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Abstract

Rapid evaluation and design space exploration
at the algorithmic level are important issues in
the design cycle. In this paper we propose an
original area vs delay estimation methodology
that targets reconfigurable architectures. Two
main steps compose the estimation flow: i) the
structural estimation which is technological in-
dependent and performs an automatic design
space exploration and ii) the physical estima-
tion which performs a technologic mapping to
the target reconfigurable architecture. Exper-
iments conducted on Xilinx (XC4000, Virtex)
and Altera (Flex10K, Apex) components for a
2D DWT and a speech coder lead to an av-
erage error of about 10 % for temporal values
and 18 % for area estimations.
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1 Introduction

The evolution of telecommunication and multi-
media applications towards new standards re-
quires innovative architectures in order to re-
spect always tighter constraints (performance,
power consumption, ...). The recent evolu-
tions of reconfigurable architectures, in terms
of capacity and performances, efficient re-
source integration (like DSP operators and
memories), or flexibility through the possibil-
ity of run time reconfiguration, offer a very
promising issue for reconfigurable system on
chip. As a result, the choice of a suitable tar-
get component, satisfying both physical (area,
performances, ...) and marketing (final prod-
uct cost, time to market, ...) constraints is a
complex issue often left to the designer experi-
ence. Dealing with such problems as applica-
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Figure 1: Design space exploration approaches

tion parallelism exploration and FPGA archi-
tecture matching, impose to define new design
methodologies in order to find more quickly
and surely an integration solution satisfying all
the design constraints.

Until now, typical hardware design method-
ologies start, from an algorithmic description
of the application (e.g. VHDL, SystemC), with
an architectural synthesis step to obtain a de-
scription at the RT level. Then logic syn-
thesis and place & route steps are performed
to obtain the final description of the circuit
and precise values of area (FPGA occupation)
and performances (execution time). These two
steps are very time consuming since the only

architectural synthesis step can take from sev-
eral hours (with a High Level Synthesis tool,
HLS in the following) to several months (hand
coding) to overcome. As shown in figure 1,
design space exploration may need several it-
erations if constraints are not met, what can
lead to prohibitive design times.

2 Objectives & Contribution

The purpose of the work presented in this pa-
per is to define an efficient exploration method-
ology starting from system level specifications
that allows: i) to define several architectural
solutions and ii) to compute the correspond-
ing estimated area and execution time values.
The second point allows the designer to make a
choice of a solution, while the first point gives
information for the selected solution design.
To find an interesting answer to this prob-
lem, the following considerations have been ad-
dressed:

e Define a method operating at a high level
of abstraction, from system level specifi-
cation including control structures, mul-
tidimensional data and hierarchy to deal
with complex modern applications.

e Give realistic cost characterization: esti-
mation takes into account all the different
units of the architecture (datapath, con-
trol unit, memory unit).

e The method should explore the applica-
tion parallelism: several architectural so-
lutions are defined for a given specifica-
tion.

e The method should be applicable to sev-
eral FPGA families (Xilinx XC4000 &
Virtex families and Altera FLEX & Apex
families).

e Define feasible solutions and give sufficient
information for post exploration steps (se-
lected architecture design).

e Low complexity to enable large design
space exploration.

The methodology developed can be seen as
a global exploration / estimation technique
based on the numerous existing works in the



field of estimation and HLS (memory size esti-
mation, scheduling techniques, data flow mod-
elling, ...). Compared to other estimation
approaches, the definition of effective archi-
tectures have been emphasized: each solution
is implementable and corresponds to a given
resource allocation, clock period value and
scheduling. Their definition relies on a pre-
cise architectural model (not only datapath,
but also memories and control units) and takes
care of modern FPGA architectural specifici-
ties. Compared to a typical design exploration
flow, we do not need to make a complete and
precise description of the circuit. For exam-
ple, we do not need to go until the precise de-
scription of the connections between resources,
or to build a floorplan. Those steps are only
needed to be computed once in the design cy-
cle and are left to the steps following the ex-
ploration process (synthesis / refinement / op-
timization). The reduced complexity allows
then to explore quickly the effect of different
implementation possibilities (intra loop paral-
lelism exploration, resource allocation, clock
period, evaluation of several target FPGAs).
Obviously, the solutions defined may be sub-
optimal in some cases, but they always cor-
respond to implementable solutions. So esti-
mation values computed (area and execution
time) are more representative of the system’s
feasibility. Moreover, those metrics give a de-
signer usefull information that allow to make
an easiest choice for implementation (satisfy-
ing both area and execution time constraints).
Once a solution selected, application synthesis
and solution refinement / optimization can be
performed in a classical way with the use of
a HLS tool for example, thanks to the rich set
of information given by the architecture defini-
tion step. This fast system level exploration al-
lows then to evaluate many design possibilities
very early in the design cycle, where choices
have a great impact on the final system per-
formances. The evaluation of several design
possibilities allows moreover to converge more
quickly and surely towards an optimal imple-
mentation solution.

