of linear singularities in images [ 1,2,3]. 
Instrumental in the implementation of the ridgelet is the 
Radon transform, which is a powerful tool to extract lines 
h e d g e  dominated images. Therefore, they can offer an 
important contribution in order to detect and represent 
edges, which’are fundamental structures in natural images 
and particularly relevant from a visual point of view. 

Concerning video coding, the motion compensation 
procedure, commonly employed in traditional hybrid 
coding schemes, produces a displaced frame difference 
(dfd) that appears as an edge dominated image. Intuition 
suggests that ridgelet transform can be a good tool for the 
first approximations of dfd images. 

2. RIDGELET THEORY 

2.1. Continuous Ridgelet Transform 
We start by briefly reviewing the continuous ridgelet 
transform, defined by Candes and Donoho in [l], 
stemming from the Radon transform, insmimental in its 

implementation. Given an integrable bivariate function 
1(xI,x2), its Radon transform (RDN) is defined by: 
“,(B,t)= ~ ~ ( x , , ~ ~ ) ~ ( x ~ c o s B + x ~ s ~ ~ ~ - ~ ) ~ ~ , ~ x , ~  (1) 

Basically the Radon operator maps the spatial domain into 
the projection domain (S. t ) ,  in which each point 
corresponds to a straight line in the spatial domain; 
conversely, each point in the spatial domain becomes a 
sine curve in the projection domain. 

The Continuous Ridgelet Transform (CRT) is simply 
the application of a mono-dimensional wavelet 
( ~ , ~ ( t ) = ~ . ” ’ C U ( ( t - b ) / u ) )  to the slices of the Radon 

transform: 

R? 

CRUa,b,@) = /W,, . , , (O~N,(@,W = 
R 

= ~ W . . b . o ( ~ I , ~ * ) f ( X I , ~ * ) d X l ~ 2  3 (2) 
R? - 

where the ridgelets vo.b,o(x)  in 2-D are defined from a 

wavelet-type function u/(t)  as: 

~ , , b , s ( x l , x l )  = u ~ “ ~ ~ ( ( x ,  cos8+x1 sinO-b)/a). (3) 

This shows that the ridgelet function is constant along the 
lines where xI cos8+x2 sinf?=consi. 

Comparing ridgelets with wavelets we observe that the 
parameters of the former are scale factor and line position 
(respectively a and ( b , @ )  in (2)), while the latter uses 
scale factor’ ‘and point position. As a consequence, 
wavelets are very effective in representing objects with 
isolated point singularities, while ridgelets are very 
effective in representing objects with singularities along 
straight lines. 

It is interesting to notice that in ‘the Radon domain if 
we apply a ID Fourier transform along I instead of a 
wavelet we will obtain the 2D Fourier transform off: This 
result is known as projection-slice theorem [4]. 

2.2. Finite Ridgelet Transform 
In order to apply ridgelets to digital images a discrete 
transform is needed, and this leads to the research of a 
discrete Radon transform. In [5,6], Do and Vetterli 
propose a new procedure that results to be invertible, 
orthogonal and achieves perfect reconstruction: the Finite 
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RIdgelet Transform (FRIT). FRIT is based on the Finite 
RAdon Transfortn (FRAT) [7], which is defined as 
summations of image pixels over a certain set of “lines”. 
Those lines are defined in a finite geometry in a similar 
way as the lines for the continuous Radon transform in the 
Euclidean geometry. DenoteZ, = {O,l,.,,p - I}, where p 

is a prime number. Note that Z, is a finite field with 
modulo p operations. The FRAT of a real discrete 
functionfon the finite grid Z,’ is defined as: 

FRAT/(~,I)=- x / ( i , j ) .  (4) 

Mere 

the lattice Z:, i.e. 