3 Related Work

Most of the works concerning FPGA estima-
tion focus on the problem of architecture and
CAD tool optimizations. Only few methods

deal with the problem of area and performance
estimation on a FPGA technology, at the al-
gorithmic level.

The approach proposed in [1] by Miller and
Owyang is based on a benchmark library. A set
of circuits are implemented and measured on a,
variety of FPGAs. Area and performance pre-
diction is performed by partitioning the appli-
cation into several components, that are sub-
stituted by the most similar benchmark circuit.
However, the drawback of this approach is re-
lated to the difficult task of maintaining the
library for different components and applica-
tions. Another methodology described in [2]
by Xu and Kurdahi computes area and tim-
ing values based on models of the mapping
process. Starting from a logic level netlist,
it performs a CLB netlist construction which
is then computed through a timing estima-
tor that takes into account the overhead in-
troduced by wiring effects. This method is
very technological dependant since it targets
the XC4000 family and can only be performed
after a RTL synthesis step.

A method defined by Enzler & al. [3]
allows estimation from a higher abstraction
level. Area and delay are predicted by mean
of combination of algorithm characterization
(e.g. number of operations, parallelism de-
gree) and FPGA mapping representation (op-
eration mapping characteristics in terms of
area and delay). Their approach is interest-
ing but is limited to DFG specification, so
it does not allow to deal with complex ap-
plications that involve control structures and
multidimensional data. The same remark can
be noticed concerning the method described
in [5], which is based on a projection of the
dataflow graph nodes, and where node char-
acteristics are given by an approximation for-
mula. Both methods do not take into account
the memory and control overhead which may
be critical in modern applications (video pro-
cessing for example). Moreover, area estima-
tion is limited to one kind of resource (Config-
urable Logic Cells in [3] or number of Look Up
Tables in [5]), while modern FPGAs architec-
tures contain dedicated resources for efficient
implementation of specific functionalities (op-
erators, memories, I/O, tri state buffers, ...).
This particularity must be taken into account
as it has a non negligible influence on the final
component occupation and application perfor-
mances.



Among the methods that care about data
storage and control overhead, one can notice
two interesting methods. Nayak & al. [4] pro-
pose a technique that performs estimation at
the algorithmic level starting from MATLAB
specifications. Their method estimates area
and delay performances for a XC4010 com-
ponent. Area estimation is performed after
a scheduling step in order to define the num-
ber and the type of operator used. Delay es-
timation is based on IP characterization and
takes into account interconnection overhead.
However, they do not estimate the memory
unit and they implement the control unit into
CLBs, which may not always be the optimal
solution as modern components allow efficient
integration of product terms or ROMs into
dedicated resources (Apex Embedded System
Blocks for example). The other method [6],
targets VLSI implementation but proposes an
original technique for memory and control unit
estimation. The method does not allow to au-
tomatically explore several implementation so-
lutions since only one estimation is computed
for a given specification. Nevertheless, the re-
alistic cost characterization approach (process-
ing, control, memory) and low complexity of
the method are interesting properties in order
to develop a global exploration technique.

In our approach, we propose an original area
and delay estimator dealing with complex ap-
plications (including control structures and ar-
rays) specified at an algorithmic level that
takes into account datapath, control and mem-
ory units. Compared to published work, we
perform a wide design space exploration, with
complete cost characterization and target var-
ious significant components (XC4000, Virtex,
Flex10K, Apex).

4 Exploration / estimation

Methodology

First, the system level specification is given in
a high level language (C language), and is then
translated into an intermediate representation,
the HCDFG model [7]. This model is a hier-
archical control and data flow graph allowing
efficient algorithm characterization and explo-
ration of complex modern applications includ-
ing control flow and multi-dimensional data.
As illustrated in figure 2 a C program is de-
composed into control structures called CFGs

and into linear sequences of operations called
DFGs. For example the If-Then-Else construct
labeled 2 is composed of three DFGs, one for
the evaluation of the condition and two for the
True and False sequences of code. Hence, us-
ing the HCDFG model, the C program is con-
verted into a hierachical graph. For further
information about the HCDFG model please
refer to [7].

voi d uppol 2 (short AHL, short AH2,
short PH short PHI, short PH, short
“APHR) {

= -12288;

Figure 2: C to HCDFG format

Starting from this specification and given
a target component, the architectural explo-
ration methodology (figure 3) consists in defin-
ing several implementation solutions and esti-
mating FPGA resource occupation and algo-
rithm execution time. To perform this estima-
tion, we need to know the target FPGA char-
acteristics which are described in a technology
file [10]. Moreover, to give realistic estimation
values, we use a specific architectural model
and take memory requirements into account
(the total memory size needed is estimated).

The Exploration / estimation flow is com-
posed of two steps: i) structural estimations
and ii) physical estimations.

The first step is technological independent
and performs architectural exploration based
on the considered architectural model (figure
6). Each solution is characterized for a number
of cycle budget N, by the number Nopy(N,)
and the type (opg) of resources required to ex-
ecute the application for this cycle budget. By
changing the number of cycle budget N, we
explore the design space. Another important



characteristic of the architecture is the num-
ber of simultaneous read and write accesses to
a RAM and read accesses to a ROM which
are also computed during the structural esti-
mations. This exploration conducts to several
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Figure 3: Exploration / estimation flow

architectural solutions that are characterized
for a given cycle budget N.: i) by the num-
ber and type of functional units (Nyp, (IV¢)),
ii) by the number of simultaneous read(write)
from(to) RAM (Nram_rd(Nc)a Nram_wr (Nc))a
iii) by the number of simultaneous read from
ROM (Nyom_ra(N¢)) and iv) by the number
of control states (Ng(N.)). All these results
are gathered together in a 2D representation,
where the vertical axis corresponds to the num-
ber of resources and memory accesses, and the
horizontal axis to the number of clock cycles.

The second step is technological dependent
and targets a specific FPGA technology. Dur-
ing that step, each architectural solution is
characterized for a temporal constraint T by
the FPGA resources occupation A(T). FPGA
resources considered are logic cells (resources
that allow the configuration of user defined
functions, e.g. slices, logic elements), dedi-
cated cells (e.g. Block SelectRAM, Embedded
System Block, those resources allow efficient
implementation of specific functionalities like
memories, product terms, DSP operators ... ),
tristate buffers and I/O pads. The FPGA de-
scription is given in a technology file that con-
tains: i) the characteristics of the target FPGA
(number of logic and dedicated cells, I/O pads,
tristate buffers), ii) the characteristics of each
functional units (area and delay) and iii) the
characteristics of the memories (number of bits
per logic or dedicated cells, access time). Note

that the technology file is derived from the
data sheet of the target FPGA and from the
synthesis of basic arithmetic and logic opera-
tors.

4.1 Structural Estimations

The structural estimation step explores au-
tomatically different architectural solutions.
It can be divided into four steps: i) Pre-
estimation, ii) Selection/Allocation, iii) DFG
scheduling and iv) Node combination.

Pre-estimation consists in verifying if a tar-
get FPGA is well suited for the considered ap-
plication in term of I/O pads and memory re-
sources. The number and the size of the formal
I/O parameters used in the specification are
compared to the number of I/O pads. Total
memory size is computed (based on the tech-
nique proposed by Grun et al. described in
[8]) and is compared to the amount of mem-
ory resources available into the target FPGA.
If both conditions are verified, the next step is
performed otherwise the designer has to select
another target component.