1 

JI; ( i , j )eL*. ,  
denotes the set of points that make up a line on 

{(i, j )  : j = (ki+I)(modp), ie  Z,} i f0  S k  < p 
. (5 )  { {(U : j E Z,, } if k = p 

4, = 

The inverse transform is obtained through the Finite 
Back-Projecrion operator (FBP) defined as a sum of 
Radon coefficients of all the lines that go through a given 
point. Here.f is supposed to be a zero-mean image: 

From ( 5 )  it can be found that <,, is: 

= ( ( k , l )  : I  = ( j  -ki)(mod p),k E Z p }  U {(p,i)}. 

Substituting (6) into (4) we obtain that 
I F B P r ( i , j ) = -  c cf(i’,j’)= 

=i[ x f ( i t , f ) + p . / ( i , j )  =f( i , j )  (7) 

W ) E e . ,  (i’,f)E&, 

P ( i ’ , f F z i  I 
and so the perfect reconstruction is achieved. 

It is easy to compute that the number of operations 
required by FRAT is p 3  addictions and$ multiplications, 
so almost comparable with other transforms like 2D-FFT. 
A drawback of this discrete implementation is the :wrap- 
around” effect, already observed by Do. 

3. FRIT ON TEST IMAGES 

FRIT needs an input image of sizepxp. wherep is a prime 
number, and this is an important limitation of this 
algorithm. Moreover wavelets usually require a dyadic 
length signal and this is absolutely incompatible with the 

Fig.1: Artificial image: original (left), reconstructed 
with 20 wavelet coefficients (center) and with 20 
ndgelet coefficients (right). 

FRAT output (that is a matrix px@+l)). In the test we 
made, we extended the length of the signal from p to m, 
where m is defined as: 
m = min(n6 N : ( n  > p )  and(n = 2d), c f ~  N). 
Typically we took p=31 or p=127 and so m=32 or 128 
respectively. 

Figure 1 represents an image 31x3 1 reconstructed with 
wavelets (Daubechies 9,7) and ridgelets. In this case, 
favorable to the second transform, the FRIT is able to 
detect the line structures even using a very small number 
of coefficients. 

4. FRIT APPLIED TO MOTION COMPENSATED 
IMAGES 

In natural video coding, displaced frame differences are 
characterized by a different range of  luminance values 
when compared to natural images and by higher 
frequency components. Usually, as already observed, they 
present many edges. 

We aim to catch these features exploiting the 
directional information given by the Radon transform and 
consequently by the FRIT. 

Applying the ridgelet transform to a dfd and 
comparing with wavelets, we notice an interesting result: 
when we consider the very first coefficients the error 
obtained with the FRIT is lower (see figure 2). Afterwards 
wavelets have a better behavior and this is due to the fact 
that Ridgelets represent efficiently straight lines but not 
curves. Moreover a noise-like’ effect appears in the FRIT 
reconstructed images as can be seen in figures 1 and 3b. 
This is related to the wrap-around effect that occurs when 
choosing the latti,ce as in (5) .  In [5]  Do and Vetterli 
propose a new ordering for the FRAT coefficients; we 
tested the old and the new one on motion compensated 
images observing that results do not significantly differ. 
In fact this new optimal ordering is designed for natural 
images and not for dfd. 

Now studying the graph in figure 2 we notice that it 
can be split into two parts. This suggests that there is a 
potential for a base layer. 
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Fig.2: Mse decay using an increasing number 
of coefficients to reconstruct the image. 
Comparison between wavelets and ridgelets. 

These results still hold for smaller blocks as can be 
seen in Table I where a block 31x31 of the same 
sequence is studied. 

Coe iciei~ls Frit Wavelet 1. 
100 I39 

Tab. I : Mse for a block 3 I x3 I taken from the 
sequence “Stefan”. 

5. HYBRID CODING 

From what observed in the previous section a possibility 
to exploit the-advantages of FRIT is to apply it to a block 
of a dfd and check if it is able to detect lines with the first 
coefficients. We propose a method composed of two 
stages. First the FRIT i s  used to catch line patterns with its 
biggest coefficients, afterwards the reconstructed image is 
subtracted from the original one and the residual is passed 
to the second stage. Here a classical wavelet 
decomposition ‘ i s  performed (2D-DWT). Figure 4 
illustrates the scheme of this hybrid algorithm. The input 
dfd image has been obtained using a motion estimation 
algorithm similar to MPEG-4. The inverse algorithm is 
very simple: wavelet and FRIT coefficients are decoded 
separately and then the two images are added in order to 
obtain the reconstructed dfd. 