Functional units are then selected. FEach
functional unit is described in a component
library (technology file) and is characterized
by the following features: bitwidth, delay,
type and number of resources consumed in the
FPGA. For example an eight bits adder imple-
mented into a Virtex VA00EPQ240-7 is char-
acterized as follows: 8 bits, 4.9 ns, 4 slices
(these results are obtained from the Xilinx
Foundation tool). The designer has three ap-
proaches to select/allocate functional units to
operations: i) an automatic exhaustive analy-
sis, ii) an heuristics based approach and iii) a
manually guided approach. When the designer
wants to explore the whole design space an au-
tomatic exhaustive analysis can be selected or
the designer can manually select the more in-
teresting functional units according to his or
her experience. Once functional units are allo-
cated, the clock period analysis is performed.
As for the allocation step, the designer can se-
lect to make an exhaustive analysis of each
clock period between T, and Ti,q:, Wwhere
Tonin (respectively Ty,q.) corresponds to the
propagation delay of the faster (respectively
slower) functional unit or to make a guided
exploration. Moreover, this approach allows
to be less design experience dependant as one
can make an exhaustive exploration and refine
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Figure 4: DFG scheduling example

progressively the results.

The scheduling step is applied to all the ba-
sic blocks of the graph (i.e. DFGs). As illus-
trated figure 4, scheduling is performed for
several time constraints (N;), from the most
parallel solution (corresponding to the critical
path) to the most sequential one (where only
one functional unit of each type is needed).
Two scheduling algorithms are currently inte-
grated in our exploration tool and can be used
during that step, a Force Directed Scheduling
or a List Based Scheduling [11]. Both algo-
rithms have been extended in order to compute
the number of simultaneous memory accesses
which are requested to estimate the memory
unit characteristics as explained in the follow-
ing. According to the DFG complexity and
the design space the designer wants to explore,
one of the two algorithms can be selected. Ex-
tension to other scheduling algorithms can be
done easily.

Once a DFG have been scheduled, it is re-
placed by its estimation result (i.e. resources
vs cycles curve). In order to estimate the
whole HCDFG specification, combinations of
DFG results must be realized. Since a HCDFG
specification can be composed of four types
of dependencies between DFGs (figure 5): i)
two of them correspond to execution depen-
dencies (i.e. sequential and parallel) and ii)
the two others correspond to control depen-
dencies (conditional and loop structures), it
is necessary to take them into account. For
each type of dependency, the DFG estimation
result points (corresponding to the time con-
straints N,) are combined by pair according
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Figure 5: Combination heuristics

ata10#0;

to the following equations (combination rules
are detailed in [10]):
Sequential combination:

N, =N, + N.,
N.; (Né) = NS1 (NC1) + NSz (ch)
Ny (N2) = MAX (Nop,, (Ney ), Nopy, (Nes))
Parallel combination:
N, = MAX(N,,, N.,)
N; (Né) = Nsl (NCI) + NSQ (NC2)
N(;pk (Né) = NOPkl (Ney) + NOPk:2 (Nes)
Conditional combination:
Né:Nco +[Pb1 *N61]+[Pb2 *N62]+1
N;(Né) = Nso (Nco) + Nsl (Ncl) + NS2 (NC2) +1
Nop, (Ne) = MAX[Nop,, (Neo)s Nopy, (Ney ), Nopy,, (Ney)]
Loop combination (2 scheduling possibili-
ties):
Sequential execution:
Né = Niter * (Nc + 1)
N.(N.) = Ns(N;) + 1
Nt;pk (Né) = NOPk: (NC)
Partial unrolling and folding:

N.= N+ (Nuer/fp = 1) # K

N;(Ng) = No(Ne) + (Niter/ fp — 1) * k'
Nn;pk (Né) = Nop, (Ne) * fp

Sequential execution of two graphs is esti-
mated under the assumption of maximum re-
source sharing: the number of functional units
is the maximum number of functional units



and the execution time is the sum of the two
execution times. Parallel execution is esti-
mated without considering resource sharing to
avoid a significant increase of the estimator
complexity. Concurrent controllers are used in
this case. Conditional structure estimations
need the help of branching probabilities (P,
and Py,) that can be obtained by profiling the
application. Concerning loop estimation, par-
tial unrolling may be analyzed when possible.
In this case, several parallelism degrees are rep-
resented by the parallelism factor f,. k' repre-
sent the latency of the slowest functional unit
(multi cycle functional unit execution case).
The HCDFG specification is recursively an-
alyzed thanks to those combination heuristics.
It starts with DFG nodes combination (bottom
level of the hierarchy) and the process goes on
until it remains only one node, representing the
whole application (top level of the hierarchy),
so we obtain the whole graph estimation re-
sults. The next step computes the area / time
trade-off for all the solutions explored.