This technique, that exploits the potential base layer 
shown in figure 2, offers a double advantage: first, lines 
are represented in the optimal way (i.e. using ridgelets), 
second the residual is easier to code for wavelets since 
some edges were eliminated in the previous stage. 

This hybrid coding method does not require to split the 
image in small blocks and it can be applied to the whole 
image too. Only the features that are really efficiently 
represented by ridgelets are considered, all the rest is 
transferred to the second step. 

Fig.3: Motion compensated block extracted from the 
sequence “Stefan”. Original (a) and reconstructed with 
FRIT(b), wavelets (c) and hybrid method (d). 400 
coefficients. 

Store 

to dec;der 2 D - D W  
Selection ~~~~~~~~ 

Fig.4: Scheme of the hybrid algorithm 

6. RESULTS 

We consider now the case of a block of 127x127 pixels, 
extracted from the sequence “Stefan”. Figure 3 shows the 
original block and the ones reconstructed with FRIT, 2D- 
DWT and the hybrid method. It should be noted that the 
pixels values are shifted and scaled, being the original 
range of the frame [-255.2551. 

Table 2 illustrates the mse obtained with different 
number of coefficients: at high compression rates the 
advantage is evident. The number of coefficients for the 
hybrid encoder is the sum of the FRIT (fixed to five) and 
the wavelet ones. 
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400 40. I 34.9 

Tab.2: Mse obtained applying wavelets and the hybrid 
method on a block 127x127 from the sequence “Stefan”. 

Another interesting comparison can be done 
computing how many coefficients are necessary to reach a 
certain mse. Tables 3 and 4 examine this situation for two 
different frames taken from sport sequences The last 
column gives the percentage of coefficients that the new 
method saves compared with wavelets. 

In all the examples reported the 2D wavelet transform 
is performed using biorthogonal Daubechies 9.7 
functions. 

8 
6 

There are video sequences that have many lines that 
can be well treated with ridgelets (a lot of sport sequences 
for example) and others in which this technique is useless. 
It could he interesting to develop an adaptive version of 
the proposed algorithm that finds out how many ridgelets 
coefficients are necessary to efficiently code edges on a 
certain dfd before passing the residual to the second step. 

In the hybrid scheme that we presented the final stage 
is entrusted to wavelets but other techniques could also be 
used. It should be noticed that if the coder utilized in the 
second stage is block-based the capacity of detecting lines 
on the whole frame is especially useful. 

Finally, it could be particularly interesting to use a 
matching pursuit algorithm [I 1,121 instead of wavelets as 
it seems to be better compatible with this hybrid coding 
implementation. 

200 225 12.5% 
400 450 12.5% 

Target MSE ~FRIT+wuveler wavelet vu? (%) 

10 I 100 1 I O  IO% 

50 
44 
35 

IO0 210 110% 
200 315 57% 
400 530 32% 

Target MSE IFRIT+nnve/et aovelet vur (%I 

7. CONCLUSIONS 

Ridgelet transform turns out to be optimal for representing 
discontinuities along straight lines [Z]. in order to employ 
i t  with complex images a more elaborated structure is 
needed. For example one can first utilize a quad-tree 
division [8,9] of an image in small blocks and then apply 
ridgelets or use the curvelet transform [lo] based on a 
localized application of ridgelets. 

Here we propose a different approach, suitable for 
motion compensated images, that exploit ridgelets ability 
to find and represent edges, employing them for a base- 
layer coding. This method is based on the idea that an 
image is built of several components: one technique can 
be adopted to represent straight lines while the rest can be 
represented employing other transforms. 

Moreover, from a visual point of view, the fact that 
lines are well reconstructed (even though the image is 
highly compressed) turns out to be very important. 
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