4.2 Physical estimations

Physical estimations allow to compute the
FPGA resources occupation (logic cells ¢, ded-
icated cells dc, ...) and performances (execu-
tion time of the algorithm given in ns, us) of
the previously defined solutions over the tar-
geted FPGA. Technology mapping of each so-
lution is performed through a complete char-
acterization process that takes care of each
unit of the architecture. A precise model have
been defined for the memory unit, datapath
and control unit (figure 6) in order to cope
with FPGA architecture specificities. We first
analyze the memory unit cost: the number
and size of memories, and the number of con-
trol signals are derived from the total mem-
ory size estimation results, simultaneous mem-
ory accesses count, and memories characteris-
tics (ROM / RAM, number of ports). The
processing unit area and control lines needed
to drive the datapath are computed from the
knowledge of the number of functional unit of
each type and from their characteristics (area,
bitwidth, ...). The total number of states and
control signals allows to compute an estimation
of the control unit cost. The following equa-
tions describe the technology mapping process.
Details about architectural model and equa-
tion definition are related in [10].

Memory
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Figure 6: Architectural Model

Memory unit:
Logic cell based implementation:

N = [(MSram * Wmm/NbTi(zZ;lc)]
NZ™ = [(MSrowm * WTOm/Nl:i(gr;lc)]

Dedicated cell based implementation:
Nggm = MAXH-(MSRAM*Wram/Ngiat':}dc)-l; Nram_rd; Nram_wr]

Ng™ = MAX[[(MSrowm * Wrom/Nlmgn/dc)-l: Nrom]
Control signals:

Ngs™ = (2% Wagy" + 1) * MAX (Nram_rd, Nram _wr)
Nes™ =Waar % Nrom
Address bus size:
;‘s:n = [-lOQQ(MSRAM/MAX(Nram_rdy Nram_wr)ﬂ

adr. = [logs(MSroM [Nrom)]
Total number of control signals:

mu __ ram TOm
Ncs - Ncs + Ncs

where M S represents the total memory size
(in term of words) estimated at the pre-
estimation step, and where W corresponds to
the size of a word.
Processing unit:

Area:

APU = ZNOPk * Aopk

OPk

Control signals:
According to the architectural model, there
are four types of control signals: signals for
the control of the output register associated
with each functional unit (NZ), signals for
multi-functional units operation selection
(Nulti-opy “signals for the control of registers
associated with the memories read/write



ports (Neg? = N7 + Nig") and signals for
multiplexors / tristate control (N/2“*). The
number of control signals for the processing

unit is then:

Npu — Nop + Nmulti_op + Nreg + Nmuz
and the total number of control signals is:
N¢s = Ng)su + N:;u

Control unit:
ROM size estimation:

Nbits_state_reg = lOQQ (NS)

Niits _rom = Nbits_state_reg + Nes
Global cost computation:

T = ]VC *Tclk

Nie = NiZ* + NP¥ + Ni&°
Nic = Nge* + N + Ngg
Niristate = NP

tristate
This computation process is then iterated
for each architectural solution defined by the
structural estimation step and leads to the fi-
nal cost vs performance curve (figure 3).

5 Experiments & Results

5.1 From specification to synthesis

In this section, the design cycle described
above is applied to the example of a half Dis-
crete Wavelet Transform (DW'T). Specification
is written in the C language for test and simu-
lation, and is then translated into the interme-
diate representation model (HCDFG) on which
the exploration / estimation tool works. The
DWT application is composed of 4 filtering /
lifting schemes followed by a scaling process
and image re-arrange, described by 2"¢ order
nested loops. Figures 7 and 8 shows the ex-
ploration results for two target components:
Xilinx Virtex VA00EPQ240-7 and Altera Apex
EP20K200EFC484-2X. We have only repre-
sented the logic cells occupation (where the
maximum number is respectively 4000 slices
for Virtex and 8320 logic elements for Apex)
vs excution time (ns) curves as they represent
the most significant FPGA resource occupa-
tion for this example. As we can see on the
figures, exploration provides 65 architectural
solutions in both cases, each one correspond-
ing to a different parallelism degree. Let’s for

example consider the solution highlighted in
figures 7 and 8 since it corresponds to a good
area/speed trade-off.
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Based on that solution the designer may
want to refine the exploration. For example, in
this experiment the default clock period value
corresponds to the slowest functional unit de-
lay used in the architecture. Hence, the de-
signer can refine the exploration results ob-
tained previously by analyzing the effect of
different clock periods and resource allocation.
For the solution selected before, several clock
values and data bitwidths are estimated in fig-
ure 9 (labels correspond to a couple clock pe-
riod value - data bitwidth). Thanks to those
information, the designer can quickly evalu-
ate if a solution defined by a parallelism de-
gree, clock value, resource allocation and tar-
get FPGA, can meet the design constraints or
not.
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GRAPH Cycles States Mull6 Add16 Regl6 Ram(wr) Ram(rd) Rom
For12_body 5 5 1 2 - 1 3 1
HistLftStep 32 32 4 8 4 12 4
For22_body 5 5 1 2 1 3 1
H1stDLftStep 32 32 4 8 4 12 4
For32_body 5 5 1 2 1 3 1
H2ndLftStep 32 32 4 8 4 12 4
For42_body 5 5 1 2 1 3 1
H2ndDLftStep 32 32 4 8 4 12 4
For52_body 3 3 2 - 2 2 2
Hscaling 66 66 4 4 4 4
For62_body 2 2 - 2 2 -
Hreaarange 33 33 - = - 8 8 -
Hdwt 223 223 4 8 28 8 12 4
Tex: 4.5 s Slices : 1941 BRAM : 12 3 state : 256

Table 1: Selected solution details

Once a solution have been selected (for ex-
ample the one with a clock period value equal
to 20 ns and a bitwidth equal to 16), details
and corresponding structural estimation re-
sults for each hierarchy level (each subgraph of
the specification) are also available in our tool
(table 1). Those partial results fully charac-
terize each architectural solution and give the
designer all the necessary information needed
for the system design. In the case of our ex-
ample, we can see that the selected solution
is composed of 4 multipliers and 8 adders for
a 223 cycles execution, which correspond to a
resource occupation of 1941 (/4000) slices, 12
(/40) BRAMs (dedicated resources for mem-
ory implementation) and 256 (/4960) tristate
buffers (used in case of resource sharing or con-
ditional branches) for a 4.5us execution time.
The corresponding architecture is given in fig-
ure 10.

5.2 Precision & Exploration time

In this section, we discuss the precision of the
occupation vs execution time estimations and

Figure 10: Selected solution architecture

give values of the exploration time vs logic
synthesis time needed. These measures have
been performed with two representative of re-
cent FPGA families (Virtex and Apex) for a
speech coder (G722) and a 2D DWT (table
2). The corresponding architectures have been
synthesized in order to study estimation values
precision. Note here that to study this preci-
sion, the architectures have been hand coded
at the RTL level (it tooks about one month
to write each solution) in order to cope ex-
actly with our architectural model (the use of
a HLS tool would have lead to significant esti-
mation errors as it does not generate the same
architecture). That’s the reason why in the fol-
lowing, exploration times are only compared to
the logic synthesis times (architectural synthe-
sis times are about hours for a HLS tool and
months for hand coding). The Foundation and
Quartus synthesis tools have been used to tar-
get respectively Virtex and Apex FPGA.

The speech coder application is composed
of eight functions that correspond for example
to filtering and prediction operations. These
functions are mainly control and computation
oriented. The 2D DWT example is character-
ized by numerous memory accesses and com-
putations. The average error is about 10 % for
temporal values and 18 % for area estimations
which represent a good bound for the designer
since the application is described at the algo-
rithmic level. Locally more important errors
can be noticed which are due: i) to logic opti-
mizations automaticaly performed by the syn-
thesis tools which are not taken into account
in our approach or ii) to the considered control
unit architectural model that has the charge of



Virtex VA00EPQ240-7

Precision (%) Expl vs Igc synth
slices  Tex Texpl Toynth
Parrec -10 +1.4 0.05sec 1 min
Recons -10 +1.1 0.05sec 1 min
Upzero -14.9 +4.5 0.22sec 5min +52 +18.3
Uppol2 -15.2 =27 0.11sec 5min +194  +18.6
Uppoll -215 -9.8 0.11sec 5min -38 +19.6
Filtep -8 -131 0.05sec 1 min -20.1 -84
Filtez +2.2 +161  0.05sec 2min -2.6 +41.4 0.05 sec
predic -10 2.2 0.05sec 1min -10.5 +4.9 0.06 sec
G722Predictor 1.1 =T 15min  +34 +14.1 0.4
Smn___ +14  +16 0.05 sec
5min +2.6 +19 0.06 sec
5 min +2.8 +9.3 0.05 sec
5min 0.2 +1.7 0.05 sec
5min +4.9 +3.6 0.1sec
5min +67 +9.1 0.05 sec

Apex EP20K200EFC484-2X
Precision (%) Expl vs Igc synth
Igcelt  Tex Texp! Toynth
-10.5 +4.9 0.05sec  1min
-105 +4.9

EXAMPLE

0.05 sec
0.06 sec
0.11 sec
0.11 sec
0.05 sec

1min
5 min
5 min
5 min
1min
2 min
1min
10 min
8 min
8 min
8 min
8 min
8 min
8 min

0.9 sec
0.1'sec
0.05 sec

TstHLTStep +6.9 +7.1
1stHDLftStep +4 +0.6
2ndHLftStep +5.1 +13.9
2ndDHLftStep +2.5 +9.8
Hscaling +2.7 +3.6
Hrearrange +46.8 -25
1stVLftStep +7.1
1stVDLftStep +5 +16.9
2ndVLtStep +5.1 +18.5
2ndDVLftStep +3.4 +18.3
Vscaling +3.4 +5.5
Vrearrange 4509 55
DWT 2D +18.2

0.06 sec
0.06 sec
0.1sec
0.06 sec
0.1sec
0.05 sec
0.06 sec
0.06 sec
0.1sec
0.06 sec
5 min

5min 0.2 +2.9
5min -0.6 +5.1
5min +1.1 +2.9

8 min
8 min
8 min
8 min
8 min
8 min
2 days

+25.5 0.05 sec
0.06 sec
0.05 sec
0.05 sec
0.1sec
0.05 sec
5min

5min -2.6 +1.7
5min +3.2 +3.8
5min +61 +3.8
15days +37 +3.1

Table 2: Estimation vs Synthesis error and Ex-
ploration vs (logic) Synthesis time

setting the address signals. This is particularly
true for the 2D DWT example where numerous
memory accesses are performed.

The exploration / estimation computational
time is very fast since in the case of the G722,
16 solutions are estimated in about 1 second
and in the case of the 2D DWT, 350 solutions
are estimated in 5 minutes on a Pentium III
running at 800 MHz. In table 2, solutions for
both applications have been manually written
at the RTL level and then logic synthesis and
place & route steps have been done automat-
ically. As exhibited in the figure, the explo-
ration / estimation approach enables to reduce
strongly the design cycle. Hence, the designer
can focus on a subset of architectural solutions
that presents the best delay vs area trade-offs.

6 Conclusion & Perspectives

In this paper we present an automatic explo-
ration / estimation methodology at the algo-
rithmic level. This approach, which has been
integrated in the codesign environment Design
Trotter [9], enables to explore a large design
space at an early stage of the design cycle and
to characterize each solution in terms of area
vs delay. In order to provide the designer use-
ful bounds, the control, datapath and memory
units are considered and several FPGA tech-
nologies can be targeted. The time saving re-
sulting from this approach is significant and
allows to shorten strongly the time to mar-
ket constraints as well as to converge towards
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a better application / component matching.
Some extensions of this work are currently be-
ing studied to consider a separated address
generation unit, to take into account some
synthesis optimizations to improve local errors
and to include power consumption estimation.
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